G. Rothfuss

Xaraya
Request for Comments. 0007 Project Management Core
Category: Informational J. Schrage
Xaraya Development Team
January 2002

M odularized Data

Status of thisMemo

This memo providesinformation for the Xaraya community. It does not specify an Xaraya standard of any
kind. Distribution of this memo is unlimited.

Copyright Notice

Copyright © The Digital Development Foundation (2002). All Rights Reserved.

Abstract

This RFC proposes to have a unified mechanism to extend modules with custom data.

Rothfuss & Schrage Informational [Page 1]

RFC 0007 Modularized Data January 2002

Table of Contents

O g o [V Tt o o TSSOSO RRPRPS 3
2 General statements about ModUIAriZEA DAta........coeieiuerierieieirereeee e e b e sbe e 4
3 List of requirementsfor Modularized Data.........cccceeveeeerieeieeeresesese st st sae e s s seeseese s e aesresaesnesrenns 5
4 Solution proposals - datahase tADIES...........oo i bbb 6
IR IE= o] [T O o 0] (= o) SRS 9
(OIS o U o] g I e 0] 0 0= KT A PSS 10
6.1 Review of the current DD APl with eXtension PropOSAlS.........cocerirererinene e 10
7 ReEAtioNSNiP t0 OLNEN @I EAS......ceitieetiiecte ettt et b e e b e bt e st b et b et b et b e ne b e seebeseebeneene e 12
8 Codethat Will NEEA 10 D FEWIITEEN. ... bbb bbb e e e nae s 13
9 Toolsthat need to be created frOm SCratCh... ..o e be e 14
10 Basic documeENtSTOr tRISIRIFC 7.ttt st st st s st e e e st e et e sbe e b e ebeenresaeennas 15
I L = T o R 16
U1 o) oo] = [OSSP 17
SO g T g To 7= oo RO OSSPSR 18
AULNOIS AU ESSES.....c.tecueecticiee ettt ettt et e st e st e e s te et esbeeatesteeaeesbeeaseebeesseaaeeseaaeeseeeneeseeeseeseeentesbeentesteentesseentesneannes 19
A AddITiONAl COMMENTS.......eiiiiiiit bbbt bbbt et e e et e s e e e e aeeheebesheeb e s beseesbenbese e e enseneeneens 20
0t R 1 oo [FTox 1 o o TSRS 20
N U L= T oo L1 20
ALB VAAION......eeieecece ettt et e e be et e e aeestesaeesbesaeesbeeaeeabeeabeabeeareabeeabeebeenteeaeeteeaeenreeaeas 21
A4 Storage and retrieVval OF BEAL.........cooiiiiiie bbb e bbb ettt eae b ae b e 22
YT D TT= o)=Y g o o= = T 22
A6 PULLING 1T 8l TOGEINEN ...t et b et bt bbb e b et b e b e 23
Intellectual Property and Copyright StAtEMENTS.......cccceeeieeeece st sre e seenean 25

Rothfuss & Schrage Informational [Page 2]

RFC 0007 Modularized Data January 2002

1. Introduction

Rothfuss & Schrage Informational [Page 3]

RFC 0007 Modularized Data January 2002

2. General statements about Modularized Data

Rothfuss & Schrage Informational [Page 4]

RFC 0007 Modularized Data January 2002

3. List of requirementsfor Modularized Data

Rothfuss & Schrage Informational [Page 5]

RFC 0007 Modularized Data January 2002

4. Solution proposals - database tables

Thisisthe DB setup as extracted from the admin API.

uzer property

-pn_prop_id

+pn _prop label
tren_prop dtyvpe

+pn prop default
+pn prop walidation

uzer data

tpn_uda propid

This design isfor text-based dynamic data.

Xarava user table User data content
UsEers userdata content
-uid: int -uid: int
—fieldname: warchar{(&0)

+oontent: text

Lllowed fields and attrikbutes

uzerdata fields

—-fieldname: warchar{(&0)
+length: smallint
+type: warchari{btd)
tactive: bool

torder: smallint

2: bhllow certain fields for certain groups only 7

Thisdesign isfor user data that can be assigned to groups, with optional selection listsfor fields, i.e. for

Rothfuss & Schrage Informational [Page 6]

RFC 0007

dropdowns.

Core

Xaraya user table

ugers

Modularized Data

Uger Syatemn

User data content

-—uid: int

Haraya group takle

groups

—-gid: int

January 2002

Selection wvaluss for list types

userdata content userdata selection wvalues
-uid: int -type: varchar(60)
—q}d: int P +wvalue: wvarchar{l2g)
—fieldname: warchar (60) |ﬁddgm;. +order: smallint
t+tcontent: text dist=true

Allowed fields and attributes

Enown field tvpes

ugerdata fields

userdata_ fieldtypes

Matching table:

-fieldname: warchar{&0)
+length: smallint

+type: wvarchar(60)
tactive: bool

+order: smallint

+label: warchar(60)
+displaylength: smallint
+user_field: bool
+group_field: bool

.

varchar {60}
varchar (256

-tvype:
t+wvalidation:
+list: bool

groups-»>fields

ugerdata groups_ fields

gid: int

tfieldname: wvarchar{60)

This design attempts to merge Dynamic Data, Dynamic User Data and Module Variables. Values are serialized
to support transparent storage of complex types (arrays etc). Each type has a default BL tag for rendering,
which can be overwritten in the property. Properties are referenced by module name.

Rothfuss & Schrage

Informational

[Page 7]

RFC 0007

Modularized Data January 2002

dynamic_data

=ar_dd_id
®ar_dd_propid
xar_dd_itemid
®ar_dd_walue

irt
irt
irt
text

Il of the data

IC of the propery

IC of the item

Halds the content of the data (serialized)

dynamic_propertias

®ar_prop_id
®ar_prop_module
®ar_prop_itemtype

#ar_prop_label
#ar_prop_diype

war_prop_default
#ar_prop_walidation
#ar_prop_active
®ar_prop_order
®ar_prap_tag

irt IC of the properhy
=tring Module the property is for{module name)
irt Type of the item

(for modules with more than one item™)
string Label of the Property

irt Type of the Property

string Cefault wvalue

string “falidation =string for the Property
boaol Iz the propery active™

irt Order of the property

string BL tag to handle the property (optional)

dy narnic_propertyty pes

—»

®ar_proptype_id
®ar_proptype_name
®ar_proptype_tag

irt IC of the properytype
string Mame of the property type
string BL tag to handle the type

Proposed change: Remove field "validation™: Validation aspects should be handled by the data dictionary.

Rothfuss & Schrage

Informational [Page 8]

RFC 0007 Modularized Data January 2002

5. Table'Content'

Rothfuss & Schrage Informational [Page 9]

RFC 0007 Modularized Data January 2002

6. Solution proposals- APIs

Dynamic Datawill use two sets of APIs. Creation and Deletion of of variables is done within amodule, while
reading and writing variable contents is done in the core. There are currently discussions whether to combine
Dynamic User Data with generalized Dynamic Data, in essence abstracting away the relationship between users
and dynamic data, and allowing every module to define its own dynamic data. This brings up the question if
module variables are being reinvented, and what should happen with the functionality to assign responsibility
for storing user variables to authentication modules. The current core API functions are:

User System API

+pnUserloglnl $usertame, $password, SrememberMe): bool
+pnUserLogout{): bool

+pnUserlsloggedin j: bool

+pnUserGetThemel J: string

+pnUserzetlLang|): string

+pnUserGetLocalel) string

+pnUserzatVar| $name, 3userld=NULL): any

+pnlUserSetVar| $name, $value, 3userId=NULL): bocl

+pnUservalidatevar! $name, $value): bool

+pnUserComparePasswords| $givenPassword: string, $realPassword: string, $userName: string, $cryptiSalt: strin

User System Private Functions

+pnUser getActiveAuthModules|): array
+pnUser_ getiuthModule| SuserId: string): string
+pnUser_ getUserVarInfo| $name: string): array
+pnUser_ syncUsersTableFields{): bcol

+pnUser_ setUsersTableUserVar| $name: string, $value: string, $userId: string): bodl
+pnUser_ validationfpplyl $validation: string, $valueToCheck: string): bool
+pnUser_ validationExplodeEsc| $delimiter: string, $str: string): array
+pnUser_ walidaticonParse| $validaticnString: stringl: array

Jser System Classes

pnUser__ValEntry

+Snegation: bool = false
+itype: string
+Soperator: string
+Sparam string

6.1 Review of the current DD API with extension proposals
function dynamicdata_adminapi_createprop($args)

modid - module id of the item field to create

itemtype - item type of the item field to create

label - name of the field to create

type - type of thefield to create

default - default of the field to create

validation - validation of the field to create
Proposed changes: Add
active - boolean: is this property active, i.e. usable?
order - int: sort order for display
tag - string: BL tag that handles the output
Delete
validation: handled by data dictionary
function dynamicdata_adminapi_updateprop($args)
prop_id - property id of the item field to update
modid - moduleid of the item field to update (optional)

Rothfuss & Schrage Informational [Page 10]

RFC 0007 Modularized Data January 2002

itemtype - item type of the item field to update (optional)

label - name of the field to update

type - type of the field to update

default - default of the field to update (optional)

validation - validation of the field to update (optional)
Proposed changes: Add:

active - boolean: isthis property active, i.e. usable?

order - int: sort order for display

tag - string: BL tag that handles the output

Delete:
modid: A property that belongs to a specific module should remain there

itemtype: Update of item types may break the module logic. Should be handled by deletion and new creation
type: Likewise.
validation: handled by data dictionary
function dynamicdata_adminapi_deleteprop($args)
prop_id - property id of theitem field to delete
modid - module id of the item field to delete
itemtype - item type of the item field to delete
label - name of thefield to delete
type - type of the field to delete
default - default of the field to delete

validation - validation of thefield to delete
Proposed changes:
» Delete al parameters except prop_id and modid: For security check ensure a module can delete only its own
properties. It should, however, be allowed to delete any of them.

Proposed new functions:
function getAllProperties(modid): get alist of al properties for module $modid and their basic type and
BL tags. returns array(propid,type,tag)

Rothfuss & Schrage Informational [Page 11]

RFC 0007 Modularized Data January 2002

7. Relationship to other areas

It will need to be determined if it makes sense to allow storage of certain properties viathe modular
authentication system. For instance, it could be beneficial to store dynamic properties for the users module in
LDAP. Also, it needs to be determined how and if dynamic properties integrate with the Multilangue system.

Marco has some thoughts about this, i hope he will share them soon. Property validation should be done by
using the facilties provided by xarVarValidate.

Rothfuss & Schrage Informational

[Page 12]

RFC 0007 Modularized Data January 2002

8. Codethat will need to berewritten

xarUserGetVar, xarUserSetVar and xarUserValidateVar will go away, to be replaced by xarModGetVar,
xarModSetVar, xarVarValidate respectively.

Rothfuss & Schrage Informational [Page 13]

RFC 0007 Modularized Data January 2002

9. Toolsthat need to be created from scratch

Rothfuss & Schrage Informational [Page 14]

RFC 0007 Modularized Data January 2002

10. Basic documentsfor thisRFC 7

Rothfuss & Schrage Informational [Page 15]

RFC 0007 Modularized Data January 2002

11. Retractions

Rothfuss & Schrage Informational [Page 16]

RFC 0007 Modularized Data January 2002

12. Author contact

Rothfuss & Schrage Informational [Page 17]

RFC 0007 Modularized Data January 2002

13. Changelog

Rothfuss & Schrage Informational [Page 18]

RFC 0007 Modularized Data

Authors Addresses

Gregor J. Rothfuss

Project Management Core
EMail: gregor@xaraya.com
URI: http://www.xaraya.com

Jan Schrage
Xaraya Development Team

EMail: jan@xaraya.com

URI: http://www.xaraya.com

Rothfuss & Schrage Informational

January 2002

[Page 19]

mailto:gregor@xaraya.com
http://www.xaraya.com
mailto:jan@xaraya.com
http://www.xaraya.com

RFC 0007 Modularized Data January 2002

A. Additional comments

A.1 Introduction

Dynamic data (or any datain fact) generally goes through several steps:
1. definition : the admin (or the system) defines some dynamic property for a module item type

N

input : the user/admin can enter or modify the datain aform
3. validation : the system verifies that it has an acceptable value

4. storage: the datais saved/updated in the database, or perhapsit is passed along to some externa store (e.g.
other DB, LDAP, web service, ...)

5. retrieval : the datais retrieved from the database, or from some other external store
6. display : the datais made available for display by the module

Xaraya should facilitate *all* these steps, and it seemswe're still missing afew pieces of the puzzle here.

I'll start with what we should be able to do from a user/admin point of view, and then go back to the definition
part, to see what kind of information we need in order to define al this.

A.2 User input

Thisimplies showing some kind of form field of a certain type (or some equivalent like a date selector or image
picker), with a particular field name (or names), some initial content, possibly some list of acceptable values,
and so on.

One approach isto let BL do all the work, and use one common tag that handles all the proper formatting for
you. An example of that isthe (current) articles-field tag, that receives a name, property type and value from
the module, and handles all the rest automatically. That includes providing the right formatting, retrieving the
list of acceptable values based on the property type ("field format"), or in some cases even retrieving the value
itself (e.g. for username or date).

For the moment, there is no explicit support for retrieving alist of acceptable values by individual property,
rather than by property type, but thisis certainly going to be necessary if you want to provide even simple
things like dropdown lists etc.

And going one step further (cfr. FormExpress), you could imagine defining a function when creating your
property, and let BL invoke that function to retrieve the list for you.

The BL template is reduced to asimple loop :
<xar: | oop nanme="$fiel ds">
<tr align="left" valign="m ddl e">
<t d>&xar - var - | abel ; </t d>
<td><xar:articles-field definition="%definition" /></td>
</tr>
</ xar : | oop>

and with a better definition of properties, you could even replace that by asingle tag like
<xar:articles-formnodul e="articles" itemype="1" item d="1234">

That's one extreme, and I'm not far from being able to do just that ... for articles. Y ou could imagine doing the
same thing for any module, with the right support of property definitions by Xaraya.

Advantage : you define your properties, and Xaraya does the rest.

Disadvantage : no fine control over how the formis created, except by modifying how the individual fields are
generated by that tag.

Rothfuss & Schrage Informational [Page 20]

RFC 0007 Modularized Data January 2002

But by allowing admins to modify the formatting of individual properties (and/or making use of widgetsin the
future), non-designer people [like me :)] can let Xaraya create the whole input interface.

The other extreme -the "classic" approach | came from- is of course to build your whole form yourself in the
module template, retrieving the data, acceptable values etc. in your module. This works fine as long as you
know beforehand which fields you're going to have, but once you start dealing with dynamic data, this may no
longer be valid.

That means that you have another choice to make :

a. either those dynamic fields should appear "automagically” in the input form via hooks, and the creation
of the fields should be done via some mechanism similar to what | described above for articles,

b. or the module should be able to retrieve the dynamic data itself and the admin will then manually add
the additional form fieldsin the template himself

For the moment, option a. is used in the dynamic data module, but option b. should be made available as well.
And of course, we could imagine having some generator build a sample template based on the dynamic
properties defined for that module...

A.3 Validation

The xarVarFetch() and xarVarValidate() functions already provide some basic validation based on data type,
and aso some verification of allowed HTML tags (cfr. other on-going thread), but it doesn't come anywhere
near the kind of validations we'll need for dynamic data yet.

Some sample validations I'm thinking of here:

e isitaexisting user ?

« isthisavalid date (year, month, day, hour, min, sec) ?

» doesthisbelong to that list of acceptable values ?

e isthisan acceptable URL ?

« isthisaloca image from that directory where you're allowed to pick some image from ?
* isthistext not too long ?

e isthat avalid status change ?

» isthat really awebpage that you're trying to retrieve ?

» isthisavalid file upload, of those acceptable file types, size, ... ?

So far, most of the validations in articles are pretty simplistic too, but that's the kind of input validation we will
need if we want to provide more than really basic dynamic data.

And as mentioned before, some validations may be on the level of property types, others may require specific
rules per individual property (for a particular module + item type), and others might be "filled in" dynamically
by the module for each item we're dealing with. So Xaraya should support validation rules on all three levels.

Another aspect is*what* datato validate. Each module knows what particular data it hasto receive on
input/modification, but of coursethislist is dynamic for ... dynamic data. Thisis (again) handled via hooks at
the moment, but in some cases, there might be properties that *may not* be modified, either because it is not a
valid input field (e.g. the current user isfixed), or because the field (e.g. the article status) may not be modified
by this particular user (permissions).

So another aspect of property definition is that the admin (or the property type) should be able to decide

whether thisisavalid input at all, or who is alowed to input/modify it - something | didn't cover in 1) User
Input, but has an impact there as well, obviously.

Rothfuss & Schrage Informational [Page 21]

RFC 0007 Modularized Data January 2002

And since we're pushing the envelope anyway, why not consider the situation where input validation for a
module could be done without requiring any coding by the module developer aswell ? After all, if Xarayais
(someday) able to display a complete input form based on property definitions, it should be able to handle the
results aswell, no ? [you're probably way ahead of me by now :)]

Again, thisis not something that should be mandatory (forced by the core), but a convenience...

A.4 Storage and retrieval of data

Okay, so we have our dedicated tables for each module, and we have some ways to retrieve (user) datavia
LDAP or other means, and now we have some generic dynamic data table where people can store additional
stuff if they want to extend a module.

And in the future, it would be nice if we could get data from other places aswell, like some other external
databases, or information made available viaweb services, in files, whatever.

Now unlike some other projects | won't mention :-), | don't think that putting * everything* in some generic
meta-table is the best approach. Dedicated tables have their use, and we shouldn't get rid of them just for the
sake of "ultra-flexibility".

But one thing that would really allow usto go beyond the "my module, my tables' stage would be to improve
and extend the way user data can now be retrieved from different "sources" to [at least] allow you to do the
same for dynamic datain general.

Basically, what we need then is some "mapping” mechanism between the logical property definitions used by
Xaraya, and the physical accessto that datain local or remote databases, via LDAP, and so on. And of course,
"connectors' providing the corresponding access mechanisms to each of those "data stores'.

Putting this into place will probably not be done overnight, but right now, there are afew blocking pointsin the
core that make this nearly impossible to even start implementing.

And the most important one (in my point of view) is the correct handling of multiple database connections - I'm
by no means an expert on PHP ADODB, but isit realy so hard to make sure that module devel opers can (if
they want to) open up another database connection without Xaraya loosing its own database connection along
theway ? 1 haven't tried it myself with Xaraya, but this seemsto be a very common complaint for PostNuke
module devel opers, and somehow | don't think we've solved that particular issue yet - or have we ?

Anyway, besides some of the more fancy stuff we might implement someday [like importing meta definitions
from existing sources and automatically making them available as property definitions for use in dynamic
data], we could also imagine automating the select, insert, update, delete methods - not only for dynamic data
itself, but also for dedicated module tables.

Again, not something mandatory, but another feature that Xaraya would provide for module devel opers and/or
admins, so that once they've defined which properties their data should have, they could access it transparently
viathe core. And a step further of course, that they could do it for any data, regardless of where it comes from...

In the short term (for RFC 7), this means that dynamic properties may not always have their data (per item)
stored in the dynamic data table, but the data might be located elsewhere - so it should be possible to say where
it's coming from, and where it's going to be stored. We can then work on providing different "connectors' as
we move along, making use of what's already been done in the context of the auth* modules - and then turn the
situation around and let some of the auth* modules make use of the generic connectors.

That's it for data storage and retrieval - now let's finally do something with that data:)

A.5 Displaying data

One thing that's serioudly lacking in the current dynamic data implementation is how to handle the actual

Rothfuss & Schrage Informational [Page 22]

RFC 0007 Modularized Data January 2002

display of that data. So far, I'm just creating a name - value list and passing it along via the display hook, which
obvioudly isn't good enough.

Now, remember those different templating options mentioned for User Input. Assuming we had a "display
field" tag for each property, aswell as an "input field" tag, we could (theoretically) provide a similar approach

like:
<xar: | oop nanme="$fiel ds">
<xar:articles-displayfield definition="$definition" />
</ xar : | oop>

or even

<xar:articles-display nodul e="articles" itentype="1" item d="123" />

Again, this could be built up automatically by Xaraya based on the property definitions, by providing some
default display for each property type. Of course, people aren't likely to be happy with the way things would be
displayed "out of the box", but this would at least provide some basic configurable output, and a stepping stone
towards full customisation.

For item lists and displays, module devel opers, designers and admins are much more likely to adapt templates
to suit their needs, so here it's essential that they can handle the display of dynamic data directly, which means
weneedto:

« have some BL tags that allow you to get some default display for each dynamic property, or
* have some BL tagsthat allow you to get the dataitself for each property in the template, or

* beableto automatically retrieve the dynamic data in the module and make it available for the template like
any other variable, or

e any combination of the above ;)

Frankly, I'm not sure which of the above should be our first priority, and which one(s) should be supported in
theend.

Ideally, the fact that there is dynamic data available or not should be made transparent if the admin is happy
with some "standard" presentation, but he should be able to fully customise how and where the dynamic data
will appear otherwise...

If we used transparent data wrappers that can hide where the data is coming from (dedicated table, dynamic
data, ... see part 3), thiswould be less of aproblem, but | don't think we can rely on that in any reasonably short
period of time.

Either way, there's nothing implemented in the dynamic data module for this beyond some rudimentary display
viahooks, so I'm certainly open for suggestions or ideas on how to proceed on the display part at this point !!!

-)

That's about al | can think of about using dynamic data from the point of view of users/admin - now let's see
what all this means in terms of property definitions, and the design of the DD module in general. Which leads
us to the last part of this RFC-about-an-RFC :)

A.6 Putting it all together
Based on al of the above, here's how | see us moving forward with property definitions and dynamic data:

1. incore (some new 'datadict' module, perhaps ?), define standard property types (in the sense of articles, not
in the sense of xarVar or users module) and allow the creation of new property types.

Thisincludes support by a BL tag to generate a standard input field (or equivalent), advanced validation rules
(implemented with extended xarFetch and xarVarValidate), and support by some other BL tag to generate a
standard display as output.

Rothfuss & Schrage Informational [Page 23]

RFC 0007 Modularized Data January 2002

Ideally, there should be 1 common BL input tag and 1 common BL display tag, possibly supported by a bunch
of widgets (Xaraya 1.1) or whatever for easier customisation afterwards.

2. incore (‘"dynamicdata module or other), modules/admins can register properties for a particular module +
item type. In the short term, this covers only dynamic data, and this module is optional. In the longer term,
this also coversthe "static" properties (=dedicated tables) of each module, and it will no longer be optional.

For each property, modules can use the common BL input and display tags, or specify some specific input and
display tags (to be defined how).

For each property, modules can also "fill in" the generic validation rule of the corresponding property type,
where necessary. Example : the acceptable values for alist, the base directory to look for images, a callback
function, or whatever is relevant for that property type.

In the short term, the 'dynamicdata module will create corresponding records in a dynamic data table for each
property. In the longer term, modules will be able to specify where/how data should be stored/retrieved for each

property.
3. the'dynamicdatal module will provide functions to store/retrieve data for each of the properties defined for

amodule. In the short term, only with the dynamic data table - in the longer term, also with other "data
stores" like dedicated module tables, external databases, LDAP, etc.

Also relevant in this context is nuncanada's proposal for new hook functions (cfr. mail of 1/1/2003 "Proposing
new hooks functions").

In my opinion, the functions he proposed should * not* be seen as a replacement for the current hooks, but as
data access functions to be provided by the core via the (extended) 'dynamicdata’ module.

If/when each module registers its "static properties” to the core, the dynamicdata module can then creste the
appropriate joint statements transparently. But this would not be for Xaraya 1.0 (IMHO).

4. the'dynamicdata’ module will provide aBL form tag to show the input fields for all properties of a
module+item type, and a BL output tag to show the display for al properties of a modulet+item type,
making use of the standard BL input and display tags, or the individual tags defined for each property.

5. the'dynamicdata module will be able to validate input for all properties defined for that module (in the
short term, only the dynamic properties, and in the longer term, every property defined for that module).

6. for more customized display of dynamic data by the modules, we need to rapidly select one (or more) of the
options discussed in the previous part.

7. did | missanything ?

Much of the short-term stuff is already available in one place or another. Missing is the central 'datadict’
functionality and its corresponding BL tags and validations, and the display part. So do we go ahead with this
or not ?:-)

Rothfuss & Schrage Informational [Page 24]

RFC 0007 Modularized Data January 2002

Intellectual Property Statement

The DDF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights
that might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; nor does it represent that it
has made any independent effort to identify any such rights. Information on the DDF's procedures with respect
to rights in standards-track and standards-related documentation can be found in RFC-O0.

The DDF invites any interested party to bring to its attention any copyrights, patents or patent applications, or
other proprietary rights which may cover technology that may be required to practice this standard. Please
address the information to the DDF Board of Directors.

Acknowledgement

Funding for the RFC Editor function is provided by the DDF

Rothfuss & Schrage Informational [Page 25]

	Status of this Memo
	Copyright Notice
	Abstract
	Table of Contents
	1 Introduction
	2 General statements about Modularized Data
	3 List of requirements for Modularized Data
	4 Solution proposals - database tables
	5 Table 'Content'
	6 Solution proposals - APIs
	6.1 Review of the current DD API with extension proposals

	7 Relationship to other areas
	8 Code that will need to be rewritten
	9 Tools that need to be created from scratch
	10 Basic documents for this RFC 7
	11 Retractions
	12 Author contact
	13 Changelog
	14 References
	Author's Addresses
	A Additional comments
	A.1 Introduction
	A.2 User input
	A.3 Validation
	A.4 Storage and retrieval of data
	A.5 Displaying data
	A.6 Putting it all together

	Intellectual Property and Copyright Statements

