DeepLearning_Lec07 - 8BitsCoding/RobotMentor GitHub Wiki


Learning Rate์œผ๋กœ ์ธํ•œ Over shooting

์ด๋ฏธ์ง€

๋ณดํ†ต ์œ„์™€ ๊ฐ™์ด Learning Rate์„ ๋‘”๋‹ค.

ํ•˜์ง€๋งŒ Learning Rate์„ ์ž˜๋ชป ์„ค์ •ํ•˜๋ฉด Over shootingํ˜„์ƒ์ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด๋ณด์ž.

์ด๋ฏธ์ง€

Learning Rate์ด ๋„ˆ๋ฌด ํฌ๋‹ค๋ฉด : ์œ„ ๊ทธ๋ฆผ๊ณผ ๊ฐ™์ด ์ •ํ™˜ํ•œ ์ตœ์ €์ ์„ ์ฐพ์ง€ ๋ชปํ•˜๋Š” ํ˜„์ƒ์ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค.

์ด๋ฏธ์ง€

Learning Rate์ด ๋„ˆ๋ฌด ์ž‘๋‹ค๋ฉด : ๊ณ„์‚ฐ์˜ ์‹œ๊ฐ„์ด ๋„ˆ๋ฌด ์˜ค๋ž˜๊ฑธ๋ฆฌ๊ฑฐ๋‚˜, ์ตœ์ €๊ฐ’๊นŒ์ง€ ๋„๋‹ฌํ•˜์ง€ ๋ชปํ•˜๋Š” ํ˜„์ƒ์ด ๋ฐœ์ƒ

Learning Rate์„ ์ • ๊ธฐ์ค€์ด ๋ญ”๋ฐ ๊ทธ๋Ÿผ?

  • ์ •๋‹ต์ ์—†๋‹ค. 0.01๋ถ€ํ„ฐ์‹œ์ž‘ํ•ด์„œ ๊ณ„์†ํ•ด๋ณด๋Š” ์ˆ˜ ๋ฐ–์—...
  • ๋ฐœ์‚ฐ์ด ๋˜๋ฉด ์ž‘๊ฒŒ, ๋„ˆ๋ฌด ๋Šฆ๊ฒŒ ์›€์ง์ด๋ฉด ํฌ๊ฒŒ

์ฃผ์–ด์ง„ ๋ฐ์ดํ„ฐ ๊ฐ’์ด ๋งŽ์ด ๋‹ค๋ฅผ ๊ฒฝ์šฐ?

์ด๋ฏธ์ง€

x1, x2๋ฐ์ดํ„ฐ๊ฐ€ ๋งŽ์ด ๋‹ฌ๋ผ์„œ Learning Rate์— ๋”ฐ๋ผ ๋ฐœ์‚ฐ or ๊ณ„์‚ฐ์ด ์˜ค๋ž˜ ๊ฑธ๋ฆด ์ˆ˜ ์žˆ๋‹ค.

ํ•ด๊ฒฐ์ฑ…์€ ๋ญ”๋ฐ?

  • zero-centreed data
  • normalized data

์ด๋ฏธ์ง€

Learning Rate๋ฅผ ์ž˜ ์žก์€๊ฑฐ ๊ฐ™์€๋ฐ ๋ฐœ์‚ฐ์ด๋‚˜ ๋„ˆ๋ฌด ์˜ค๋ž˜๊ฑธ๋ฆฌ๋Š” ํ˜„์ƒ์ด ๋ฐœ์ƒํ•œ๋‹ค๋ฉด ๋ฐ์ดํ„ฐ๋ฅผ ์˜์‹ฌํ•˜๋ผ!


Overfitting

ํ•™์Šต ์‹œ ๋„ˆ๋ฌด ๋ฐ์ดํ„ฐ ์˜์กด์  ํ•™์Šต๋ชจ๋ธ์ด ๋‚˜์˜ค๋Š” ํ˜„์ƒ์„ ์˜๋ฏธ, ์•„๋ž˜๊ทธ๋ฆผ์„ ์ฐธ๊ณ ํ•˜์ž

์ด๋ฏธ์ง€

์–ด๋–ป๊ฒŒ Overfitting์„ ๋ฐฉ์ง€ํ•˜์ง€?

  • More training data (๋งŽ์€ ์ž๋ฃŒ)
  • Reduce the number of features(์ค‘๋ณต๋œ ์ž๋ฃŒ๋ฅผ ์ œ๊ฑฐ)
  • Regularization(์ผ๋ฐ˜ํ™” ์‹œํ‚จ๋‹ค?)

Regularization

์ด๋ฏธ์ง€

costํ•จ์ˆ˜์— ํŠน์ • ํ…€์„ ์ถ”๊ฐ€ ํ•ด ์คŒ์œผ๋กœ์„œ ๊ฐ„๋‹จํ•˜๊ฒŒ ํ•ด๊ฒฐ๊ฐ€๋Šฅ


ํ•™์Šต์ด ์ž˜ ๋˜์—ˆ๋Š”์ง€ ์–ด๋–ป๊ฒŒ ํ™•์ธํ•˜์ง€???

ํ•™์Šต์‹œํ‚จ ๋ฐ์ดํ„ฐ๋ฅผ ๋‹ค์‹œ ๋ฌผ์–ด๋ณด๋ฉด ์–ด๋–จ๊นŒ?

์ด๋ฏธ์ง€

๊ฐ™์€ ๋ฐ์ดํ„ฐ์— ์˜ํ•ด ํ•™์Šต๋˜์—ˆ๊ธฐ์— ํ•™์Šต์˜ ๊ฒ€์ฆ์„ ์œ„ํ•ด์„  ์ข‹์ง€ ๋ชปํ•œ ๋ฐฉ๋ฒ•์ด๋‹ค(100% ์ •ํ™•ํ•œ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜์˜ฌ ํ™•๋ฅ ์ด ๋†’์Œ.)


์•ž์˜ 70%๋ฅผ ํ•™์Šต์‹œํ‚ค๊ณ  ๋’ค์˜ 30%๋ฅผ ํ…Œ์ŠคํŠธํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ์–ด๋–ค๊ฐ€?

์ด๋ฏธ์ง€

์ถ”๊ฐ€์ ์œผ๋กœ Validation Set(๋ชจ์˜์‹œํ—˜)์„ ๋‘์–ด ํŠœ๋‹์šฉ ๋ฐ์ดํ„ฐ๋ฅผ ๋‚จ๊ธฐ๊ธฐ๋„ํ•œ๋‹ค.

์ด๋ฏธ์ง€


Online learning

๋ฐ์ดํ„ฐ์˜ ์–‘์ด ๋งŽ๋‹ค๋ฉด ๋ฐ์ดํ„ฐ๋ฅผ ๋‚˜๋ˆ„์–ด ํ•™์Šต์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•

์ด๋ฏธ์ง€