Xaraya M. Lutolf
Request for Comments. 0030 Xaraya Development Group
Category: Best Current Practice November 2002

Security System

Status of thisMemo

This document specifies a Xaraya Best Current Practices for the Xaraya Community, and requests discussion
and suggestions for improvements. Distribution of this memo is unlimited.

Copyright Notice

Copyright © The Digital Development Foundation (2002). All Rights Reserved.

Abstract

This RFC presents a proposal for the Xaraya security system. The main difference with respect to the existing
security system isthat privileges are defined as objects independent of users and groups. As acorollary, the
structure of users and groups is also revisited.

Lutolf Best Current Practice [Page 1]

RFC 0030 Security System November 2002

Table of Contents

T T TR 0]) (1 TSP 4
P22 1 014 oo [H ot Yo o OSSR 5
3 Concepts of the Xaraya SECUIITY SYSLEIM......ccci e e e se e st ste e st eeseeteee e e e eneeneenneneas 6
TNt 0 TSSOSOV URPURTRTPRPN 6
T 1 Y11= 7
I T AN wler 5 S =Y TP 8
34 TITEOUCIDIE SELS.......ceeeeeee et bbb bt bbb se e b et e se e e e b et et eaeeb e e st e aeebenbesaesre b 8
B3R 01111 T ao FS 9
3.6 ASSIGNING PrIVIIEOES.....c.e ittt ettt et s b et bt b et b et b e e bt bt et nea bt nene 10
3.7 DEFAUIT ASSIGNIMIENES. . .. ittt ettt ettt e et ae b e e bt e bt ebe s bt saeebesbe se e e e mbe e e e emeeseeaeebeebesbeebesbesbeseens 10
G T 0l aTc 10T T Y71 =" 1= 11
IS 1V S T TSP 11
3.10 How the System CNECKS PrIVIIEOES..... ..ot e et nne s 12
N o LU= ok L = SRR 13
g R Ao [¢ T g = 1o U ST A SRR 13

T 0 | 011 1 OSSO 13

N U = g N TSRS 13
S {0 o 1 P 13
G T O =SS =S o Y= g 14

I R = 11 (0] =SSR 14

D - 11 (0] L= PSSRV URURUPORPRN 14

G D - 111/ SRS 15

A = 11 Y71 1= (= 15

G T = 1111, - PSP 16

.36 XAIPHIVIIBOE. ..ottt ettt b et bbb e b b e R e bR bbbt bbb 16
D= = o= = = o] SRS SNTRTRRRS 18
ST A (o 1S =o)L= ST 18
I (V- S R I o SRS 18
5.3 INSEANCES TADIE..... ettt h e bbbt b e b s e e e et e £ et e n e e aeeae e bt eb e e bt ebeebenbeneeseeeas 18
L3 V1= o =R 1= == 18
LTSI X R o -SSR 18
OIS 01 = O T TSSOSO 20
LT B =0 TS (= 1101 LY S 20
6.2 DEFINING INSLANCES.......eueitiietieetireet sttt bbbt b e bbbttt b et bt b et b et ne et e 20
5.3 SECUNLY CRECKS..... ettt ettt a b h e et e bt bt bt ee e e b e b se et et e e e e e meeneeaeeae et e saeeaeebenbenee 21
7 Converting Modulesfrom the Old t0 the NEW SySEEM......c.ciiiieireeere e 23
7.1 Creating INStanNCe AefiNitiONS.......coiueiieire et b e e b e st b e e 23
7.2 Creating Mask DEfINITIONS........ccouiieirire ettt ae b e bt sae b e sbese e e e ee e e e eneese et eresbesaesbesbesbeseens 24
7.3 Changing the Security CheCK CallS.......ccciucicirerisese sttt a e et e e e e e e e e eneenenneens 24

Lutolf Best Current Practice [Page 2]

RFC 0030 Security System November 2002

7.3.1 Security Check with EXCEPtion CatChing.........cccoviiiiiiie it 24

7.3.2 Security Check with Exception CatChing SUPPIESSEU........cveviirerereiiseseseeneeeeseeseesesese e sre e sre e seeseenes 25

7.3.3 Security Check with Dynamic COMPONENtS OF INSLANCES..........cerurerieerieeniereste ettt seeneas 25

7.3.4 RemoVing REAUNANT COUE.......c..cirieiirieiirieiericest sttt ettt sttt e et b et b e bt et se b e b e seebe e ene e 25
8 OPEN I SSUES......ceeiteiiitieteste sttt ettt h bbbt b b e b b s e e e e s et e ae e R e e R e e R e R e AR e ARt AR e R e R e e e e e e e e Rt R e Rt Rt R R R n e r s 26
. 00 L = 26
8.2 IMUITI-IBNGUEIGE. ... vttt sttt b et bbbt e b e s e bt e bt e e bt e e st eb e e e b et e b e e e b e st e b e seebeseebeneebeseenenneneas 26
G = 1 1SS 26
S V| (0 (= 100101 1= 1= 1 o] T 26
8.5 MiSCElANEOUS NOES TO DO......cueeuieiiriieieeieie ettt sttt ettt s e aesbe s besee s e beseese e s enee e eneeneeneeneesesaesaeseensas 26
O REVISION NISLOMNY ...ttt sttt b ettt b e st b e s b e s e bt s b bt se e bt s b e st s b et e b et e b e st e b e st ek e se ek e seebeseebenbenenteneas 27
LI c 1 = Lol A =SSP 28
F T Lo A=y o (o =T U U PSSR 29
Intellectual Property and Copyright StAtEMENTS.......cccieeeireeecese st e e re e s e seenean 30

Lutolf Best Current Practice [Page 3]

RFC 0030 Security System November 2002

1. Definition of terms

To avoid confusion before specifying anything, here isthe list of terms we use in relation to the security

system.
* Role: refersto anamed set of 1 or more users. A role can correspond to a group or a user. Role names are
unique.

Example: the site administrator or the group of registered users are both roles.

« Privilege: refersto an object that can grant a particular kind of access to a module component (see below).
Example: the ability to see the front page, or itslogin block is aprivilege.

* Module: refersto afunctional unit of a Xaraya site.

« Component: refersto a group of resources that can be protected with the security system. Components are
defined by the modules they reside in. Components can be visually discrete resources, such as blocks or
web pages, or they can be functionality resources, such as the ability to add or edit items.

» Instance: refers to a specific instance of a component.
Example: the login block on the front page of a Xaraya siteis an instance of the Block component in the Roles
module. An administrator might choose to create more than one such instance e.g. in amultilingual site.

* Mask: refersto aspecial kind of privilege used to check other privileges. Each mask protects one or more
components. When amask is encountered it is checked against the user's privileges to see whether access to
the component in question is granted.

» Accesslevel: refersto the type of access granted by a privilege or required by a mask.

Lutolf Best Current Practice [Page 4]

RFC 0030 Security System November 2002

2. Introduction

The main points of this RFC are:

e Privileges are defined as objects that can be manipulated independently of their specific assignments to
roles.

e Usersand groups are merged in the implementation into a single class of objects called roles.
e Bothrolesand privileges can have unlimited levels of subroles and subprivileges respectively.
« Components, i.e. objects that can have privileges assigned to them through their registered mask.

Benefits:

« Privileges can be manipulated independently of roles. We can create groups of privileges, adding or
deleting their components.

¢ We can then assign (compound) privilegesto rolesin a single statement.
« Registering components allows us to make visible to the user the available privileges to be set.

This RFC does not cover:

* Theissue of trandating the current system of using regex for privilegesinto the privileges of the
proposed scheme.

¢ Whether and how regex should be allowed in the new UI.

Note: This RFC has borrowed generously from the concepts underlying the Java packages java,security and
java.security.acl. These can be found at: http:/java.sun.com/j2se/1.3/docs/api*

L http:/java.sun.com/j2se/1.3/docs/api

Lutolf

Best Current Practice [Page 5]

http://java.sun.com/j2se/1.3/docs/api

RFC 0030

Security System November 2002

3. Concepts of the Xaraya Security System

3.1 Roles

Rolesis ageneralization of the Users and Groups concepts in PostNuke. In Xaraya both Users and Groups of
users are implemented asroles. Asin PostNuke, roles that are Users can be members of other rolesthat are
Groups. The difference to the PostNuke concepts is that there is no limit to the levels of nesting available. In
addition, arole can be amember of any number of other roles.

Therolesin Xarayaare arranged in a hierarchy or tree, and every role defined must be a member of at least one
aready existing role. At the top of the hierarchy isarole caled "Everybody".

Note: Contrary to the PostNuke permissions system, the order in which multiple parents of arole are defined is
not relevant for the way privileges are applied and has no impact on whether access is granted or denied.
Specifically, thereisno "first encountered wins' rulein Xaraya. ALL the privileges available will be checked

for access.

The following rules apply to the roles hierarchy:
1. Rolesdefined as Users cannot themselves have children. (i.e. arole which isauser isaleaf of theroles

tree)

2. A role cannot be a parent of one of its ancestors in the hierarchy; obviously to prevent endless loops. A role

also cannot be its own child.

3. A role cannot have another role as a child more than once. (Thisis not strictly necessary, but it avoids
confusion.) Note, however, that it is possible for arole to be a child and simultaneously a grandchild of
another role, as the following example shows.

Role A

Bi g Boss
| Boss
I I—-John Doe
I-—John Doe

John both reportsto "Big Boss' and "Small Boss' and as such has two roles in the system.

In the user interface we use the term "User"

for roles which have one member and "Group" for roles which

have multiple members. Conceptually however there is no difference between the two, both are roles. Since one
can expect numerically many more Users than Groups or, in other terms, more leaves then nodes, the former
are not displayed by default. Rather, one can specifically request to see the Users belonging to a given Group.

For convenience anumber of roles are created at initialization time. They are:

Ever ybody

--Adm ni strators

(G oup)
(G oup)
(User)
(G oup)
(User)

Everybody: Thisisthe root of the rolestree and is defined as a group that contains all other subgroups and

users.

Administrators: Thisisagroup that contains those users that can do anything in the system, a sort of superuser.
The Administrators group contains one such user, the Admin. The Admin is the default user logged on when

Xarayaisinstalled.

Lutolf

Best Current Practice [Page 6]

RFC 0030 Security System November 2002

3.2

Users: Thisisagroup that represents users of the site. By default new users that register on the site become
members of this group. This default can be changed by modifying the configuration settings of the Base
module.

Anonymous: Thisis auser that represents users of the site that are not logged in.

Myself: Thisisaspecial "meta-user" that represents the current user. Myself can be used to create special
privileges that allow, for instance, only the author of an article to modify the article.

Privileges

The Xaraya concept of privileges has a structure similar to privilegesin PostNuke. A privilege is an object that
grants a particular type of accessto aresource. Every privilege incorporates.

« A referenceto the Module it appliesto. In addition to the list of available modules, a privilege can aso
apply to "All".

* A reference to the Component within the Module it appliesto. In addition to the list of available
components of amodule, a privilege can also apply to "All".

« A referenceto the Instance of the Component it applies to. In addition to the list of available instances, a
privilege can also apply to "All".

* A privilegesLeve it refersto. The levels have the usua .values of ACCESS_NONE to ACCESS_ADMIN
(numeric O - 800).

In addition, each privilege also has:

* A name which identifiesit. The name is used as a shorthand reference to the privilege in the Ul and must be
unique. It is good practice to use names that help understand the rights a privilege grants, such as
"ReadArticleltems’ or "DeleteExamplesBlocks'.

« A description that contains detail information about the privilege. The description is meant as
documentation to developers and is not referenced in the UI. It is not mandatory.

Similar to roles, privileges can be composed of other privileges. In addition to the attributes described above a
privilege can have any humber of subprivileges. A privilege can aso be a part of any number of "parent"
privileges. However, privileges do not live in asingle hierarchy. Instead, the Ul presents all the privilegesin a
list, with each privilege containing its subprivileges in a separate list, as the following example shows:

NoPri vi | eges a privilege with no subprivil eges
Admi ni stration anot her privilege with no subprivil eges
Casual Access a privilege with 2 subprivil eges,
cont ai ns:
Vi ewRol esBl ock one of which itself contains
cont ai ns:
Vi ewLogi nBl ock 2 subprivil eges.

Vi ewOnl i neBl ock
Vi ewThenes

N.B.: Privileges can be defined as empty containers, i.e. not themselves granting any rights. Thisisuseful if
they only serve to group other privileges. In the example above the privilege Casual Access is an empty
container that holdsits 2 subprivileges.

It'simportant to understand that grouping privileges like this does not imply that "parent” privileges are in any
way "stronger” than "children”. Making privileges subprivileges to other privilegesis just a convenient way of
grouping them, so that bundles of them can be assigned at atime.

In the above example note that although the names are suggestive of certain behaviour there is no fixed naming
rule. Y ou can assign any names you want as long as they are unique within their module.

Lutolf Best Current Practice [Page 7]

RFC 0030 Security System November 2002

3.3

34

Furthermore thereis no rule for how to group privileges, for instance by module. A good administrator will
structure his privileges according to the roles he wants to assign them to, rather than by component or level.

In Xaraya privileges are defined without reference to any group or user. They are objects with no relevance
until they are assigned to one or more roles. As explained below, assigning aprivilege to arole also assigns
ALL the subprivileges of that privilegeto therole.

For convenience a number of privileges are created with each installer configuration at initialization time.
Examples of these are:

« "Administration" isthe privilege representing the highest level of accessto all Xarayamodules, i.e. the

ability to do anything. It has the attributes:
Real m Modul e Conponent | nst ance Level

Al l All All All ACCESS_ADM N

» "CasualAccess' isthe privilege defined for the unregistered user Anonymous. Unregistered usersinitially
have access only to the front page of the site and the login block.

Access Levels

As mentioned above Xaraya uses the access levels originally defined in PostNuke. These are:
Nane Level
ACCESS _NONE 0
ACCESS_OVERVI EW 100
ACCESS_READ 200
ACCESS_COMVENT 300
ACCESS MODERATE 400
ACCESS EDI T 500
ACCESS_ADD 600
ACCESS DELETE 700
ACCESS_ADM N 800

Thelevels are cumulative. A given level impliestheright to al the levels below it. The right to DELETE
impliestherightsto ADD, EDIT, MODERATE etc. An exception is ACCESS_NONE, which can override any
other accessright.

Irreducible Sets

As noted above, when two privileges are defined on the same module, component and instance the one with the
higher access level includes the right to the one with the lower level. We say that the privilege with the higher
access level implies the other. In the following example two privileges are defined on the Examples module:

Name Real m Modul e Conponent I nst ance Level
ReadExanpl eBl ock Al | Exanpl es Bl ock All

ACCESS_READ
Edi t Exanpl eBl ock Al | Exanpl es Bl ock All

ACCESS EDI T

The privilege EditExamples implies ReadExampl es.
Note that two privileges A and B are considered equal (identical) if A implies B and B implies A.

In the following example, however:

Nane Real m Modul e Conponent I nst ance Level
ReadExanpl eBl ock Al | Exanpl es Bl ock All

ACCESS_READ
Edit ArticleBl ock All Articles Bl ock All

Lutolf Best Current Practice [Page §]

RFC 0030 Security System November 2002

ACCESS EDI T
EditArticleltem 1 Articles Item Al l
ACCESS EDI T

none of the privileges imply any of the others, as they refer to different modules and/or realms. We call such
privileges digoint. (NOTE: This example contains a Realm which is afeature which will not be used in the
initial implementation.)

Definition: An Irreducible Set of privilegesisaset in which al the privileges are digoint.

3.5 Winnowing

Definition: Winnowing is the process by which the Xaraya privileges system creates irreducibl e sets of
privileges.

A privilege accumulates the attributes of its children. As mentioned above since each privilege refersto asingle
realm/modul e/component/instance combination, you create more complex privilege-schemes by successively
adding privilegesto other privileges. During a security check all the component privilegesin the tree will be
taken into account.

However, in any given tree not all the privileges will necessarily be relevant. Take the following example:
ReadAl |
| - - Del et eExanpl es
I I - - AddExanpl es
I--Edi tArticles
I --AddArticles

with the follow ng definitions:

Nanme Real m Modul e Conponent I nst ance Level
1. ReadAll All All All All
ACCESS_READ
2. Del et eExanpl es Al l Exanpl es Al l Al l
ACCESS_DELETE
3. AddExanpl es All Exanples All All
ACCESS_ADD
4. EditArticles All Articles Al Al
ACCESS EDI T
AddArticl es All Articles Al Al

ACCESS_ADD

It can be seen that, with the definitions given above, 3 implies 2 and 5 implies 4. Therefore when comparing all
the privilegesin the set, privileges 2 and 4 are not relevant, because they are superceded by 3 and 5
respectively.

During the winnowing process the privileges system compares each privilege in atree with all the othersin the
same tree and discards those privileges implied by others. In particular duplicate privileges are removed. In the
example above winnowing would leaves us with the following privileges:

ReadAl |
Del et eExanpl es
AddArticl es

As can be seen, al the privileges left in the example above after winnowing are disjoint. The set isirreducible.

Note also that the system doesn't care what the tree looks like. The same result would be gotten with the
following tree, among others:

Lutolf Best Current Practice [Page 9]

RFC 0030 Security System November 2002

ReadAl |
| - - Del et eExanpl es
I--AddExarrpI es
I--EditArticIes
I--AddArti cles

[NOTE: MrB: Thisis somewhat counterintuitive. | would expect the shape of the tree to have influence. |
understand it technically doesn't, but by representing it as a tree the user expects AddExamplesto be "a part of"
DeleteExamples, whatever that meansto him. The difference between "defining” the tree and "checking the
tree isaconcept which is mentally merged for the user.]

3.6 Assigning Privileges

In order for the privileges system to do something useful, privileges need to apply for users and groups. Thisis
done by assigning privilegesto rolesin the Ul. Theoretically any privilege can be assigned to any role.

Suppose | have arole FOO and the tree of privilegesin the example above. The operation:
"assign ReadAll to FOO"

will assign all 5 of the privilege in the tree to FOO. (Note the notation for assignment shown hereisonly for
convenience; the privileges Ul is graphical)

However, note that the operation:
"assign DeleteExamples to FOO"

will give adifferent result depending on the shape of the tree, as the following examples show:
ReadAl | "assi gn Del et eExanpl es to FOO'

|
| - - Del et eExanpl es
Privil eges assigned: Del et eExanpl es

| - - AddExanpl es AddExanpl es
EditArticles
|--EditArticles AddArticles
I
| --AddArticles
ReadAl | "assi gn Del et eExanpl es to FOO'
I
- - Del et eExanpl es Privil eges assigned: Del et eExanpl es
AddExanpl es
| - - AddExanpl es

I
I
|
|--EditArticles
I
I

--AddArticles
3.7 Default Assignments

For convenience a number of assignments are made at initialization time.

For instance, the role Administrators is assigned the privilege Administration. In other words, members of the
Administrators group can do anything.

Lutolf Best Current Practice [Page 10]

RFC 0030 Security System November 2002

3.8

39

In addition, a special privilege called GeneralLock is also assigned to the roles created at installation.
GeneralLock contains privileges that stop you from changing or deleting basic roles and privileges such asthe
site Admin or Everybody. Removing or altering GeneralLock makesiit possible to make such changes. This
should only be done in specia cases and with an understanding of how the system works, however, as such
changes can damage the site in ways difficult to recover from.

Inheriting Privileges
A privilege assigned to arole is automatically inherited by all the role's descendants. For example, using the
previous example:
ReadAl | "assign ReadAll to FOO'
I
- - Del et eExanpl es

I

[] Privil eges assigned: Del et eExanpl es
| |--AddExanpl es AddExanpl es
|
|
|

EditArticles
--EditArticles AddArticl es

and ReadAll (if it is

not enpty)
| --AddArticl es

Role FOO will have 5 privileges assigned to him. However the same privileges will also be assigned to a child
of FOO:

FOO
I
| - - BAR

We say that BAR has inherited the privileges of FOO. Note that BAR may also have privileges assigned to it.
The Ul of the privileges system will show for each role which privileges have been assigned and which
inherited.

It's pretty apparent that if an inherited and an assigned privilege are digjoint, then nothing will happen.
Essentially the two privileges have nothing to do with each other. But what happens when one of them implies
the other? To wit:

FOO has assi gned Del et eExanpl es
|
| - - BAR has assi gned ReadExanpl es
wher e
Nane Real m Modul e Conponent I nst ance Level
2. Del et eExanpl es Al l Exanples Al l All
ACCESS_DELETE
3. ReadExanpl es Al l Exanpl es Al l Al l
ACCESS_READ

In this case the relevant privilege for BAR would be ReadExamples, even though its access level is lower,
because

Rule: For privileges that are not digoint, those of the children take precendence over those of the parents. We
say that BAR's privilege "trumps" that of his parent FOO.

Masks

A mask isa special type of privilege in the Xaraya security system. Each mask refers to one or more security
checks in the code. When a security check is encountered, the system gets the relevant mask and compares it to
the privileges of the user. A green light is given if the mask isimplied by one of the user's privileges. Otherwise
an exception isthrown.

Lutolf Best Current Practice [Page 11]

RFC 0030 Security System November 2002

The structure of a Schema corresponds to that of a privilege. For example the following Schema

Narme Real m Modul e Conponent I nst ance Level

ReadExanpl es Al | Exanples All All ACCESS READ

requires that a user has a privilege assigned with at least ACCESS_READ in order to pass a given security
check.

3.10 How the System checks Privileges

When a security check is encountered in the code, the privileges system goes through the following steps:

1
2.
3.

4,

It identifies the role encountering the check and gets all his ancestors.
For each ancestor it creates an irreducible set by finding all the assigned privileges and winnowing them.

Next, for each ancestor level the privileges inherited to the next level, where they are winnowed again, until
the roleis reached. The result of this processisan irreducible set of privileges specific to that role.

In afinal step the privileges of the set are compared ome by one against the Schema of the security. If any
of the privileges implies the Schema, the security check is passed.

In the following example:

Ever ybody of fspring distance 2 or 3
| - - Mar ket i ng of fspring distance 1
I | - - Product Myr
I—-Europe of fspring di stance 2
| --Spain of fspring distance 1
| - - Product Myr

Let's assume the user logged in has the Product Mgr role and an action is requested by that user which is
protected by the security system. Below are the steps what happens. Look at this example from the point of
view of the actua role requesting the protected action (here: Product Mgr). The offspring distance isthe
ancestry relative to Product Mgr (the maximum value for it)

1.

The system gets the privileges of all ancestors of Product Mgr and winnows the privileges of each of them.
In this case: Everybody, Marketing, Europe and Spain. The privileges of therole itself are also fetched and
winnowed. The result isthat each node in the tree now has itsirreducuble set of privileges assigned to it.

2. Next, each irreducible set islooked at, starting at the top level. (here: Everybody).
3. Theirreducible set isinherited by the offspring at the next distance. In this case "Europe” inherits the

irreducible set of "Everybody". (3->2 inheritance), and "Marketing" also inherits the irreducible set of
"Everybody" (2->1 inheritance).

4. Thisprocessis repeated for the next distance level, so "Spain" inherits "Europe” (2->1)

7.

The"Spain" and "Marketing" privileges are then winnowed against each other (both are at distance 1)

At this point we have the irreducible sets for distance 1, so we can continue to the requesting role. Product
Mar inherits the irreducable set from distance 1 (1->0) (which have been created from the irreducable sets
from the higher distances). This produces the irreducible set of privileges for the Product Mgr role.

That set is compared against the mask of the security check needed for the requested action. If one of the
privilegesin the set implies the mask, the check is passed and the user is granted to perform the action.

Y ou probably want to read the above again. ;-)

Lutolf

Best Current Practice [Page 12]

RFC 0030 Security System November 2002

4. Architecture

4.1 Admin and User APIs

The following are the standard-type APIs used in Xaraya. The $args parameter represents an array of
arguments to the function.

4.1.1 Admin API

roles adminapi_create($args): create a new user.
roles_adminapi_delete($args): delete a user.
roles_adminapi_update($args): update a user.

roles_ adminapi_stateupdate($args): update a user's state.
roles_adminapi_getmenulinks(): passmenulinks to the main menu.
roles_adminapi_addgroup($args): create a new group.

roles adminapi_getallgroups(): generate alisting of al groups.
roles_adminapi_del etegroup($args): delete a group.
roles_adminapi_renamegroup($args): rename a group.

roles_ adminapi_viewgroup($args): view the usersin agroup.
roles_adminapi_del eteuser ($args): delete a user from a group.
roles_adminapi_addmember ($args): add a user to a group.

User API

roles_userapi_getall($args): generate alisting of all the users..
roles_userapi_getallactive($args): generate alisting of all the active users.
roles_userapi_get($args): get auser.

roles_userapi_countitems(): return the number of users.
roles_userapi_login($args): log auser in.

roles userapi_makePass(): generate a password.
roles_userapi_getmenulinks(): return menulinks to the main menu.

roles userapi_getallgroups(): generate alisting of all the groups.

roles userapi_getUsers($args): generate alisting of all the usersin a given groups.
roles_userapi_countgroups(): return the number of groups.
roles_userapi_addmember ($args): add a user to agroup.

4.2 Setup API

The following functions should be used to create default roles and privileges in the init.php of amodule.

Lutolf

xarMakeGroup: create a new group.

xarMakeUser: create a new user.

xarMakeRoleRoot: define an entry in the roles repository that isthe head of aroles hierarchy.
xar MakeRoleMember ByName: make one role the child of another.

Best Current Practice [Page 13]

RFC 0030 Security System November 2002

xar MakeRoleMember ByUname: make one role the child of another.

xar MakeRoleMember Byl D: make one role the child of another.

xarRegisterPrivilege: create a privilege in the rpivileges repository.
xarMakePrivilegeRoot: define an entry in the privileges repository that is the head of a privileges hierarchy.
xarAssignPrivilege: assign aprivilegeto arole.

xar Definelnstance: create an instance in the instance repository.

xar Removel nstances: remove all the instances of a module from the instances repository.
xar GetGroups. returns an array representing all the groups.

xarFindRole: finds arole by its name.

xar RegisterMask: register amask in the mask repository.

xarUnregisterMask: remove a mask from the mask repository.

xarRemoveMasks: remove all the masks of a module from the masks repository.

xar SecurityCheck: check athe current user's privilege against a mask.

4.3 Classes and M ethods

The classes and class methods should in general not be accessed directly. Most of them return objects rather
than arrays, so use them at your own risk.

4.3.1 xarRoles

A central repository of user and group definitions. Each user, group, group of groups etc. isarole with an entry
in this repository.

An implementation of the roles object conceptually replaces the tables xar_user and xar_groups. The code for
manipulating roles will deal with the issue of whether the role isa group or a user and handle things
accordingly.

Methods:

constructor

getgroups: returns an array representing all the groups in the system. Note: should be private.
getgroup: returns asingle role of type group based on its ID. Note: should be private.
getsubgroups: returns all the subgroups of a given role based on its ID.

makeTree: returns atree representation of the roles of type group.

drawtree: returns a crude HTML drawing of atree generated by maketree. Note: needs to be moved out to
the templates.

getRole: returnsa arole object based on its ID.

findRole: returns arole object based on its name.

makeMember ByName: makes one role a child of another. Uses the names as inputs.
isRoot: creates an entry in the repository that isthe head of the roles hierarchy.
makeUser: creates arole object of type user in the repository.

makeGroup: creates arole object of type group in the repository.

4.3.2 xarRole

An object representing a single group or user.

Lutolf

Best Current Practice [Page 14]

RFC 0030 Security System November 2002

Methods:

constructor

add: add thisrole to the roles repository.

addMember: add a child role to thisrole.

removeMember: remove achild role from thisrole.

remove: remove this role from the roles repository.

update: update thisrole in the roles repository..

remove: remove this role from the Roles repository.
getAllPrivileges: get an array representing all the privileges defined.
getAssignedPrivileges: get an array of privilege objects assigned to thisrole.
getinheritedPrivileges: get an array of privilege objects assigned to this role's ancestors.
assignPrivilege: assign aprivilegeto thisrole

removePrivilege: remove a privilege from thisrole

getUsers:. get the children of thisrole that are users.

getParents: gets an array of the role objects this role is amember of
getAncestors: recursive getParents.

isEqual: check whether thisrole is the same as another.

isUser: check whether thisroleisauser

isParent: check whether aroleis aparent of thisrole

isAncestor: check whether arole is an ancestor of thisrole
getPrivileges: get an array of all the privilege objects defined.

gets and sets: of all the relevant data items in the xarRole object.

4.3.3 xarMasks

A central repository of privilege masks (policies?). The masks are normally defined and registered as entries
upon installation of amodule. There needs to be arestriction that assigned names for components need to be
unigue within amodule.

Methods:

constructor

getmasks: returns an array of mask objects for a given module and component.
register: create an entry in the masks repository.

unregister: remove an entry from the masks repository. (this method is deprecated)
removemasks: removes all the masks of a given module from the masks repository.
winnow: merges 2 arrays of mask objects (same level behavior).

trump: merges 2 arrays of mask objects (inheritance behavior).

xar SecurityCheck: checks a privilege against a mask.

getmask: returns a single mask object based on its name.

4.3.4 xarPrivileges

A central repository for privileges defined at any given time. No duplicate privileges are allowed. This object

Lutolf

Best Current Practice [Page 15]

RFC 0030 Security System November 2002

extends the xarM asks object.
Methods:

definelnstance: creates an instance definition in the instance repository.

removel nstances: removes all the instance definitions of a given module from the instance repository.
register: create an entry in the privileges repository.

assign: assign aprivilegeto arole.

getprivileges: returns an array representing all the privileges in the system.

gettoplevel privileges: returns an array representing all the privilegesin the system that heads of a compound
privilege (this function is deprecated)..

getrealms: returns an array representing all the realms in the system.

getmodules: returns an array representing all the modules in the system.

getcomponents: returns an array representing all the components of a module.
getinstances: returns an array representing all the instances of a module and component.
getsubprivileges: returns all the child privileges of agiven privilege based on itsID.
getprivilegefast: returns an array representing a single privilege based onits ID. Note: should be private.
tree functions: a number of help functions for displaying compound privileges.
getPrivilege: retrieves a privilege object from the privileges repository based on its ID.
findPrivilege: retrieves a privilege object from the privileges repository based on its name.
makemember: makes a privilege a component of another privilege.

makeentry: defines atop-level entry in the privileges repository.

4.3.5 xarMask

An object representing a single mask.
Methods:

constructor
implies: compares two masks or privileges.
gets and sets: of all the relevant dataitems in the xarMask object.

4.3.6 xarPrivilege

An object representing a single privilege. This object extends xarM ask.
Methods:

Lutolf

constructor

add: add this privilege to the Privileges repository.

makeEntry: adds this privilege as atoplevel entry to the privileges repository.
addMember: adds a component to this privilege.

removeMember: removes a component of this privilege.

update: updates this privilege in the privileges repository.

remove: removes this privilege from the privileges repository.

getRoles: returns an array of roles objects this privilege is assigned to.
removeRole: removes an ssignation of this privilegeto arole.

Best Current Practice [Page 16]

RFC 0030 Security System

Lutolf

getParents: returns an array of privilege objects this privilege is a component of.
getAncestors: recursive getParents.

getChildren: returns an array of privilege objects that are components of this privilege.

getDescendants: recursive getChildren.
isEqual: compares this privilege object to another.
isEmpty: returns true if this privilege is an empty container.

Best Current Practice

November 2002

[Page 17]

RFC 0030 Security System

5. Database Tables

5.1 RolesTables

November 2002

The tables xar_groups and xar_users can be merged into a new Rolestable. The table xar_group_membership

also changes:
Tabl e xar_rol es Tabl e xar _rol emenbers
xar _ui d xar _ui d
xar _name xar_parentid
xar_type
xar _users
xar _unarme
xar _enai
xar _pass
xar_date_reg
xar _val code
xar_state
xar _aut h_nodul e

Thefield xar_typeisOimplies childisauser, 1 implies child isagroup. Callsto groups and usersin the API
have to be appropriately modified to look up the new table. [MrB: evaluate whether we can use "implicit"

typing. if(nochildren): user;else: group]

5.2 Masks Table

Tabl e xar_security_masks
xar_sid

xar _name
xar _

xar _nodul e
xar _conponent
xar _instance
xar | eve

xar _descri ption

5.3 Instances Table

Tabl e xar_security_instances
xar _iid

xar _nodul e

xar _conponent

xar _header

xar _query

xar _|imt

xar _descri ption

5.4 Privileges Tables

Tabl e xar _privil eges Tabl e xar _per mrenber s
xar _pi d xar_pid

xar _name xar_parentid

xar _real m

xar _nodul e

xar _conponent

xar _i nst ance

xar _| eve

xar _descri ption

5.5 ACL Table

Lutolf Best Current Practice

realm [MB: leave it for now, don't use it]

[Page 18]

RFC 0030 Security System November 2002

Tabl e xar_security_acl
xar _partid
xar _privid

Lutolf Best Current Practice [Page 19]

RFC 0030 Security System November 2002

6. Syntax

6.1 Registering Masks

A mask isaspecial kind of privilege used to check other privileges. When amask is encountered it is checked
against the user's privileges to see whether access to the resource in question is granted. The resource a mask
protectsis called a component.

Each mask that will be used for security checks needs to be registered. Thisis done with the function
xarRegisterMask, which has the following syntax:
function
xar Regi st er Mask($nane, $r eal m $nodul e, $conponent , $i nst ance, $I evel ,
$description="")

wher e:
$nane : a name given to the nask. The nane needs to be uni que
within the
nodul e.
$real m : the real mthe nask applies to.
$nodul e : the nane of the nodul e the mask applies to.
$conponent : the nane of the conponent the mask bel ongs to. The

conponent name is
ref erenced during security checks.
$i nst ance : the nane of the instance the nask applies to. This refers
to an
i nstance that has been defined at runtine (see bel ow),
$l evel : the security level a privilege nust have to pass the
check. These
are the usual values 0 - 800.
$description : a text field that describes the nask.

All fields except the description are mandatory. The value 'All’ can be used for realm, module, component,
instancetype or instance. In the case of instances, expanding 'All’ to the number of instance types makes your

definition clearer, as shown in the example below:
xar Regi ster Mask(' EditCl assification',"All',"articles','Classiciation',"All:Al:A "', ACCESS EDIT)

This creates a mask named EditClassification for the articles module. Security checks can invoke the mask as
described below.

Masks need to be registered at init time. In other words, for each mask to be registered, invoke the
xarRegisterMask function in the init.php of the module the mask belongs to.

Such acall could also be inserted when anew instance is created. This would |et have the user define masks at

run time. (can of worms, here) [MrB: yeah, don't allow it initially till we have worked it out how exactly to do
that]

6.2 Defining Instances

Security checksin amodule need to check against specific instances. We therefore want to ensure that the
instances administrators include in the privileges they create are well formed. This is done by registering the
instance definitions with the system,

Instance definitions are not strictly necessary to make the security system work, but they help make creating
privileges easier.

Instances conceptually are objects that amodule deals with, e.g. articles, folders, download items, dynamic data
fields. They can be created initialy or at run time.

An instance can usually be defined by one or more database fields. For example an instance in the categories
module, a category, can be defined by itstitle, or even more precisely by its 1D, which is a unique reference.

Lutolf Best Current Practice [Page 20]

RFC 0030 Security System November 2002

Module devel opers will use several such "filters' to define instances. Postnuke limited their number to 3, but
Xaraya allows any number.

Instances are defined by the xarDefinel nstance function:

function xar Definel nst ance($nodul e, $conponent, $i nstancedefinition)

wher e

$rmodul e : nodul e to which the instance applies.

$conponent : conponent which the instance is part of.

$instancedefinition : an arry that represents the definition of the
i nst ance.

The array contains n entries 3 el ements each:
- a header text
- afield definition given by an sql query
- a paraneter giving the maxi num nunber of instance
itens
to be shown.

Each instance to be defined must invoke this function in the init.php file of the module it refersto.

Each entry in the instance definition array defines one "filter" for the instance (such as a category title). The
elementsin the array entry let the Ul create a dropdown that is used when creating privileges. The header text
can be displayed to indicate the type of "filter". The sgl statement defines what database entries will be shown
in the dropdown. The limit parameter can be set by the module developer to limit the number of dropdown
items. If the actual number of instancesis greater than the limit, the Ul will show an empty text field for
manual entry instead of a dropdown.

An example of how this might be used:

$queryl = "SELECT DI STI NCT xar _pubtypeid FROM xar _articl es";
$query2 = "SELECT DI STI NCT xar_cid FROM xar _cat egori es";
$query3 = "SELECT DI STI NCT xar _aut hori d FROM xar _articl es";

$i nst ances = array(
array(' header' => 'Pub. Type ID',
‘query' => $queryl,
"limt' => 20
)¢
array(' header' => 'Category ID',
"query' => $query2,
"limt' => 20
)
array(' header' => 'Author ID:"',
"query' => $query3,
"limt' => 20
)
)
With this definition (which is created in the init.php of the articles module) the Ul will create 3 dropdowns for
defining instances that are article, namely publication type, category and author, all given by their respective
IDs. The option 'All" is automatically added to each dropdown.

If more than, for instance, 20 categories have been defined, the Ul will substitute atext box for the second
dropdown, requiring the administrator to manually enter a category 1D when defining a privilege. Note that no
validity checks are performed on such input.

Note that, although the Ul can ensure that the ID choices for publication type, category and author are valid,
there is no guarantee that an article corresponding to a given combination exists or will exist. In other words,

with instance definitions the Ul can ensure that privileges contain well formed instances, but it cannot ensure
that the instances are valid.

6.3 Security Checks

Lutolf Best Current Practice [Page 21]

RFC 0030 Security System November 2002

Security checks are the way the system checks a user's a privileges against a mask of a component. Security
checks replace the previous xarSecAuthAction function. A simple example of a security check is:
i f(!xarSecurityCheck('EditArticles')) return

On encountering this line in the code, the system will check the user's privileges against those of the mask

‘EditArticles. If the mask isimplied by at least one of the user's privileges, the function returnstrue. If the

security check fails the function returns false. Like the xarSecAuthAction function, securitycheck will also
display a standard error message if the check fails.

The error message can also be suppressed, as shown in the following example:
i f (xarSecurityCheck('EditArticles',0)) {

...code to edit an article in the articles nodul e

}

Here the user's privileges are again checked against 'EditArticles to see whether the user may add an article.
The 0 value tells the function not to display an error message if the check fails.

The full syntax of the xarSecurityCheck functionis:

function
xar Securi t yCheck($nane, $cat ch=1, $conponent =' ' , $i nst ance="", $nodul e='"', $rol e="")
wher e
$name : nanme of the nask to be checked.
$cat ch : 1 = show the exception nmessage if the check fails.
0 = do not show an excepti on nessage
$conponent : name of a conponent to be checked agai nst.
$i nst ance : name of an instance to be checked agai nst.
$rol e : name of a role to be checked agai nst.
$nodul e : name of a nodules to be checked agai nst.

The component, instance, role and module values are used to override values defined in the mask's definition.
For instance, entering a value for $component and $instance lets you check against an instance defined at
runtime, rather than when the mask is registered.

The default values for $role and $module are the current user and the module in which the security check is

encountered. Entering a value for $role lets you check against the privileges of a user other than the current
user.

Lutolf Best Current Practice [Page 22]

RFC 0030 Security System November 2002

7. Converting Modules from the Old to the New System

Hereis astep by step guide to switching modules from Postnuke's (or Xaraya's previous) permissions system to
the Xaraya security system.

1. Create the necessary instance definitions

2. Create the necessary mask definitions

3. Change the pnSecAuthAction or xarSecAuthAction calls to xarSecurityCheck calls
4. Remove redundant code

7.1 Creating Instance definitions

Defining instances is a bit of work. The good news is that there are probably not more than 3 of these in any
given module.

Thefirst question to answer is: what instances do | have or need? Instance definitions ("security schemas') can
generally be found in the version.php file of the module. However, you'll probably also want to look through
the module code for calls of the pnSecAddSchema or xarSecAddSchema function, which also define security
schemas. Y ou'll need to create an instance definition for each of the entriesin a security schema.

Security schemas have the form:
$nodversion[' securityschema'] = array(' categories::category' =>
' Cat egory nane:: Category |1D,
‘categories::item =>
'Category ID:Module ID:ItemID);

In this case we have a schema with two entries, which will call for two instance definitions. In thefirst entry the
line
' cat egori es:: category'

refers to the module name (" categories") and the component name (" category"). Both of these can be inserted
into the instance definition as shown below. If there is no component name, insert "All" in the definition
instead.

The second part of the entry is abit more complicated:
' Cat egory nane:: Category |D

This part of the schema consists of up to 3 names of database fields which make up the instance definition. You
need to define the sql query strings which return a recordset with each of these fields from the database. In this
case the query strings would be:

$queryl = "SELECT DI STI NCT xar _name FROM xar _cat egori es";
$query2 = "SELECT DI STI NCT xar_ci d FROM xar _cat egori es";

Note you'll have to look in the database a bit to identify the correct table and field names. Unfortunately thisis
not clearly documented anywhere, but in most cases the table will be one of those bel onging to the module
itself, and the field names can be identified fairly easily.

Once you have the module, component names and the query strings these can be inserted in the instance
definition. The definition for the first entry in the security schema above is shown below, with appropriate

values for the header and limit parameters included:
$queryl = "SELECT DI STI NCT xar_nane FROM xar _cat egori es";
$query2 = "SELECT DI STI NCT xar_cid FROM xar _cat egori es";
$i nst ances = array(
array(' header' => 'Category Nane:',
"query' => $queryl,
"limt' => 20
)
array(' header' => 'Category ID ',
"query' => $query2,
"limt' => 20
)

Lutolf Best Current Practice [Page 23]

RFC 0030 Security System November 2002

)
xar Def i nel nst ance(' categories',' Category', $i nst ances);

7.2 Creating Mask Definitions

The next step isto create masks for all the security checks in the code. These are privilege definitions which are
referenced whenever a security check is called: the check compares the user's privileges with the privilege
defined by the mask and decides whether the user passes the check or not.

There are typically 3-6 different masks for any given module. How do | know what masks to define?
Unfortunately the only way to figure that out is to go through the code searching for pnSecAuthAction or
xarSecAuthAction calls and seeing how many different types there are.

Hereisauseful rule: Assume 1 mask to be created for each security level you find in the * SecAuthAction calls.

Once you have identified the different calls, create a mask definition for each of them in the init.php of the
module. Use the following function:

Synt ax:
xar Regi st er Mask(Nane, Real m Modul e, Conponent, | nst ance, Level , Descri pti on)

Exanpl e:
xar Regi st er Mask(' ReadCat egoryBl ock' ," All', "' categories','Block',"All:Al:A "', ACCESS READ);

* "ReadCategoryBlock" isthe name we give the mask. Thisis referenced in the code when performing
security checks. The name must be unique within the module the mask appliesto, in this case categories. It
is also wise to choose a name that describes the rights the mask contains.

* Therealm parameter indicates which realm the mask belongs to.

» "Categories', as noted, is the name of the module the mask belongs to. Module names by convention are
spelled in lowercase.

« "Block" isthe name of the component the mask belongs to. Component names by convention are spelled in
uppercase.

» Theinstance parameter in general isleft at 'All' and overriden at run time. In this example 'All:AlL:AIl
indicates that this component supports 3 instance "filters'. ('All" would a so be valid)

« Thelevel parameter indicates the kind of access required for the check to be successful.
» The Description parameter is optional.

7.3 Changing the Security Check Calls

The next step is the most 1abor intensive: changing the * SecAuthAction callsto the new system using
xarSecurityCheck. A module may contain literally dozens of these calls sprinkled through the code.
Unfortunately each needs to be visually examined and appropriately modified.

Some examples are shown below. In each of these we assume an appropriate mask has been created based on
the information in the old call, and that can be referenced by the new call.

7.3.1 Security Check with Exception Catching

i f (!xarSecAuthAction('All', 'categories::', "::", ACCESS EDIT)) {
return;}

becones
i f (xarSecurityCheck('EditCategories')) return;

The xarSecuritCheck call references the mask we defined above via the mask name. The module name and
access level information is stored in the mask, so there is no need for them as parametersin the call. If the

Lutolf Best Current Practice [Page 24]

RFC 0030 Security System November 2002

security chekc fails the system will automatically generate an exception message.

7.3.2 Security Check with Exception Catching Suppr essed
i f (xarSecAuthAction('All', 'categories::', "::", ACCESS EDIT)) {
becones
i f (xarSecurityCheck("'EditCategories',0)) {

Thisisidentical to the previous call except that the exception message that would be generated in the case of a
failed security check is suppressed by setting the second parameter to 0.

This cal isuseful when you want to loop through a series of security checks in the code without halting
execution if the check fails.

7.3.3 Security Check with Dynamic Componentsor Instances

i f (!xarSecAut hAction(0, "categories::itenl, "$nane:: $id", ACCESS EDIT))
{ return; }

becones
if (!xarSecurityCheck('EditCategories',0,'ltem,' $nane:Al:$id)) return;

In this example we override some of the mask definition parameters with dynamic values. Recall that the mask
definition aboveis:

Synt ax:
xar Regi st er Mask(Nane, Real m Modul e, Conponent, | nst ance, Level , Descri pti on)

Exanpl e:
xar Regi st er Mask(' Edit Categories',"All',"'categories',"All',"All', ACCESS EDIT);

In this definition both the Component and Instance parameters are "All". By adding the parameters "item" and
"$name::$id" to the xarSecurityCheck call we replace the values "All" by dynamic values to be checked
against.

Note that "$name::$id" in the old call becomes "$name:All:$id" in the new call. We explicitly list al of the
instances "filters', even those that in the old call are not mentioned.

It isimportant for there to be consistency among instances, masks and security checks. If a security check does
not find a mask of the name called, it will throw an exception. If the check includes dynamic component and/or
instance values that do not coincide with an instance definition, it may fail.

7.3.4 Removing Redundant Code

The following code becomes redundant after the conversion and can be removed:

1. Theold*SecAuthAction cals: can be removed immediately after being replaced by xarSecurityCheck.
These calls need to be removed for the system to work.

2. Any calsto * SecAddSchemain the code: the calls do nothing; if 1eft the new system still works.

We recommend leaving the security schema definitionsin the version.php files for documentation purposes.
However, they should accurately reflect the instances used in the xarSecurityCheck calls.

Lutolf Best Current Practice [Page 25]

RFC 0030 Security System November 2002

8. Open Issues

8.1

8.2

8.3

8.4

8.5

Regex

I'd rather dispense with this and run the Ul through dropdowns and checkboxes, but | understand that some
people are clamoring for an "advanced user" Ul for the privileges system. There may aso be some performance
considerations here, trading CPU processing for DB hits. And then there's backwards compatibility. Well, OK.

My suggestion for the future would be to limit the advanced Ul to entering lists into the appropriate form fields,
say a"Component” or "Instance" field in the Ul. On submitting, the list(s) would be disassembled to recordsin
the privileges table with one component/instance per record. Thisin itself is not trivial, because the user would
be entering some sort of name, and you'd have to parse the name, make sure it corrsponded to areal object
registered in the privileges system, and then trandlate it to a numeric ID.

Multi-language
Need to check to make sure any calls using the name of an object rather than its ID don't screw up the ML

capabilities.

Realms

Realms have been in the old security system, but no-one seems to know exactly what they do and how to use
them. Until that is crystal clear, realms will not be supported, or rather, actively not supported. We can't have
loose ends in a security system

Future Implementation

Theissues encountered in Version 1.0 suggest merging the Roles and Privileges modules into a single module
in the future.

A thourough evaluation needs to be done, whether we want the security system in user module space. This has
both advantages and disadvantages. For ease of migration they will be in user module space for now, possibly
classified as "Core Admin", so areasonable guarantee can be given they exist when bootstrapping the system.

Miscellaneous Notes To Do

« Need to integrate aregex trandation layer for backward compatibility.

* Weneed to set up aquality assurance program in general for Xaraya, but specifically for security related
issues. If we ever want Xarayato be used in corporate environments, thisis acritical requirement.

Lutolf Best Current Practice [Page 26]

RFC 0030 Security System November 2002

9. Revision history

Version 0.9, Dec 15, 2002: First release of this document

Version 1.0, Jan 15, 2003: Major rewrite based on the first version of the code. Clearer definition of the
architecture, implementation and Ul.

Version 1.1, Feb. 8, 200: terminology changes, review by MrB

Lutolf Best Current Practice

[Page 27]

RFC 0030 Security System November 2002

10 Referencetitle

Lutolf Best Current Practice [Page 28]

RFC 0030 Security System November 2002

Author's Address

Marc Lutolf

Xaraya Development Group
EMail: marcinmilan@xaraya.com
URI: http://www.xaraya.com

Lutolf Best Current Practice [Page 29]

mailto:marcinmilan@xaraya.com
http://www.xaraya.com

RFC 0030 Security System November 2002

Intellectual Property Statement

The DDF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights
that might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; nor does it represent that it
has made any independent effort to identify any such rights. Information on the DDF's procedures with respect
to rights in standards-track and standards-related documentation can be found in RFC-O0.

The DDF invites any interested party to bring to its attention any copyrights, patents or patent applications, or
other proprietary rights which may cover technology that may be required to practice this standard. Please
address the information to the DDF Board of Directors.

Acknowledgement

Funding for the RFC Editor function is provided by the DDF

Lutolf Best Current Practice [Page 30]

	Status of this Memo
	Copyright Notice
	Abstract
	Table of Contents
	1 Definition of terms
	2 Introduction
	3 Concepts of the Xaraya Security System
	3.1 Roles
	3.2 Privileges
	3.3 Access Levels
	3.4 Irreducible Sets
	3.5 Winnowing
	3.6 Assigning Privileges
	3.7 Default Assignments
	3.8 Inheriting Privileges
	3.9 Masks
	3.10 How the System checks Privileges

	4 Architecture
	4.1 Admin and User APIs
	4.1.1 Admin API
	4.1.2 User API

	4.2 Setup API
	4.3 Classes and Methods
	4.3.1 xarRoles
	4.3.2 xarRole
	4.3.3 xarMasks
	4.3.4 xarPrivileges
	4.3.5 xarMask
	4.3.6 xarPrivilege

	5 Database Tables
	5.1 Roles Tables
	5.2 Masks Table
	5.3 Instances Table
	5.4 Privileges Tables
	5.5 ACL Table

	6 Syntax
	6.1 Registering Masks
	6.2 Defining Instances
	6.3 Security Checks

	7 Converting Modules from the Old to the New System
	7.1 Creating Instance definitions
	7.2 Creating Mask Definitions
	7.3 Changing the Security Check Calls
	7.3.1 Security Check with Exception Catching
	7.3.2 Security Check with Exception Catching Suppressed
	7.3.3 Security Check with Dynamic Components or Instances
	7.3.4 Removing Redundant Code

	8 Open Issues
	8.1 Regex
	8.2 Multi-language
	8.3 Realms
	8.4 Future Implementation
	8.5 Miscellaneous Notes To Do

	9 Revision history
	10 Reference title
	Author's Address
	Intellectual Property and Copyright Statements

