DeepLearning_Lab06_01 - 8BitsCoding/RobotMentor GitHub Wiki
softmax_cross_entropy_with_logits ??
1.์ ์์ด ๋๋ฌด ๋ณต์กํ๋ค. ๊ฐ๋จํ ํ์ -> softmax_cross_entropy_with_logits
cost๊ฐ ๋์ค๊ธฐ๊น์ง ์์ด ๊ฐํธํ ๋จ์ ํ์ธํ์.
one_hot and reshape
one_hot : ๋ค์ด์จ ๋ฐ์ดํฐ๋ฅผ 0 or 1๋ก ๋ณํ
reshape : shape์ ์ฌ์กฐ์ ํ๋ค. one_hot์์ shape์ ํ๋ ๋๋ฆฌ๊ธฐ๋๋ฌธ์ ์ฌ์ฉ!
์์ ์์
๋๋ฌผ์ ์ข ์ ๋ถ๋ฅ๋ฅผ ํด๋ณด์.
# Lab 6 Softmax Classifier
import tensorflow as tf
import numpy as np
tf.set_random_seed(777) # for reproducibility
# Predicting animal type based on various features
xy = np.loadtxt('data-04-zoo.csv', delimiter=',', dtype=np.float32)
x_data = xy[:, 0:-1]
y_data = xy[:, [-1]]
X = tf.placeholder(tf.float32, [None, 16])
Y = tf.placeholder(tf.int32, [None, 1]) # 0 ~ 6
Y_one_hot = tf.one_hot(Y, nb_classes) # one hot
print("one_hot:", Y_one_hot)
Y_one_hot = tf.reshape(Y_one_hot, [-1, nb_classes])
print("reshape one_hot:", Y_one_hot)
W = tf.Variable(tf.random_normal([16, nb_classes]), name='weight')
b = tf.Variable(tf.random_normal([nb_classes]), name='bias')
# tf.nn.softmax computes softmax activations
# softmax = exp(logits) / reduce_sum(exp(logits), dim)
logits = tf.matmul(X, W) + b
hypothesis = tf.nn.softmax(logits)
# Cross entropy cost/loss
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits,
labels=tf.stop_gradient([Y_one_hot])))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(cost)
prediction = tf.argmax(hypothesis, 1)
correct_prediction = tf.equal(prediction, tf.argmax(Y_one_hot, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# Launch graph
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for step in range(2001):
_, cost_val, acc_val = sess.run([optimizer, cost, accuracy], feed_dict={X: x_data, Y: y_data})
if step % 100 == 0:
print("Step: {:5}\tCost: {:.3f}\tAcc: {:.2%}".format(step, cost_val, acc_val))
# Let's see if we can predict
pred = sess.run(prediction, feed_dict={X: x_data})
# y_data: (N,1) = flatten => (N, ) matches pred.shape
for p, y in zip(pred, y_data.flatten()):
print("[{}] Prediction: {} True Y: {}".format(p == int(y), p, int(y)))