DeepLearning_Lab05 - 8BitsCoding/RobotMentor GitHub Wiki


์ด๋ฏธ์ง€

# Lab 5 Logistic Regression Classifier
import tensorflow as tf
tf.set_random_seed(777)  # for reproducibility

tensorflow import and make random seed

x_data = [[1, 2],
          [2, 3],
          [3, 1],
          [4, 3],
          [5, 3],
          [6, 2]]
y_data = [[0],
          [0],
          [0],
          [1],
          [1],
          [1]]

# placeholders for a tensor that will be always fed.
X = tf.placeholder(tf.float32, shape=[None, 2])
Y = tf.placeholder(tf.float32, shape=[None, 1])

insert data and make placeholder for runtime input data

W = tf.Variable(tf.random_normal([2, 1]), name='weight')
b = tf.Variable(tf.random_normal([1]), name='bias')

W, b ๋ฅผ randomํ•œ ๊ฐ’์„ ์ง€์ •(์ฒ˜์Œ์—๋Š” ๋ชจ๋ฅด๋‹ˆ)

# Hypothesis using sigmoid: tf.div(1., 1. + tf.exp(tf.matmul(X, W)))
hypothesis = tf.sigmoid(tf.matmul(X, W) + b)

# cost/loss function
cost = -tf.reduce_mean(Y * tf.log(hypothesis) + (1 - Y) *
                       tf.log(1 - hypothesis))

train = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(cost)

# Accuracy computation
# True if hypothesis>0.5 else False
predicted = tf.cast(hypothesis > 0.5, dtype=tf.float32)
accuracy = tf.reduce_mean(tf.cast(tf.equal(predicted, Y), dtype=tf.float32))
# Launch graph
with tf.Session() as sess:
    # Initialize TensorFlow variables
    sess.run(tf.global_variables_initializer())

    for step in range(10001):
        cost_val, _ = sess.run([cost, train], feed_dict={X: x_data, Y: y_data})
        if step % 200 == 0:
            print(step, cost_val)

    # Accuracy report
    h, c, a = sess.run([hypothesis, predicted, accuracy],
                       feed_dict={X: x_data, Y: y_data})
    print("\nHypothesis: ", h, "\nCorrect (Y): ", c, "\nAccuracy: ", a)

ํ•ด๋ณด์ž

์ด๋ฏธ์ง€