DeepLearning_Lab10 - 8BitsCoding/RobotMentor GitHub Wiki
복습 (Softmax classifier for MNIST)
MNIST는 손글씨 데이터임 기억이 안날꺼 같아서...
# Lab 7 Learning rate and Evaluation
import tensorflow as tf
import matplotlib.pyplot as plt
import random
from tensorflow.examples.tutorials.mnist import input_data
tf.set_random_seed(777) # reproducibility
# Check out https://www.tensorflow.org/get_started/mnist/beginners for
# more information about the mnist dataset
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# input place holders
X = tf.placeholder(tf.float32, [None, 784])
Y = tf.placeholder(tf.float32, [None, 10])
# weights & bias for nn layers
W = tf.Variable(tf.random_normal([784, 10]))
b = tf.Variable(tf.random_normal([10]))
MNIST데이터를 받아온다.
# parameters
learning_rate = 0.001
batch_size = 100
num_epochs = 50
num_iterations = int(mnist.train.num_examples / batch_size)
hypothesis = tf.matmul(X, W) + b
# define cost/loss & optimizer
cost = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits_v2(
logits=hypothesis, labels=tf.stop_gradient(Y)
)
)
train = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
correct_prediction = tf.equal(tf.argmax(hypothesis, axis=1), tf.argmax(Y, axis=1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# train my model
with tf.Session() as sess:
# initialize
sess.run(tf.global_variables_initializer())
for epoch in range(num_epochs):
avg_cost = 0
for iteration in range(num_iterations):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
_, cost_val = sess.run([train, cost], feed_dict={X: batch_xs, Y: batch_ys})
avg_cost += cost_val / num_iterations
print(f"Epoch: {(epoch + 1):04d}, Cost: {avg_cost:.9f}")
print("Learning Finished!")
# Test model and check accuracy
print(
"Accuracy:",
sess.run(accuracy, feed_dict={X: mnist.test.images, Y: mnist.test.labels}),
)
# Get one and predict
r = random.randint(0, mnist.test.num_examples - 1)
print("Label: ", sess.run(tf.argmax(mnist.test.labels[r : r + 1], axis=1)))
print(
"Prediction: ",
sess.run(
tf.argmax(hypothesis, axis=1), feed_dict={X: mnist.test.images[r : r + 1]}
),
)
plt.imshow(
mnist.test.images[r : r + 1].reshape(28, 28),
cmap="Greys",
interpolation="nearest",
)
plt.show()