【G1】记忆集和卡表解决跨代引用 - shenjy24/jackal-gc GitHub Wiki

分代收集理论

分代收集名为理论,实质上一套符合大多数程序运行实际情况的经验法则,它建立在两个分代假说之上:

  1. 弱分代假说(Weak Generational Hypothesis):绝大多数对象都是朝生夕死的。
  2. 强分代假说(Strong Generational Hypothesis):熬过越多次垃圾收集过程的对象就越难以消亡。

这两个分代假说共同奠定了多款常用的垃圾收集器的一致的设计原则:收集器应该将Java堆划分出不同的区域,然后将回收对象依据其年龄(年龄即对象熬过垃圾收集过程的次数)分配到不同的区域之中存储。显而易见,如果一个区域中大多数对象都是朝生夕灭,难以熬过垃圾收集过程的话,那么把它们集中放在一起,每次回收时只关注如何保留少量存活而不是去标记那些大量将要被回收的对象,就能以较低代价回收到大量的空间;如果剩下的都是难以消亡的对象,那把它们集中放在一块,虚拟机便可以使用较低的频率来回收这个区域,这就同时兼顾了垃圾收集的时间开销和内存的空间有效利用。

跨代引用

很容易发现分代收集并非只是简单划分一下内存区域那么容易,它至少存在一个明显的困难:对象不是孤立的,对象之间会存在跨代引用。

假如要现在进行一次只局限于新生代区域内的收集(Minor GC),但新生代中的对象是完全有可能被老年代所引用的,为了找出该区域中的存活对象,不得不在固定的GC Roots之外,再额外遍历整个老年代中所有对象来确保可达性分析结果的正确性,反过来也是一样(通常能单独发生收集行为的只是新生代,所以这里“反过来”的情况只是理论上允许,实际上除了CMS收集器,其他都不存在只针对老年代的收集)。遍历整个老年代所有对象的方案虽然理论上可行,但无疑会为内存回收带来很大的性能负担。

术语说明:

  1. 部分收集(Partial GC):指目标不是完整收集整个Java堆的垃圾收集,其中又分为:
  • 新生代收集(Minor GC/Young GC):指目标只是新生代的垃圾收集。
  • 老年代收集(Major GC/Old GC):指目标只是老年代的垃圾收集。目前只有 CMS 收集器会有单独收集老年代的行为。另外请注意Major GC这个说法现在有点混淆,在不同资料上常有不同所指,读者需按上下文区分到底是指老年代的收集还是整堆收集。
  • 混合收集(Mixed GC):指目标是收集整个新生代以及部分老年代的垃圾收集。目前只有 G1 收集器会有这种行为。
  1. 整堆收集(Full GC):收集整个Java堆和方法区的垃圾收集。

记忆集(Remembered Set)

为了解决这个问题,就需要对分代收集理论添加第三条经验法则:

  • 跨代引用假说(Intergenerational Reference Hypothesis):跨代引用相对于同代引用来说仅占极少数。

这其实是可根据前两条假说逻辑推理得出的隐含推论:存在互相引用关系的两个对象,是应该倾向于同时生存或者同时消亡的。举个例子,如果某个新生代对象存在跨代引用,由于老年代对象难以消亡,该引用会使得新生代对象在收集时同样得以存活,进而在年龄增长之后晋升到老年代中,这时跨代引用也随即被消除了。

依据这条假说,我们就不应再为了少量的跨代引用去扫描整个老年代,也不必浪费空间专门记录每一个对象是否存在及存在哪些跨代引用,只需在新生代上建立一个全局的数据结构(该结构被称为“记忆集”,Remembered Set),这个结构把老年代划分成若干小块,标识出老年代的哪一块内存会存在跨代引用。此后当发生Minor GC时,只有包含了跨代引用的小块内存里的对象才会被加入到GC Roots进行扫描。虽然这种方法需要在对象改变引用关系(如将自己或者某个属性赋值)时维护记录数据的正确性,会增加一些运行时的开销,但比起收集时扫描整个老年代来说仍然是划算的。

卡表(Card Table)

记忆集是一种抽象的数据结构,抽象的意思是只定义了记忆集的行为意图,并没有定义其行为的具体实现。卡表就是记忆集的一种具体实现,它定义了记忆集的记录精度、与堆内存的映射关系等。

卡表最简单的形式可以只是一个字节数组,而HotSpot虚拟机确实也是这样做的。以下这行代码是HotSpot默认的卡表标记逻辑:

CARD_TABLE [this address >> 9] = 0;

字节数组 CARD_TABLE 的每一个元素都对应着其标识的内存区域中一块特定大小的内存块,这个内存块被称作“卡页”(Card Page)。一般来说,卡页大小都是以2的N次幂的字节数,通过上面代码可以看出 HotSpot 中使用的卡页是2的9次幂,即512字节(地址右移9位,相当于用地址除以512)。那如果卡表标识内存区域的起始地址是 0x0000 的话,数组 CARD_TABLE 的第0、1、2号元素,分别对应了地址范围为 0x0000~0x01FF、0x0200~0x03FF、0x0400~0x05FF 的卡页内存块,如图所示:

g1-cardtable

一个卡页的内存中通常包含不止一个对象,只要卡页内有一个(或更多)对象的字段存在着跨代指针,那就将对应卡表的数组元素的值标识为1,称为这个元素变脏(Dirty),没有则标识为0。在垃圾收集发生时,只要筛选出卡表中变脏的元素,就能轻易得出哪些卡页内存块中包含跨代指针,把它们加入GC Roots中一并扫描。

写屏障

我们已经解决了如何使用记忆集来缩减GC Roots扫描范围的问题,但还没有解决卡表元素如何维护的问题,例如它们何时变脏、谁来把它们变脏等。

卡表元素何时变脏的答案是很明确的——有其他分代区域中对象引用了本区域对象时,其对应的卡表元素就应该变脏,变脏时间点原则上应该发生在引用类型字段赋值的那一刻。但问题是如何变脏,即如何在对象赋值的那一刻去更新维护卡表呢?假如是解释执行的字节码,那相对好处理,虚拟机负责每条字节码指令的执行,有充分的介入空间;但在编译执行的场景中呢?经过即时编译后的代码已经是纯粹的机器指令流了,这就必须找到一个在机器码层面的手段,把维护卡表的动作放到每一个赋值操作之中。

在 HotSpot 虚拟机里是通过写屏障(Write Barrier)技术维护卡表状态的(与解决并发乱序执行问题中的“内存屏障”不同)。写屏障可以看作在虚拟机层面对“引用类型字段赋值”这个动作的AOP切面,在引用对象赋值时会产生一个环形(Around)通知,供程序执行额外的动作,也就是说赋值的前后都在写屏障的覆盖范畴内。在赋值前的部分的写屏障叫作写前屏障(Pre-Write Barrier),在赋值后的则叫作写后屏障(Post-Write Barrier)。HotSpot虚拟机的许多收集器中都有使用到写屏障,但直至G1收集器出现之前,其他收集器都只用到了写后屏障。下面这段代码清单3-6是一段更新卡表状态的简化逻辑:

//代码清单3-6 写后屏障更新卡表
void oop_field_store(oop* field, oop new_value) {
    // 引用字段赋值操作
    *field = new_value;
    // 写后屏障,在这里完成卡表状态更新
    post_write_barrier(field, new_value);
}

应用写屏障后,虚拟机就会为所有赋值操作生成相应的指令,一旦收集器在写屏障中增加了更新卡表操作,无论更新的是不是老年代对新生代对象的引用,每次只要对引用进行更新,就会产生额外的开销,不过这个开销与Minor GC时扫描整个老年代的代价相比还是低得多的。

除了写屏障的开销外,卡表在高并发场景下还面临着“伪共享”(False Sharing)问题。伪共享是处理并发底层细节时一种经常需要考虑的问题,现代中央处理器的缓存系统中是以缓存行(Cache Line)为单位存储的,当多线程修改互相独立的变量时,如果这些变量恰好共享同一个缓存行,就会彼此影响(写回、无效化或者同步)而导致性能降低,这就是伪共享问题。 假设处理器的缓存行大小为64字节,由于一个卡表元素占1个字节,64个卡表元素将共享同一个缓存行。这64个卡表元素对应的卡页总的内存为32KB(64×512字节),也就是说如果不同线程更

新的对象正好处于这 32KB 的内存区域内,就会导致更新卡表时正好写入同一个缓存行而影响性能。为了避免伪共享问题,一种简单的解决方案是不采用无条件的写屏障,而是先检查卡表标记,只有当该卡表元素未被标记过时才将其标记为变脏,即将卡表更新的逻辑变为以下代码所示:

if (CARD_TABLE [this address >> 9] != 0)
    CARD_TABLE [this address >> 9] = 0;

JDK 7之后,HotSpot虚拟机增加了一个新的参数-XX:+UseCondCardMark,用来决定是否开启卡表更新的条件判断。开启会增加一次额外判断的开销,但能够避免伪共享问题,两者各有性能损耗,是否打开要根据应用实际运行情况来进行测试权衡。

G1的卡表实现

G1 将 Java 堆分成多个独立 Region 后,Region 里面存在的跨 Region 引用对象如何解决?解决的思路我们已经知道:使用记忆集避免全堆作为GC Roots扫描,但在G1收集器上记忆集的应用其实要复杂很多,它的每个Region都维护有自己的记忆集,这些记忆集会记录下别的Region指向自己的指针,并标记这些指针分别在哪些卡页的范围之内。

G1的记忆集在存储结构的本质上是一种哈希表,Key是别的Region的起始地址,Value是一个集合,里面存储的元素是卡表的索引号。这种“双向”的卡表结构(卡表是“我指向谁”,这种结构还记录了“谁指向我”)比原来的卡表实现起来更复杂,同时由于Region数量比传统收集器的分代数量明显要多得多,因此G1收集器要比其他的传统垃圾收集器有着更高的内存占用负担。根据经验,G1至少要耗费大约相当于Java堆容量10%至20%的额外内存来维持收集器工作。

CMS用写后屏障来更新维护卡表,而G1除了使用写后屏障来进行同样的(由于G1的卡表结构复杂,其实是更烦琐的)卡表维护操作外,为了实现原始快照搜索(SATB)算法,还需要使用写前屏障来跟踪并发时的指针变化情况。相比起增量更新算法,原始快照搜索能够减少并发标记和重新标记阶段的消耗,避免CMS那样在最终标记阶段停顿时间过长的缺点,但是在用户程序运行过程中确实会产生由跟踪引用变化带来的额外负担。由于G1对写屏障的复杂操作要比CMS消耗更多的运算资源,所以CMS的写屏障实现是直接的同步操作,而G1就不得不将其实现为类似于消息队列的结构,把写前屏障和写后屏障中要做的事情都放到队列里,然后再异步处理。

参考资料