
Jörg Schäuffele

Thomas Zurawka

Translated by Roger Carey

AUTOMOTIVE SOFTWARE

ENGINEERING

PRINCIPLES, PROCESSES, METHODS,
AND TOOLS

Warrendale, Pa.

SAE International

400 Commonwealth Drive

Warrendale, PA 15096-0001 USA

E-mail: CustomerService@sae.org

Tel: 877-606-7323 (inside USA and Canada)

 724-776-4970 (outside USA)

Fax: 724-776-1615

Copyright © 2005 SAE International

ISBN-10 0-7680-1490-5

ISBN-13 978-0-7680-1490-5

SAE Order No. R-361

Printed in the United States of America.

Translated from the German language edition:

Automotive Software Engineering: Grundlagen, Prozesse, Methoden und Werkzeuge

by Jörg Schäuffele and Thomas Zurawka

Copyright © Friedr. Vieweg & Sohn Verlag/GWV Fachverlage GmbH, Wiesbaden, Germany, 2003

ISBN 3-528-01040-1

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without

the prior written permission of SAE.

For permission and licensing requests, contact:

SAE Permissions

400 Commonwealth Drive

Warrendale, PA 15096-0001 USA

E-mail: permissions@sae.org

Tel: 724-772-4028

Fax: 724-772-4891

Library of Congress Cataloging-in-Publication Data

Schäuffele, Jörg.
 [Automotive software engineering. English]
 Automotive software engineering: principles, processes, methods, and
tools / Jörg Schäuffele, Thomas Zurawka ; translated by Roger Carey.
 p. cm.
 Translation from the German language ed.
 Includes bibliographical references and index.
 ISBN-10 0-7680-1490-5
 ISBN-13 978-0-7680-1490-5
 1. Automotive computers. 2. Software engineering. I. Zurawka, Thomas.
II. Title.

TL272.53.S33 2005

-v-

THE ROLE OF SOFTWARE

IN THE AUTOMOBILE

Managing complexity is possible only through new approaches to
development.

No other technology offers developers as high a degree of design freedom as software technol-
ogy does. The almost exponential growth of software in the vehicle is driven by an increase
in vehicle functions and networks of functions, stringent reliability and safety requirements, as
well as an increasing number of vehicle variants. Managing the resulting complexity poses a
great challenge to both vehicle manufacturers and their suppliers: They must reduce software
complexity to a minimum by using methodology in development that ensures the safe function-
ing of software and systems. This book proffers a host of ideas for the design of development
processes and for the effective application of methods and tools.

Dr. Siegfried Dais, Deputy Chairman, Board of Management, Robert Bosch GmbH, Stuttgart,
Germany

Software in the vehicle is becoming a strategic product.

For vehicle manufacturers, software in the vehicle is evolving into a product of increased
strategic value. Electronics and software in the vehicle have become an essential impetus for
innovation—about 90% of innovations in the vehicle today are driven by electronics. On the
one hand, more and more of the classic vehicle functions are being realized by means of soft-
ware; on the other hand, entirely new opportunities are created by networking functions that
formerly used to be independent of each other. Consistent application of systems engineering
methods is a crucial factor for success in managing the vehicle as a complete system. This
book addresses this extensive topic with special emphasis on the major vehicle subsystems of
powertrain, chassis, and body.

Hans-Georg Frischkorn, Senior Vice President System Architecture and Integration, BMW
Group, Munich, Germany

AUTOMOTIVE SOFTWARE ENGINEERING

-vi-

From cost driver to competitive advantage.

Only a pioneer in software technology will gain technological advantage in the automotive
industry. Successful cooperation between engineers from various disciplines in systems engi-
neering, however, will be possible only if everyone shares the same background knowledge, the
same terminology, and an appropriate process model. This book uses real-life examples in an
impressive demonstration of software engineering essentials and applicable methods.

Dr.-Ing. Wolfgang Runge, Member, Board of Management, ZF Lenksysteme GmbH, Schwäbisch
Gmünd, Germany

Embedded systems are an automotive asset.

Embedded computer systems provide opportunities to distinguish transportation products and
services in the increasingly competitive automotive business. To interpret Moore’s Law, elec-
tronics continue to become more powerful while prices keep dropping. The resulting systems
complexity can be managed only with an in-depth understanding of the principles, practices,
methods, and tools discussed in this essential text.

I applaud Dr. Zurawka and Mr. Schäuffele of ETAS GmbH on their comprehensive work on very
important topics. This material must be understood by any organization wishing to participate
in the automotive business. As we continue to evolve our engineering processes, I look forward
to more assistance from the leaders in this fi eld.

Craig A. Brown, GM Powertrain Engineering, General Motors Corp., Detroit, MI

Advanced education—an opportunity and a challenge.

In the greater Stuttgart area, vehicle manufacturing is the preeminent industry, with development
centers of major vehicle manufacturers and suppliers offering a great many job opportunities. At
the University of Stuttgart, courses in software technology are part and parcel of the engineer-
ing program. This book offers students who are pursuing an academic degree in engineering
the opportunity to familiarize themselves with practical automotive industry applications. In
fact, the methods introduced in this book may even serve as models for applications in other
industries.

Prof. Dr.-Ing. Dr. h.c. Peter Göhner, Institute for Automation and Software Technology, Univer-
sity of Stuttgart, Germany

Vehicle development needs perspective based on integrated model.

As a natural consequence of ongoing advances in vehicle development, customer expectations
must be satisfi ed while ensuring compliance with government regulations. Increasingly, these
and related areas are the special domain of automotive electronic systems.

-vii-

In fact, most of the competitive advantage in vehicles today tends to lie in the electronic content
of the vehicle, the software component being a major part of these systems. The safe, reliable,
cost effective, and rapid development of automotive software-based systems are major issues for
vehicle and component manufacturers. Authors Schäuffele and Zurawka address the complex
issues of automotive electronic systems development from a perspective based on an integrated
model, offering students a paradigm for an integrated systems solution to vehicle embedded
software engineering. The book will serve as a foundation for integrated vehicle software devel-
opment practices as this technology continues to emerge and expand.

Prof. Mark Thompson, Electrical and Computer Engineering, Kettering University, Flint, MI

A new system science is needed.

As hardware development costs and manufacturing fi xed costs have been increasing dramati-
cally and as product requirements change faster and faster over a short period of time, embedded
system, subsystem and even IC designers have turned to software as a way of coping with these
problems. Yet this shift has caused an entire new set of challenges. Software programs have not
been born equal. Software for transportation systems for example has to satisfy hard constraints
that depend on the implementation platform thus making the very base of the traditional software
abstraction invalid. It is no wonder that more than 30% of severe malfunctions in automobiles
are originated by faulty software. We need a new system science to deal with the digital abstrac-
tion and the physical world in a unifi ed way. This book is the documentation of pioneering work
carried out by the authors in developing methodologies and tools for automotive software. The
importance of methodologies cannot be overemphasized as tool power can only be unleashed
by appropriate methodologies as I have learned over the years in my work in EDA. The unique
value of this book is in documenting the effort of conjugating methodologies and tools, a very
successful one indeed as the prosperity of ETAS witnesses.

Prof. Alberto Sangiovanni Vincentelli, The Edgar L. and Harold H. Buttner Chair of EECS,
University of California at Berkeley; Co-founder, Chief Technology Advisor and Member of the
Board of Directors, Cadence Design Systems, Berkeley, CA

THE ROLE OF SOFTWARE IN THE AUTOMOBILE

-xi-

ACKNOWLEDGMENTS

We would like to take this opportunity to express to all of our customers our appreciation for
the many years of successful and trusting cooperation. This book would not have been possible
without this valuable exchange of experiences.

We also wish to thank the BMW Group for its kind permission to include experiences gathered
while working on proprietary BMW projects—in the case of one author (Jörg Schäuffele), also
in his capacity as an employee at BMW. This includes the consideration of process defi nitions,
as well as recommendations for production projects at BMW. We are indebted to Hans-Georg
Frischkorn for his foreword to this book, and special thanks go to Heinz Merkle, Dr. Helmut
Hochschwarzer, Dr. Maximilian Fuchs, Prof. Dr. Dieter Nazareth, and all of their staff.

Many of the processes and methods presented in this book evolved over many years of trusting
cooperation with Robert Bosch GmbH. These processes and methods are now widely accepted,
and they keep recurring here and there throughout this book. We gratefully acknowledge the
valuable input from the capable staff in the Chassis Systems, Diesel Systems, and Gasoline
Systems Divisions, and the Research and Advanced Development Department of Robert Bosch
GmbH.

Sincere thanks also go to Dr. Siegfried Dais, Dr. Wolfgang Runge, Craig A. Brown, Prof. Dr. Peter
Göhner, Prof. Mark Thompson, and Prof. Alberto Sangiovanni Vincentelli for their words in the
foreword section titled “The Role of Software in the Automobile.”

We also are indebted to our many colleagues who, over these past years, have contributed to
this book in many different ways.

For the careful and critical task of copy-editing the manuscript, we express our sincere apprecia-
tion to Roland Jeutter, Dr. Michael Nicolaou, Dr. Oliver Schlüter, Dr. Kai Werther, and Hans-
Jörg Wolff.

Finally, for the careful English translation of the manuscript, sincere thanks go to Roger Carey.

Jörg Schäuffele
Thomas Zurawka

Stuttgart, Germany
June 2005

-ix-

PREFACE

After a history of more than 100 years, the automobile as a product continues to evolve at a very
fast pace. Since the early 1970s, its evolution has strongly been infl uenced by a steady increase
in onboard electronic systems and software in the vehicle—a trend that continues unabated.
As a consequence of this trend, vehicle development, production, and service are changing in
fundamental ways. Using software to implement functions in the vehicle provides developers
with new degrees of freedom and solutions to existing confl icts of objectives. The resulting
complexity can be managed only by using processes, methods, and tools that are appropriate
for vehicle-specifi c applications.

In the last few years, various methods and standards have been devised for the development of
software for in-vehicle electronic systems. These methods and standards are best described by
the collective term automotive software engineering.

Over time, a complex terminology has evolved in automotive software engineering. All of us
working in this fi eld are confronting these terms on a daily basis. However, it is no overstate-
ment to say that many of us are no longer sure of a clear or shared defi nition of many of these
terms. In fact, some of the terms are used in very different contexts where they clearly do not
mean one and the same thing. For example, the term “process” occurs not only in the context
of control engineering but is also used (to designate a very specifi c thing) in conjunction with
real-time systems—to say nothing of its general meaning in development, where it describes
development methods in a wider context. In this book, we defi ne essential terms and then use
them consistently as defi ned.

The chapters of this book focus on the processes, methods, and tools for the development of
software for electronic systems in the vehicle. The book also places emphasis on the interac-
tion between software development (as a professional discipline limiting itself to certain vehicle
components) and the all-embracing systems engineering (a fi eld that considers all vehicle com-
ponents). The development methods introduced—the so-called processes—take the form of
models, that is, they comprise an abstract and idealized refl ection of daily practice. Although
they may serve as guidelines for a variety of development projects, they will need to be evaluated
and adapted before they are applied to specifi c projects. We have taken great pains to provide
clear and unambiguous descriptions of processes and supporting methods and tools.

The wealth of information available on many aspects of our topic forced us to forgo detailed
discussion of some of them. Generally speaking, we have limited our discussion to aspects that
are relevant and specifi c to the automotive industry.

We certainly make no claim of having provided here the only proper or even a complete meth-
odological approach. As employees of ETAS, we are convinced, however, that tools and soft-
ware components by ETAS are ideally suited to support the processes and methods introduced
in this book.

AUTOMOTIVE SOFTWARE ENGINEERING

-x-

Practical Cases in Point

To a development team, a process serves only as a supporting structure. The introduction of any
given process will be successful only if every team member sees it as a benefi t. When extensive
practical tasks and their solutions can be made transparent to everyone in the team because every
activity associated with any given task can be traced, this is a benefi t. In this sense, this book
is not a theoretical textbook, far removed from the practical world. On the contrary, all of its
ideas, concepts, and suggestions are based on practical use cases that we present by means of
appropriate examples. Of course, these aspects are derived from the experience we gained over
the years while working closely with vehicle manufacturers and suppliers. Examples come from
production projects, including associated service considerations, as well as from research and
advanced development projects.

Readership of This Book

We would like to offer this book to all who work for manufacturers and suppliers in vehicle
development, production, and service and who encounter software in the vehicle during their
daily activities. We hope to be able to pass on some useful suggestions.

In addition, we hope this book will serve as a basic tool for the instruction of engineering students
and for the introduction of new employees to their respective workplaces. Basic familiarity
with open-loop and closed-loop control engineering, system theory, and software engineering,
although helpful, is not a prerequisite for being able to understand the topic of this book.

Readers may feel in some places that they could benefi t from more detailed discussion of one
topic or another. If you are one of these readers, please let us know. We welcome any and all
feedback and especially any suggestions for improvement, which we will carefully consider for
inclusion in subsequent reprintings.

-xiii-

TABLE OF CONTENTS

1. Introduction and Overview .. 1
 1.1 The Driver–Vehicle–Environment System ... 2
 1.1.1 Design and Method of Operation of Vehicle Electronic Systems 2
 1.1.2 Electronic Systems of the Vehicle and the Environment 5
 1.2 Overview of Vehicle Electronic Systems .. 6
 1.2.1 Electronic Systems of the Powertrain ... 8
 1.2.1.1 User Interfaces and Setpoint Generators 8
 1.2.1.2 Sensors and Actuators ... 9
 1.2.1.3 Software Functions .. 9
 1.2.1.4 Installation Space .. 10
 1.2.1.5 Variants and Scalability ... 10
 1.2.2 Electronic Systems of the Chassis .. 10
 1.2.2.1 User Interfaces and Setpoint Generators11
 1.2.2.2 Sensors and Actuators ..11
 1.2.2.3 Software Functions ...11
 1.2.2.4 Installation Space .. 12
 1.2.2.5 Variants and Scalability ... 12
 1.2.3 Body Electronics ... 12
 1.2.3.1 User Interfaces and Setpoint Generators 13
 1.2.3.2 Sensors and Actuators ... 13
 1.2.3.3 Software Functions .. 13
 1.2.3.4 Installation Space .. 14
 1.2.3.5 Variants and Scalability ... 14
 1.2.4 Multimedia Systems .. 14
 1.2.5 Distributed and Networked Electronic Systems 15
 1.2.6 Summary and Outlook .. 16
 1.3 Overview of the Logical System Architecture .. 17
 1.3.1 ECU and Function Networks of the Vehicle ... 17
 1.3.2 Logical System Architecture for Open-Loop/Closed-Loop Control
 and Monitoring Systems ... 18
 1.4 Processes in Vehicle Development ... 18
 1.4.1 Overview of Vehicle Development ... 19
 1.4.2 Overview of the Development of Electronic Systems 20
 1.4.2.1 Trend from Hardware to Software .. 21
 1.4.2.2 Cost .. 22
 1.4.2.3 Long Product Life Cycles.. 22
 1.4.2.4 Safety Requirements—High and Still Rising 23

AUTOMOTIVE SOFTWARE ENGINEERING

-xiv-

 1.4.3 Core Process for Electronic Systems and Software Development 23
 1.4.4 Support Processes for Electronic Systems and Software
 Development ... 26
 1.4.4.1 Customer/Supplier Relationships .. 27
 1.4.4.2 Simultaneous Engineering and Different Development
 Environments... 27
 1.4.5 Production and Service of Electronic Systems and Software 28
 1.5 Methods and Tools for the Development of Software for Electronic Systems 29
 1.5.1 Model-Based Development ... 29
 1.5.2 Integrated Quality Management .. 31
 1.5.2.1 Quality Assurance Guidelines ... 31
 1.5.2.2 Quality Control, Validation, and Verifi cation Measures 31
 1.5.3 Reducing the Development Risk ... 32
 1.5.3.1 Early Validation of Software Functions 32
 1.5.3.2 Reuse of Software Functions ... 33
 1.5.4 Standardization and Automation ... 34
 1.5.4.1 Standardization .. 34
 1.5.4.2 Automation .. 36
 1.5.5 Development Steps in the Vehicle ... 36

2. Essential System Basics .. 39
 2.1 Open-Loop and Closed-Loop Control Systems .. 39
 2.1.1 Modeling ... 40
 2.1.2 Block Diagrams ... 40
 2.2 Discrete Systems ... 44
 2.2.1 Time-Discrete Systems and Signals .. 46
 2.2.2 Value-Discrete Systems and Signals ... 47
 2.2.3 Time- and Value-Discrete Systems and Signals .. 48
 2.2.4 State Machines .. 48
 2.3 Embedded Systems ... 51
 2.3.1 Microcontroller Construction .. 52
 2.3.2 Memory Technologies ... 54
 2.3.2.1 Read/Write Memory .. 54
 2.3.2.2 Non-Erasable Read-Only Memory .. 55
 2.3.2.3 Reprogrammable Nonvolatile Memory 56
 2.3.3 Microcontroller Programming .. 57
 2.3.3.1 Program Version and Data Version .. 57
 2.3.3.2 Functional Principles of Microcontrollers 57
 2.3.3.3 Principal Microcontroller Operations .. 58
 2.3.3.4 Microprocessor Architecture and Instruction Set 59
 2.3.3.5 I/O Module Architecture ... 62
 2.4 Real-Time Systems ... 64
 2.4.1 Defi ning Tasks ... 64
 2.4.2 Defi ning Real-Time Requirements.. 66
 2.4.2.1 Instants of Task Activation and Task Deadline 66
 2.4.2.2 Hard and Soft Real-Time Requirements 68

TABLE OF CONTENTS

-xv-

 2.4.2.3 Defi ning Processes .. 69
 2.4.3 Task States ... 69
 2.4.3.1 Basic Task State Model (per OSEK-OS) 69
 2.4.3.2 Extended Task State Model (per OSEK-OS) 70
 2.4.3.3 Task State Model (per OSEK-TIME) .. 71
 2.4.4 Strategies for Processor Scheduling .. 71
 2.4.4.1 Processor Scheduling—In Sequential Order 72
 2.4.4.2 Processor Scheduling—By Priority... 72
 2.4.4.3 Processor Scheduling—Combined Sequential and Priority
 Strategy .. 73
 2.4.4.4 Processor Scheduling—Preemptive Strategy 74
 2.4.4.5 Processor Scheduling—Nonpreemptive Strategy 74
 2.4.4.6 Processor Scheduling—Event-Driven and Time-Controlled
 Strategies ... 75
 2.4.5 Organization of Real-Time Operating Systems .. 77
 2.4.6 Interaction Among Tasks ... 78
 2.4.6.1 Synchronization ... 78
 2.4.6.2 Cooperation ... 79
 2.4.6.3 Communication ... 82
 2.4.6.4 Interaction Among Tasks in the Logical System Architecture 83
 2.5 Distributed and Networked Systems... 84
 2.5.1 Logical and Technical System Architecture .. 87
 2.5.2 Defi ning Logical Communication Links ... 88
 2.5.2.1 Client/Server Model .. 88
 2.5.2.2 Producer/Consumer Model.. 89
 2.5.3 Defi ning the Technical Network Topology ... 90
 2.5.3.1 Star Topology .. 90
 2.5.3.2 Ring Topology ... 91
 2.5.3.3 Linear Topology .. 91
 2.5.4 Defi ning Messages .. 91
 2.5.4.1 Addressing ... 92
 2.5.4.2 Communications Matrix .. 93
 2.5.5 Organization of Communications and Network Management 94
 2.5.5.1 Communications (per OSEK-COM) ... 95
 2.5.5.2 Network Management (per OSEK-NM) 96
 2.5.6 Strategies for Bus Arbitration ... 97
 2.5.6.1 Bus Access Strategies—Centralized or Decentralized
 Implementation .. 98
 2.5.6.2 Bus Access Strategies—Controlled or Random 98
 2.5.6.3 Bus Access Strategies—Event-Driven and Time-Controlled 99
 2.6 System Reliability, Safety, Monitoring, and Diagnostics 99
 2.6.1 Basic Terms ... 100
 2.6.2 System Reliability and Availability ... 102
 2.6.2.1 Defi nition of Reliability Function R(t) and
 Failure Rate l(t)... 102
 2.6.2.2 Defi nition of Mean Time to Failure (MTTF) 105

AUTOMOTIVE SOFTWARE ENGINEERING

-xvi-

 2.6.2.3 Defi nition of Mean Time to Repair (MTTR)............................. 105
 2.6.2.4 Defi nition of Mean Availability ... 106
 2.6.3 System Safety .. 107
 2.6.3.1 Defi nition of Terms in Safety Technology 107
 2.6.3.2 Determining Risk .. 108
 2.6.4 System Monitoring and Diagnostics ..110
 2.6.4.1 Monitoring ..110
 2.6.4.2 Fault Recognition and Fault Diagnostics111
 2.6.4.3 Error Detection and Correction ..112
 2.6.4.4 Safety Logic ...113
 2.6.4.5 Functional Software Safety ..114
 2.6.5 Organization of a Monitoring System for Electronic Control Units115
 2.6.5.1 Microcontroller Monitoring Functions116
 2.6.5.2 Monitoring Setpoint Generators, Sensors, Actuators, and
 Control Functions ...117
 2.6.6 Organization of a Diagnostic System for Electronic Control Units118
 2.6.6.1 Offboard Diagnostic Functions ..118
 2.6.6.2 Onboard Diagnostic Functions ...118
 2.6.6.3 Diagnostics for Setpoint Generators and Sensors 120
 2.6.6.4 Diagnostics for Actuators .. 120
 2.6.6.5 Fault Memory Manager ... 120
 2.6.6.6 Offboard Diagnostic Communications 122
 2.6.6.7 Model-Based Fault Recognition .. 122
 2.7 Summary ... 123

3. Support Processes for Electronic Systems and Software Engineering 127
 3.1 Basic Defi nitions of System Theory ... 128
 3.2 Process Models and Standards .. 130
 3.3 Confi guration Management .. 133
 3.3.1 Product and Life Cycle ... 133
 3.3.2 Variants and Scalability ... 133
 3.3.3 Versions and Confi gurations ... 135
 3.4 Project Management ... 137
 3.4.1 Project Planning .. 139
 3.4.1.1 Quality Planning .. 140
 3.4.1.2 Cost Planning .. 140
 3.4.1.3 Project Scheduling ... 140
 3.4.1.4 Development Roles and Responsibilities 143
 3.4.2 Project Tracking and Risk Management ... 144
 3.5 Subcontractor Management .. 145
 3.5.1 System and Component Responsibilities .. 145
 3.5.2 Interfaces for Specifi cation and Integration .. 146
 3.5.3 Defi ning the Cross-Corporation Development Process 146
 3.6 Requirements Management .. 147
 3.6.1 Mining, Recording, and Interpreting User Requirements 149
 3.6.2 Tracking User Requirements ... 153

TABLE OF CONTENTS

-xvii-

 3.7 Quality Assurance ... 154
 3.7.1 Integration and Testing Procedures ... 154
 3.7.2 Software Quality Assurance Methods ... 155

4. Core Process for Electronic Systems and Software Engineering 157
 4.1 Requirements and Prerequisites .. 158
 4.1.1 Shared System and Component Responsibilities 158
 4.1.2 Coordination of Systems Engineering and Software Engineering 159
 4.1.3 Model-Based Software Development ... 161
 4.2 Basic Defi nitions and Notations ... 161
 4.2.1 Processes, Process Steps, and Artifacts ... 162
 4.2.2 Methods and Tools .. 163
 4.3 Analysis of User Requirements and Specifi cation of Logical System
 Architecture .. 164
 4.4 Analysis of Logical System Architecture and Specifi cation of Technical
 System Architecture .. 167
 4.4.1 Analysis and Specifi cation of Open-Loop/Closed-Loop Control
 Systems ... 171
 4.4.2 Analysis and Specifi cation of Real-Time Systems 173
 4.4.3 Analysis and Specifi cation of Distributed and Networked Systems 173
 4.4.4 Analysis and Specifi cation of Reliable and Safe Systems 173
 4.5 Analysis of Software Requirements and Specifi cation of Software
 Architecture .. 175
 4.5.1 Specifi cation of Software Components and Associated Interfaces 176
 4.5.1.1 Specifi cation of Onboard Interfaces .. 177
 4.5.1.2 Specifi cation of Offboard Interfaces ... 177
 4.5.2 Specifi cation of Software Layers .. 179
 4.5.3 Specifi cation of Operating States .. 179
 4.6 Specifi cation of Software Components... 181
 4.6.1 Specifi cation of Data Model ... 182
 4.6.2 Specifi cation of Behavioral Model ... 183
 4.6.2.1 Specifi cation of Data Flow .. 183
 4.6.2.2 Specifi cation of Control Flow ... 185
 4.6.3 Specifi cation of Real-Time Model .. 186
 4.6.3.1 State-Dependent Reactive Execution Model 187
 4.6.3.2 State-Independent Reactive Execution Model 188
 4.7 Design and Implementation of Software Components ... 188
 4.7.1 Consideration of Requested Nonfunctional Product Properties 189
 4.7.1.1 Differentiation Between Program Version and Data Version 189
 4.7.1.2 Limitation of Hardware Resources .. 190
 4.7.2 Design and Implementation of Data Model .. 191
 4.7.3 Design and Implementation of Behavioral Model 192
 4.7.4 Design and Implementation of Real-Time Model................................... 194
 4.8 Software Component Testing .. 194
 4.9 Integration of Software Components .. 194
 4.9.1 Generating Program Version and Data Version....................................... 196

AUTOMOTIVE SOFTWARE ENGINEERING

-xviii-

 4.9.2 Generating Description Files .. 197
 4.9.3 Generating Documentation ... 198
 4.10 Software Integration Testing ... 199
 4.11 Integration of System Components... 200
 4.11.1 Integration of Software and Hardware .. 201
 4.11.1.1 Download ... 201
 4.11.1.2 Flash Programming .. 202
 4.11.2 Integration of ECUs, Setpoint Generators, Sensors, and Actuators 202
 4.12 System Integration Test... 203
 4.13 Calibration .. 207
 4.14 System and Acceptance Test ... 208

5. Methods and Tools for Development ..211
 5.1 Offboard Interface Between Electronic Control Units and Tools 212
 5.2 Analysis of Logical System Architecture and Specifi cation of Technical
 System Architecture .. 213
 5.2.1 Analysis and Specifi cation of Open-Loop and Closed-Loop
 Control Systems .. 214
 5.2.2 Analysis and Specifi cation of Real-Time Systems 218
 5.2.2.1 Schedulability Analysis ... 220
 5.2.2.2 Verifying Schedulability by Means of Measurements 224
 5.2.2.3 Monitoring and Handling Deadline Violations in the
 Operating System .. 224
 5.2.3 Analysis and Specifi cation of Distributed and Networked Systems 225
 5.2.4 Analysis and Specifi cation of Reliable and Safe Systems 229
 5.2.4.1 Failure Rate Analysis and Calculation of Reliability
 Function ... 230
 5.2.4.2 System Safety and Reliability Analysis..................................... 234
 5.3 Specifi cation of Software Functions and Validation of Specifi cation 237
 5.3.1 Specifi cation of Software Architecture and Software Components 239
 5.3.1.1 Object-Based Software Architecture Modeling 240
 5.3.1.2 Module-Based Specifi cation of Interfaces to Real-Time
 Operating System .. 242
 5.3.1.3 Class-Based Specifi cation of Reusable Software
 Components ... 243
 5.3.2 Specifi cation of Data Model ... 244
 5.3.3 Specifi cation of Behavioral Model Using Block Diagrams 244
 5.3.3.1 Specifi cation of Arithmetical Functions 244
 5.3.3.2 Specifi cation of Boolean Functions ... 247
 5.3.4 Specifi cation of Behavioral Model Using Decision Tables 248
 5.3.5 Specifi cation of Behavioral Model Using State Machines 250
 5.3.5.1 Specifying Flat State Machines ... 251
 5.3.5.2 Specifying Transitions with Branching Instructions 254
 5.3.5.3 Specifying Hierarchy State Machines 255
 5.3.6 Specifi cation of Behavioral Model Using High-Level Languages 256
 5.3.7 Specifi cation of Real-Time Model .. 256

TABLE OF CONTENTS

-xix-

 5.3.8 Validating the Specifi cation Through Simulation and Rapid
 Prototyping .. 258
 5.3.8.1 Simulation .. 258
 5.3.8.2 Rapid Prototyping .. 259
 5.3.8.3 Horizontal and Vertical Prototypes .. 261
 5.3.8.4 Target System Identical Prototypes .. 266
 5.3.8.5 Throw-Away and Evolutionary Prototypes 266
 5.3.8.6 Reference Prototype for ECU Verifi cation............................. 266
 5.4 Design and Implementation of Software Functions ... 268
 5.4.1 Consideration of Requested Nonfunctional Product Properties 269
 5.4.1.1 Runtime Optimization Through Consideration of Varying
 Access Times to Different Memory Segments 269
 5.4.1.2 Runtime Optimization Through Distribution of Software
 Function to Several Tasks .. 270
 5.4.1.3 Resource Optimization Through Division into Online
 and Offl ine Calculations .. 271
 5.4.1.4 Resource Optimization Through Division into Onboard
 and Offboard Calculations ... 272
 5.4.1.5 Resource Optimization for Characteristic Curves and Maps 273
 5.4.2 Design and Implementation of Algorithms for Fixed-Point and
 Floating-Point Arithmetic ... 277
 5.4.2.1 Representation of Numbers in Digital Processors 278
 5.4.2.2 Rounding Errors in Integer Division 281
 5.4.2.3 Overfl ow and Underfl ow in Addition, Subtraction, and
 Multiplication ... 283
 5.4.2.4 Shift Operations ... 284
 5.4.2.5 Handling Overfl ows and Underfl ows 284
 5.4.2.6 Error Propagation with Algorithms in Fixed-Point
 Arithmetic .. 286
 5.4.2.7 Physical Interrelation and Fixed-Point Arithmetic 289
 5.4.2.8 Physical Model Level and Implementation Level 292
 5.4.2.9 Notes on Implementation in Fixed-Point Arithmetic 293
 5.4.2.10 Notes on Implementation in Floating-Point Arithmetic 296
 5.4.2.11 Modeling and Implementation Guidelines 296
 5.4.3 Design and Implementation of Software Architecture 297
 5.4.3.1 Platform and Application Software .. 297
 5.4.3.2 Standardization of Platform Software Components 297
 5.4.3.3 Confi guration of Standardized Software Components 299
 5.4.4 Design and Implementation of Data Model .. 301
 5.4.4.1 Defi nition of Memory Segment ... 302
 5.4.4.2 Setting Data Variants via Flash Programming 302
 5.4.4.3 Setting Data Variants via Confi guration Parameters 303
 5.4.4.4 Generation of Data Structures and Description Files 303
 5.4.5 Design and Implementation of Behavioral Model 303
 5.5 Integration and Testing of Software Functions ... 306
 5.5.1 Software-in-the-Loop Simulations .. 309

AUTOMOTIVE SOFTWARE ENGINEERING

-xx-

 5.5.2 Laboratory Vehicles and Test Benches .. 310
 5.5.2.1 Test Environment for Standalone ECUs311
 5.5.2.2 Test Environment for ECUs, Setpoint Generators, Sensors,
 and Actuators ... 313
 5.5.2.3 Test Environment for ECU Network ... 315
 5.5.2.4 Test Bench ... 316
 5.5.3 Experimental, Prototype, and Production Vehicles 317
 5.5.4 Design and Automation of Experiments ... 318
 5.6 Calibration of Software Functions .. 319
 5.6.1 Offl ine and Online Calibration Procedures ... 321
 5.6.2 Software Update Through Flash Programming 321
 5.6.3 Synchronous Measuring of Microcontroller and Instrumentation
 Signals ... 323
 5.6.4 Downloading and Evaluating Onboard Diagnostic Data 324
 5.6.5 Offl ine Calibration of Parameters ... 325
 5.6.6 Online Calibration of Parameters .. 326
 5.6.7 Classifi cation of Offboard Interfaces for Online Calibration 327
 5.6.7.1 Serial Preproduction Interface with Internal CAL-RAM
 (Method 1) ... 328
 5.6.7.2 Serial Development Interface with Internal CAL-RAM
 (Method 2) ... 329
 5.6.7.3 Parallel Development Interface with Internal CAL-RAM
 (Method 3) ... 330
 5.6.7.4 Serial Preproduction Interface with Additional CAL-RAM
 (Method 4) ... 330
 5.6.7.5 Serial Development Interface withAdditional CAL-RAM
 (Method 5) ... 331
 5.6.7.6 Parallel Development Interface withAdditional CAL-RAM
 (Method 6) ... 332
 5.6.7.7 Communications Protocols for Calibration Tools and
 Microcontrollers .. 332
 5.6.8 CAL-RAM Management .. 333
 5.6.8.1 CAL-RAM Management with Suffi cient Memory Resources .. 333
 5.6.8.2 CAL-RAM Management with Limited Memory Resources 334
 5.6.9 Parameter and Data Version Management .. 335
 5.6.9.1 Binary Program and Data Version File Calibration 336
 5.6.9.2 Model or Source Code Calibration and Optimization 337
 5.6.10 Design and Automation of Experiments ... 337

6. Methods and Tools for Production and Service ... 339
 6.1 Offboard Diagnostics .. 339
 6.2 Parameterization of Software Functions ... 341
 6.3 Software Update Through Flash Programming .. 343
 6.3.1 Erasing and Programming Flash Memory .. 343
 6.3.2 Flash Programming Through the Offboard Diagnostic Interface 344
 6.3.3 Security Requirements .. 344

TABLE OF CONTENTS

-xxi-

 6.3.4 Availability Requirements ... 347
 6.3.5 Boot Block Shifting and Flash Programming ... 349
 6.4 Startup and Testing of Electronic Systems ... 350

7. Summary and Outlook ... 351

References ... 355

Illustration Credits ... 363

List of Acronyms .. 365

Index .. 369

About the Authors .. 385

-1-

CHAPTER ONE

INTRODUCTION AND OVERVIEW

The fulfi llment of increasing customer demands and stringent legal requirements with regard
to reducing fuel consumption and harmful emissions, and increasing driving safety and driver/
passenger comfort, is inextricably linked to the advancement of electronics in modern vehicles.

As a result, the automobile has become today’s most technically complex consumer article.
However, note that the requirements for automotive electronics differ substantially from those
for other areas of consumer goods electronics. The most prominent requirements for automo-
tive electronics are as follows:

• Deployment under frequently harsh environmental conditions (e.g., temperature range,
humidity, vibration) or stringent demands on electromagnetic compatibility (EMC)

• Stringent reliability and availability requirements

• Stringent operational safety demands

• Comparatively long product life cycles

Although the requirements for electronic components for vehicles are stringent, developers still
face high pressure for low cost, shortened development cycles, and a great number of model
variants. Regardless, these requirements must be fulfi lled for products that can be manufactured
in high volume.

To bring a development project in onboard automotive electronics to a successful conclusion,
project leaders must manage the increasing complexity of their products while maintaining a
consistent quality and managing both risk and cost.

A basic understanding of the requirements for and trends in vehicle engineering is essential for
anyone who wants to develop suitable methods for development, production, and service of
electronic systems for vehicles and who wants to support these by praxis-oriented standards and
tools. This introductory chapter provides an analysis of the current state of the art, as background
for a description of future perspectives and the associated challenges.

Following an overview of automotive electronic systems and their functions, this chapter intro-
duces the methods used to develop electronic systems and software for automotive applications.
The chapter concludes with an introduction to model-based engineering methods.

The remaining chapters of this book feature detailed discussions of essential system basics
(Chapter 2), processes (Chapters 3 and 4), and methods and tools (Chapter 5) for the development

AUTOMOTIVE SOFTWARE ENGINEERING

-2-

of software for automotive electronics, as well as the production and service of software for
automotive electronics (Chapter 6). Throughout the book, special emphasis is given to vehicle
subsystems such as powertrain, chassis, and vehicle body. The book introduces the fi eld of
multimedia systems but does not cover it in detail. Chapter 7 provides a summary review of
the topics discussed throughout the book. It also outlines the future prospects and challenges
for the development of automotive electronics.

1.1 The Driver–Vehicle–Environment System

The objective of any development project is the completion of a new, or the improvement of an
existing, function for the vehicle. In the context of this book, the term function denotes all of
the functional features of the vehicle. These functions ultimately provide a value or benefi t to
the user (i.e., the operator of the vehicle) that the latter is able to experience directly or that he
or she can perceive only indirectly.

The question whether the technical implementation of a given functional feature involves a
mechanical, hydraulic, electrical, or electronic system onboard the vehicle is of minor importance
from the user’s point of view.

However, from the point of view of the engineer who is implementing the functions, the use
of electronic components combined with mechanical, electrical, or hydraulic systems provides
numerous benefi ts, especially with regard to attainable reliability, weight, required installation
space, and cost. For all of these reasons, electronics has become the key technology in the
implementation of many innovations in automotive construction. In fact, nearly all functions
of the vehicle today are electronically controlled or monitored.

1.1.1 Design and Method of Operation of Vehicle Electronic Systems

The following provides a closer look at the design and method of operation of electronic systems
in the vehicle, using an electrohydraulic braking system as an example.

Example: Confi guration of Sensotronic brake control [1]

Figure 1-1 shows the system confi guration of the Bosch Sensotronic brake control (SBC) [1].
The electrohydraulic braking system combines the functions of brake booster, antilock brak-
ing system (ABS), and electronic stability program (ESP).

The driver’s mechanical actuation of the brake pedal is registered in the brake pedal unit
and is transmitted electrically to the so-called electronic control unit (ECU). The ECU
uses this setpoint and additional signals from various sensors, such as the steering angle
signal or wheel rotational speed signal, to calculate output variables that again are elec-
tronically transmitted to the hydraulic modulator. There they are converted by means of
brake-pressure modulation to variables for the wheel brakes. The wheel brakes infl uence
the vehicle drivability, the so-called controlled system or plant. Thus, the wheel brakes are
referred to as actuators.

INTRODUCTION Ah'D OVERVIEW

Fig. 1-1. Diagvam of the Bosch Sensotvonic brake contvol (SBC). (Ref [l])

Because the ECU communicates with other ECUs onboard the vehicle via a data bus (e.g., the
CAN bus [2]), functions that go beyond those mentioned so far and that involve more than a
single ECU also can be implemented. One example of this kind of function is the t~action
control system (TCS), which represents a mediating function between engine management
and the braking system.

The system configuration of the electrohydraulic braking system exemplifies the typical configur-
ation of all electronic control (open-loop/closed-loop) and monitoring systems of the vehicle.
Generally, the following components are involved in such a system: setpoint generators, sensors,
actuators, ECUs, and the controlled system, the so-calledplant. The networked interconnection
of the involved ECUs facilitates the exchange of data.

The driver and the environment-considered components of the higher-level driver-vehicle-
environment system-are able to influence the way the vehicle behaves.

Seen alone, an ECU merely represents a means to an end, because it is-as an isolated com-
ponent-of no apparent value to the vehicle user. Only a complete system comprising ECUs,

-3-

AUTOMOTIVE SOFTWARE ENGINEERING

-4-

setpoint generators, sensors, and actuators will infl uence and monitor the plant (i.e., respond
to the actions or requests of the user). However, in many situations, and especially when, as is
frequently the case, so-called embedded systems are at work, the electronic implementation of
functions is not even visible to the vehicle user.

As shown in Fig. 1-2, control and monitoring systems onboard the vehicle can be represented as
a structured block diagram. Components are shown as blocks, with arrows depicting the signal
fl ow between the blocks. For an introduction to the fundamentals and terminology of control
and monitoring technology, see Sections 2.1 and 2.6 in Chapter 2.

Fig. 1-2. Block diagram of control and monitoring systems.

Setpoint
Generators

Open-/Closed-
Loop Control,

Monitoring

As shown in Fig. 1-2, signal fl ow may exist among a number of the components (i.e., the driver,
vehicle, and environment). In this fi gure, the driver serves as a placeholder for all users of a
particular vehicle function (i.e., for driver and passengers).

The environment also encompasses other vehicles, as well as electronic systems located in
proximity to the vehicle. These include tools, such as diagnostic test equipment in the service
shop, that are connected to the electronic systems onboard the vehicle (Fig. 1-1).

New technologies aiding the exchange of information between driver and vehicle, driver and
environment, and vehicle and environment facilitate a plethora of innovative functions—an
example would be networking beyond the physical periphery of the vehicle by means of wireless
communication systems. The idea of networking beyond the physical periphery of the vehicle
enables a new class of systems (e.g., driver assistance systems). During the past few years, the
area of multimedia systems in particular has seen the introduction of many functions that became
feasible only through vehicle–environment networking. One example is the dynamic navigation

Introduction and Overview

-5-

feature, which considers environment-specifi c information (e.g., traffi c gridlock reports) in the
process of route computation.

Another area that has benefi tted from many recent innovations is the area of interfaces (i.e., the
interaction—through so-called user interfaces—between the driver and/or passengers and the
vehicle). For example, operating and display systems today may be based on voice control
concepts.

In light of the foregoing, discussions of the term networking throughout this book will not be
limited to only the electronic functions of the vehicle, but will include electronic functions or
systems that interact with the driver and vehicle from outside the physical boundaries of that
vehicle. Therefore, it is helpful at this point of the discussion to introduce and defi ne the terms
onboard and offboard, and online and offl ine.

1.1.2 Electronic Systems of the Vehicle and the Environment

Throughout subsequent chapters, communications among electronic systems in the vehicle is
termed onboard communications. By contrast, communications linking the onboard systems
of the vehicle and systems in the environment is called offboard communications. A similar
differentiation between onboard and offboard interfaces is made when referring to the interfaces
of the electronic systems in the vehicle. Figure 1-3 provides an overview.

Fig. 1-3. Electronic systems of the vehicle and the environment.

Communications

Control Units

Communications

Environment

Electronic

Offboard

Onboard

AUTOMOTIVE SOFTWARE ENGINEERING

-6-

With regard to the functions performed by the electronic systems of the vehicle and those
handled by systems in the environment, a differentiation is made between onboard functions
and offboard functions, respectively. The division of functions into subfunctions and the dis-
tributed implementation of subfunctions by means of both onboard and offboard systems are
also conceivable.

Another differentiation characteristic is the point in time at which a given function is executed
by an offboard system, relative to the point in time at which a function is executed by an onboard
system. In this case, a differentiation is made between the synchronized execution (also referred
to as online execution) and the unsynchronized execution of functions (offl ine execution).

For several years, the onboard/offboard and online/offl ine differentiation criteria have been
used in the context of diagnostic systems for vehicle functions, giving rise to the distinction
between onboard and offboard diagnostics, a term that by now surely is familiar to many read-
ers. Design methods and tools dedicated to the development of automotive electronic systems
are designated in a similar fashion.

1.2 Overview of Vehicle Electronic Systems

By way of introduction, the various electronic systems onboard a vehicle are presented in an
overview. Vehicles typically contain more than one ECU for the controlling and monitoring
of various subsystems. In the early days of the deployment of electronics in the vehicle, the
operation of these ECUs was largely autonomous. With no interaction among ECUs, it was
relatively easy to assign functions associated with a specifi c vehicle subsystem, such as power-
train, chassis, body, and multimedia, to the ECU responsible for controlling and monitoring that
subsystem (Fig. 1-4).

Fig. 1-4. Assignment of ECUs to vehicle subsystems.

Control Unit

Subsystem Subsystem

Subsystem

Subsystem

Subsystem

Passive Safety

Powertrain

Chassis

Body

Multimedia

Introduction and Overview

-7-

Thus, the classic systems of engine management and transmission control are assigned to the
powertrain, and the antilock braking system (ABS) to the chassis subsystem, whereas the heating
and air conditioning system, central locking system, and seat and mirror adjustment are part of the
comfort and convenience subsystem belonging to the body subsystem. Contributing to increased
vehicle occupant safety in the event of an accident, the airbag and restraint systems belong to
the passive safety system, whereas radio and telephone are part of the multimedia system.

The continuing quantum leaps in hardware technology and performance facilitate the implemen-
tation of many increasingly powerful vehicle functions by means of software. These functions
are referred to as software functions.

The introduction of powerful bus systems, such as the CAN (Controller Area Network) bus
[2] in the early1990s, initiated the second phase of ECU technology. Networking of electronic
systems was now possible and with it, the implementation of new higher-level software func-
tions, as well as the associated cost savings. For example, multiple systems could use signals
from individual sensors without the need for costly wiring connections.

Whenever higher-level software functions infl uence any functions of a single subsystem, this
implementation approach is also known as an integrated powertrain, integrated chassis, inte-
grated body, or integrated safety management. In distributed and networked systems, however,
it is often no longer possible to assign software functions to a single ECU. As a result, software
functions are divided into subfunctions for implementation in several ECUs.

Whenever higher-level software functions infl uence functions of several subsystems, they can
no longer be assigned to one specifi c subsystem. As discussed in the context of the introduc-
tory example, the traction control system (TCS) comprises a set of functions that affects both
powertrain and chassis. Many other driver assistance systems, such as distance-sensing adaptive
cruise control, also belong to this category. Functions working across subsystem boundaries
exist in the areas of comfort systems and passive safety systems. One example of such a set
of functions is the vehicle access system that includes the locking and theft deterrent systems.
These examples underscore the fact that transitions among subsystems are at best fl uid if seen
from a functional standpoint.

Multiple access to and use of sensor signals by various ECUs can be handled in most instances
without diffi culty. As soon as various ECUs (or better, several software functions) compete for
access to the same actuators, however, the developer is presented with serious challenges, one
of which is that of fi nding a suitable method of specifi cation. Another challenge is the defi nition
of interfaces for accurate data and request exchange among the various functions and systems,
so that, for example, commands sent to various actuators can be clearly coordinated. For a more
detailed discussion of this and related topics, please consult CARTRONIC [3].

Following an overview of the electronic systems assisting the powertrain, chassis, and body
groups, this section also describes multimedia systems. Although these systems are not given
wide exposure within the context of this book, an overview is nevertheless helpful for the pur-
poses of identifying multimedia boundaries vis-à-vis those of the other application areas. Finally,
several examples of functions are discussed, whose implementation is possible only after the
electronic systems are communicating within a network.

AUTOMOTIVE SOFTWARE ENGINEERING

-8-

In this section, systems are classifi ed according to typical features, such as the following:

• User interfaces and setpoint generators
• Sensors and actuators
• Software functions
• Installation space
• Model variants and scalability

Current and foreseeable trends are considered and referenced in the discussion.

In many cases, the technical implementation of functions must consider a number of legal regula-
tions. For example, any development in powertrain—in particular, the development of software
functions for engine ECUs—often is driven by guidelines and laws concerning fuel economy
and exhaust emissions. By contrast, the development of chassis and body group functions is
driven mostly by safety and comfort requirements.

This section limits the discussion to an overview of automotive electronic systems and their
functions. Individual aspects of electronic function and system development will be examined
more closely in subsequent chapters, using appropriate examples. For a comprehensive treat-
ment of these topics, please refer to the extensive specialist literature (e.g., [4]).

1.2.1 Electronic Systems of the Powertrain

The powertrain of a vehicle encompasses the following units and components:

• Drive group (i.e., internal combustion engine, electric motor, hybrid drive, or fuel cell)
• Clutch and manual transmission, or automatic transmission
• Transfer case, front- and/or rear-axle drive
• Driveshafts and propshafts
• Engine auxiliary systems, such as the starter and alternator

The electronic systems of the driveshaft include the following:

• Engine ECUs
• Transmission ECUs

A variety of control and monitoring functions for engine, transmission, and auxiliary units use
as input variables driver requests and a number of sensor signals and thus are able to control
the actuators in the powertrain.

1.2.1.1 User Interfaces and Setpoint Generators

The electronic powertrain control functions have a relatively small number of user interfaces.
Other than by starting the engine and shutting it off, the driver can directly transmit his or her
requests only by changing the position of the accelerator pedal. A manual transmission provides
two additional user interfaces, the clutch pedal and the shift lever; an automatic transmission
merely offers one, the drive selector. Additional user interfaces may be required to meet special
needs, such as mode selector switches for automatic transmissions.

Introduction and Overview

-9-

1.2.1.2 Sensors and Actuators

A relatively large contingent of sensors is required, for example, to capture attitude and position,
rotational speeds, pressures, temperatures, lambda values, or engine-knock intensity. This is
complemented by a similarly large number of actuators handling ignition, injection, throttle
valve, clutches, or valves. This results in a large number of ECU interfaces. Figure 1-5
shows the interfaces of an engine ECU. Onboard communications are handled primarily via the
CAN bus [2]. For dedicated offboard communication with the diagnostic tester, the K-Line [5]
is being progressively replaced by the CAN bus [2].

Fig. 1-5. Interfaces of a gasoline-engine ECU. (Ref. [6])

1.2.1.3 Software Functions

An engine ECU handles a considerable number of software functions; advancing technology has
pushed the envelope into the three-digit range. The objective is to develop powerful software
functions that work together internally but also feature numerous interfaces to functions in the
chassis or body groups (e.g., to the traction control system or the air conditioning system).

Many software functions typically feature a large number of parameters, such as characteristic
values, characteristic curves, and characteristic maps. Developers need these parameters to
adapt the software functions not only to the respective engine, transmission, or vehicle variant
but to the various operating points.

AUTOMOTIVE SOFTWARE ENGINEERING

-10-

1.2.1.4 Installation Space

Because of the numerous interfaces with sensors and actuators that are located primarily on the
engine or transmission, these ECUs often are installed close to the components they control,
and the operating conditions for these ECUs tend to be harsh. In many cases, these units are
exposed to an extended temperature range, humidity, and vibration.

1.2.1.5 Variants and Scalability

There are hardly any scalability requirements to be met. However, the automotive customer can
normally select from engine and transmission variants.

For the preceding reasons, the powertrain typically features a small number of powerful ECUs
that handle a great number of software functions. One mandatory component is always the
engine ECU and, in the presence of an automatic transmission, an additional transmission ECU
[4, 6–8].

1.2.2 Electronic Systems of the Chassis

The chassis encompasses the following vehicle components:

• Axles and wheels
• Brakes
• Suspension and shock absorbers
• Steering systems

As a result, the electronic chassis systems include, for example:

• Antilock braking system (ABS)
• Electronic braking-force distribution
• Electronic stability program (ESP)
• Parking brake
• Tire pressure monitoring system
• Pneumatic suspension
• Roll stabilization
• Power steering
• Active steering
• Electrohydraulic or electromechanical brake
• Brake-by-wire and steer-by-wire systems

For a driver, a functional failure of the braking system means either that there is no response
when he or she steps on the brake pedal, or that the car will brake without the application of
the brake pedal. If a functional steering system failure occurs, either a driver will experience
this as no response to his or her turning the steering wheel, or the car will swerve without the
driver turning the steering wheel. Depending on the circumstance in which any of these four
failures occurs, a driver may completely lose control of the vehicle. In other words, the risk
of accidents with casualties and personal injuries is very high when either of the two systems

Introduction and Overview

-11-

fails. For these reasons, the safety requirements for these systems are very stringent. To meet
the requirements for safety-relevant systems, developers follow stringent design principles, such
as applying monitoring and safety concepts, fi nding ways to keep the number of interfaces to
other systems low, and modularization. In fact, the overall design of the electronics in modern
vehicles is often very much infl uenced by the design of these safety-relevant systems.

1.2.2.1 User Interfaces and Setpoint Generators

Similar to the electronic functions in the powertrain, those in the chassis group also have few
user interfaces. Drivers generate setpoints via three user interfaces: the brake pedal, the steering
wheel, and the parking brake. Confi rmation that the driver has activated the parking brake is
provided by means of another user interface, the indicator lamp in the instrument cluster. Some
chassis systems, such as the air suspension, have additional user interfaces (control elements)
for activation/deactivation.

1.2.2.2 Sensors and Actuators

The wheel rotational speeds are among the major input variables for the ABS ECU. The wheel
brakes comprise the actuators. The ESP ECU uses additional input variables, such as the steering-
angle and yaw-angle sensor signals [1].

Compared with the electronic powertrain systems or the engine ECU, there are fewer sensors
and actuators. Figure 1-6 shows the interfaces of an ABS ECU [1].

Fig. 1-6. Interfaces of an ABS ECU. (Ref. [1])

Setpoint

Generators

1.2.2.3 Software Functions

The chassis group features a number of ECUs for which an extensive array of functions must
be implemented. These functions cooperate internally but feature numerous interfaces with

AUTOMOTIVE SOFTWARE ENGINEERING

-12-

miscellaneous software functions in the chassis, powertrain, or body groups. It is foreseeable
that some of the current hydraulic or mechanical implementations of certain functions will be
complemented by means of software functions.

1.2.2.4 Installation Space

Due to the required high degree of safety and because of the wide spatial distribution throughout
the chassis of the sensor and actuator interfaces, the number of ECUs is higher in the chassis
group than it is in the powertrain.

Electronic control units in the chassis group include an ABS ECU, an ABS/TCS ECU, or an
ESP ECU, as well as the mostly optional ECUs for steering, suspension, and damping functions
or tire pressure monitoring. These ECUs are exposed to similar rough conditions as those of
the powertrain [1].

1.2.2.5 Variants and Scalability

The standard equipment of the chassis components varies, depending on the markets in which
vehicles are to be sold. In addition, a number of functions are offered as special options or
optional packages. Therefore, scalability requirements frequently must be met. In many markets,
vehicle buyers can select and combine various optional extras.

1.2.3 Body Electronics

Electronic body systems frequently are divided into the passive safety group and the comfort/
convenience group.

The comfort and convenience group includes the vehicle access system, including the central
locking system, radio-controlled key, and theft alarm system, as well as systems for control of
the following:

• Power window units and tailgate
• Sliding/pop-up roof
• Convertible top
• Wipers and rain sensor
• Mirror adjuster, dimmer, and heater
• Seat adjustment and heater
• Steering column adjustment
• Interior heating and air conditioning
• Interior lighting
• Vehicle headlamp control and headlamp cleaning system
• Parking aid features

The phrase passive safety systems applies to all onboard systems that contribute to increased
safety and accident protection for the occupants of the vehicle. These include the following:

Introduction and Overview

-13-

• Restraint systems with functions such as seat belt tighteners
• Airbag ECU, including seat-occupant detection
• Extendable rollover bars

By contrast, the phrase active safety systems applies to all onboard systems that increase the safety
of the occupants of the vehicle during travel and that contribute to the control of critical driv-
ing situations and thus to accident prevention. The ABS and ESP belong to this system group.

1.2.3.1 User Interfaces and Setpoint Generators

Comfort and convenience systems feature a multitude of user interfaces. Driver and passengers
can use a large complement of control elements, such as switches, pushbuttons, sliders, or rotary
controls to adjust to their liking the temperature of their seat heater, the height of their seat,
the angle of the steering wheel, and so forth. In other words, users frequently control setpoint
generators that send a request to a system (and thus are somewhat aware of interfacing with that
system) and directly experience the response of the system to this request. Consequently, user
awareness of convenience functions is very high.

By contrast, there are practically no user interfaces for the passive safety systems. Therefore, a
user will perceive and appreciate the existence of these functions only if a high level of vehicle
safety is important to him or her.

1.2.3.2 Sensors and Actuators

The inputs for the various body group functions comprise specifi ed nominal values and a vari-
ety of sensor signals. In many instances, the actuators are implemented by means of electrical
drives.

1.2.3.3 Software Functions

The largest number of independent software functions exists in the body of the vehicle. In a
manner typical of autonomous applications, ECUs are equipped with microcontrollers featuring
limited computing power and a relatively small number of input/output interfaces. In this way,
independent software functions can be implemented in separate ECUs. As a natural consequence
of this type of implementation, the required number of ECUs is relatively large.

Here, too, networking the various ECUs facilitates the implementation of software functions
that transcend the limits of ECUs and subsystems. The centralized access and locking system
is a typical example.

The number of calibration parameters is smaller for body electronics functions than that of the
software functions assisting the powertrain or chassis.

AUTOMOTIVE SOFTWARE ENGINEERING

-14-

1.2.3.4 Installation Space

The various ECUs are widely distributed throughout the vehicle; in many cases, they perform
a function directly at their installed locations. Actuators and sensors in vehicle doors, exterior
mirrors, and roof, rear, and front-end areas, as well as in the vehicle interior, must be connected
to their respective ECUs. In many cases, the installation space for ECUs and wiring harnesses
is limited (e.g., inside doors or seats). In some vehicle models, several sensors, actuators, and
ECUs compete for the same installation space. For example, sensors and actuators that service
airbag and convenience functions must be accommodated in doors, seats, or the roof. Obvi-
ously, these “geometric” constraints exert a great infl uence on electronic systems architecture.
Intelligent sensors and actuators combined with ECUs with limited functionality often are used
to address problems of limited space.

1.2.3.5 Variants and Scalability

The electronic systems architecture also is infl uenced by the different body variants of a given
vehicle series.

Example: Infl uence of body variants on electronic systems architecture

Some equipment options are mutually exclusive. A convertible does not require a sliding
roof and thus does not need an ECU for that function. Likewise, there is no convertible top
on a sedan and at least no need for an ECU controlling an automatic roof up/down function.
Similar associations exist between station wagons and coupes. This is another reason for the
existence of many ECUs providing a limited complement of functions (modularization).

In addition to the demands arising from different vehicle variants, scalability requirements
also must be satisfi ed. The vehicle buyer has the option to select from a large number of
body function extras.

1.2.4 Multimedia Systems

The group of multimedia systems includes the following:

• Tuners and antennas
• CD changers
• Amplifi ers and audio systems
• Video systems
• Navigation systems
• Telephone
• Voice control
• Internet access

The added value provided by many functions of these identifi ed systems is created only through
suitable networking with the remaining electronic systems (e.g., through voice control or visu-
alization concepts for comfort and convenience functions).

Introduction and Overview

-15-

1.2.5 Distributed and Networked Electronic Systems

The networking of ECUs facilitates the implementation of comprehensive software functions.
The following two examples will underscore this fact.

Example: Adaptive cruise control system

The adaptive cruise control (ACC) system is an advanced development of the classic cruise
control. The host vehicle is equipped with a forward-looking sensor (e.g., a radar sensor)
that captures the distance, relative speed, and relative position of any vehicle directly ahead
of it. The ACC ECU uses this sensor input to calculate and maintain a constant safe distance
from the vehicle ahead of it. To achieve and maintain a safe distance, the ECU controls
the longitudinal dynamics of the host vehicle by deliberate acceleration and deceleration,
intervening with the engine ECU to infl uence engine torque, with the transmission ECU to
infl uence the transmission, and with the ESP ECU to act on the braking torque. For all of
these reasons, ACC comprises a function affecting both powertrain and chassis components
(Fig. 1-7).

Fig. 1-7. The ACC ECU and ACC system.

Hierarchy Level 1

Hierarchy Level 2

Radar
Sensor

Setpoint
Generators

Setpoint
Generators

Setpoint
Generators

Example: Display system for information, warnings, and fault messages

The display of information, warnings, and fault messages in the instrument cluster is the
result of data sent by various ECUs. For example, the task of the instrument cluster unit
software is not only to display information, warnings, and fault messages inbound from all
ECUs onboard the vehicle, but to assign the required priorities. In this process, it evaluates
the messages received from all ECUs before the information, warnings, and fault messages
are displayed in accordance with a defi ned strategy (Fig. 1-8).

AUTOMOTIVE SOFTWARE ENGINEERING

-16-

1.2.6 Summary and Outlook

The technical implementation of electronic systems continues to be infl uenced to a large degree
by the steadily improving performance of microcontrollers and by the fact that they are frequently
networked.

During the past decades, not only the per-vehicle count of ECUs has increased, but the number
of functions per ECU has also increased at a steady rate (Fig. 1-9).

Fig. 1-8. Display system for information, warnings, and fault messages.

Hierarchy Level 1

Hierarchy Level 2

Setpoint
Generators

Setpoint
Generators

Setpoint
Generators

Display
Field

Instrument
Cluster

Fig. 1-9. Functions and ECUs per vehicle. (Ref. [9])

Introduction and Overview

-17-

A steady rise in the number of functions per vehicle also is anticipated in the future. As men-
tioned, many new functions become possible only through the networking of the vehicle and
environment. To a large degree, traditional functions of the vehicle that heretofore were handled
by mechanical or hydraulic systems will at least be implemented partially by means of software
functions.

It also is foreseeable that the trend toward further additions to the standard equipment across all
vehicle classes will continue, with luxury-class vehicles providing the impetus. However, the
attendant rise in cost, as well as limitations to installation space in smaller vehicles, will require
a reduction in the number of ECUs. For this reason, the number of ECUs may be expected to
drop, or at least there will be no further increase in that number. For example, a variety of soft-
ware functions currently implemented in separate ECUs may be implemented in the future in a
single ECU, if available installation space is limited. This is another reason for the continuing
increase in the number of software functions per ECU.

1.3 Overview of the Logical System Architecture

When electronic components were fi rst used in vehicles, the typical ECU schematic resembled
the one shown in Fig. 1-4. This representation was not problematic, because the individual
systems largely worked autonomously, and function assignments therefore were unambiguous.
Under those circumstances, the ECU view was identical to the function view.

1.3.1 ECU and Function Networks of the Vehicle

The adaptive cruise control (ACC) system introduced as an example in the preceding section,
however, underscores that the approach to design and development of such networked systems
must be different. The development of distributed and networked software functions requires
two distinct levels of representation or views of the system. The networked and distributed
functions are represented as an abstract view of the system. The various networked ECUs in
the vehicle are represented as a concrete view of the system (Fig. 1-10) [10].

Fig. 1-10. Function and ECU networks of the vehicle. (Ref. [10])

Vehicle Functions

ECUs Onboard the Vehicle

Control Unit

AUTOMOTIVE SOFTWARE ENGINEERING

-18-

Based on the preceding information, it is feasible to assign the functions to specifi c subsystems
throughout the vehicle, as shown in Fig. 1-11.

Fig. 1-11. Assignment of vehicle functions to vehicle subsystems.

Subsystem Subsystem

Subsystem

Subsystem

Subsystem

Passive Safety

Electronic Systems

Powertrain

Chassis

Body Comfort

Multimedia

1.3.2 Logical System Architecture for Open-Loop/Closed-Loop
Control and Monitoring Systems

The differentiation between abstract and concrete views can be expanded to include all com-
ponents of the vehicle, as well as the driver and the environment. In the following discussion,
the abstract view is termed logical system architecture, whereas the concrete view of a given
implementation is called technical system architecture. To facilitate identifi cation throughout
this book, the logical system architecture is represented with gray background, and the techni-
cal system architecture is represented with white background. For example, the logical system
architecture for open-loop/closed-loop control and monitoring systems is depicted in Fig. 1-12;
a diagram of the technical system architecture appears in Fig. 1-2.

1.4 Processes in Vehicle Development

The increasing number of functions in a given vehicle, their networking, and high and steadily
rising requirements for reliability, availability, and safety, together with variant and scalability
requirements, all result in a level of complexity that can hardly be managed without a defi ned
development process.

Introduction and Overview

-19-

One procedural approach to the mastery of complexity that has been in use in the automotive
industry for a long time reads as follows:

Divide et Impera!
(Divide and Conquer!)

1.4.1 Overview of Vehicle Development

In vehicle development, the expression “Divide et Impera!” refers to the method of partitioning
the vehicle into the powertrain, chassis, body, and multimedia subsystems (Fig. 1-11). Following
a step-by-step procedure, these subsystems are then further divided into secondary subsystems
and components. Components are developed separately but in parallel and are tested at the end
of this step. The components are subsequently evaluated and integrated into subsystems across
the various system levels. In the fi nal step, the powertrain, chassis, body, and multimedia sub-
systems are integrated to create the vehicle.

This approach not only requires a clear-cut division of labor in the development of subsystems
and components, it also mandates that development teams cooperate when decisions must be
made about how to partition and later integrate the systems in terms of installation space, vehicle
functions, and production technology.

In addition, the development of vehicle subsystems and components is usually accomplished
through close cooperation between vehicle manufacturers and suppliers. For this reason, a clear
defi nition of task assignment is also a basic requirement for successful development.

Another dimension is added by the simultaneous development of different vehicles or vehicle
variants. For vehicle manufacturers and their suppliers alike, this means a daily routine of work-
ing on multiple projects on all system levels.

The cooperation among different engineering disciplines and various companies requires a com-
mon familiarity with the overriding issues, a shared understanding of problem-solving processes,

Fig. 1-12. Logical system architecture for control and monitoring systems.

Setpoint
Generators

Open-/Closed-
Loop Control,

Monitoring

AUTOMOTIVE SOFTWARE ENGINEERING

-20-

and an equal appreciation of the effects and implications that solutions will have on the overall
system. Further, the responsibilities and accountabilities for a given project must be defi ned.
Mechatronics [11] on the technical side or systems engineering methods [12] on the organizational
side of a development project may serve as examples of proven, harmonized approaches.

In the context of cross-corporate teamwork between vehicle manufacturers and suppliers, all
aspects of the business model, as well as legal issues such as product liability or patent rights,
also must be addressed and settled. However, this book limits its discussion to technical and
organizational aspects.

1.4.2 Overview of the Development of Electronic Systems

The development process of electronic systems in the vehicle follows similar steps as those
of vehicle development. Therefore, electronic systems in the vehicle are fi rst partitioned into
subsystems, such as ECUs (hardware and software), setpoint generators, sensors, and actuators
(Fig. 1-2), and are developed based on the principle of division of labor. The subsystems are
then tested and validated, and subsequently integrated step by step into an electronic system
(Fig. 1-13). Here, too, partitioning and integration require teamwork reaching beyond subsys-
tem boundaries.

Fig. 1-13. Overview of the development of electronic systems.

Electronic system development should be thoroughly planned and prepared by applying sound and
proven methods, such as the Capability Maturity Model Integration® (CMMI®) [13], Software
Process Improvement and Capability Determination (SPICE) [14], or the V-Model [15].

Further, electronic systems and components intended for vehicles should support automotive
standards such as OSEK [16] and ASAM [17]. OSEK is a German acronym for “open systems

Introduction and Overview

-21-

and the corresponding interfaces for automotive electronics.” ASAM is an acronym for Asso-
ciation for Standardization of Automation and Measuring Systems.”

In addition, proven test procedures, such as simulation or rapid prototyping, should be considered
when defi ning a development process.

This approach to electronic system development as recommended here requires, of course,
a great measure of interaction between engineers engaged in vehicle development and those
involved in electronic systems development. These interactions will carry over into software
development as well.

1.4.2.1 Trend from Hardware to Software

Electronic systems development as a whole exhibits a general trend going from hardware- to
software-based solutions.

Software solutions are ideally suited to the implementation of the functional aspects of electronic
systems. For example, the software-based implementation of open-loop/closed-loop control
functions and monitoring functions provides the highest degree of freedom (e.g., in the design
of linearizations, adaptive or learning algorithms, and safety and diagnostic concepts). In other
words, anyone taking this approach to implementation can largely disregard consideration of
installation space and manufacturing constraints.

For all of these reasons, the software-based implementation of vehicle functions provides vehicle
manufacturers and suppliers with a great differentiation potential vis-à-vis the competition. This
is also the case in other industries.

Therefore, the focus of this book is on the current, widely used approach to the development
of software functions and their functional integration with other components of an electronic
vehicle system.

Particular emphasis will be placed on the description of the requirements and constraints appli-
cable to the development of software for ECUs intended for vehicles. These differ markedly from
the requirements for the development of software for other industrial applications. To help readers
appreciate this difference, such requirements will be introduced by way of comparison.

For example, it will be strictly differentiated between the specifi cation of software functions
of ECUs and their actual design and implementation. Specifi cation means the development of
a given software function and includes its early, broad-based functional validation in the real
vehicle. Design and implementation mean adapting a software function to a specifi c target ECU
(with consideration of all technical aspects) and then verifying the result against the specifi cation.
Additional requirements, imposed by vehicle production and service, also must be fulfi lled by
software intended for in-vehicle ECUs. These requirements include diagnostics and software
updates for ECUs.

AUTOMOTIVE SOFTWARE ENGINEERING

-22-

1.4.2.2 Cost

In the automotive industry, proportional production cost frequently dictates unit cost because
enormous pressure for low cost in combination with high production volume characterize that
industry in general. Low unit cost for ECUs translates into restricted memory space and limited
computing capacity. Software developers are consequently challenged to optimize wherever
possible (e.g., by implementing functions in integer arithmetic whenever feasible).

1.4.2.3 Long Product Life Cycles

At the current state of the art, vehicles are estimated to have the following life cycle:

• A development phase of three years
• A production phase of approximately seven years
• A subsequent operation and service phase of up to fi fteen years

This adds up to a total product life cycle of about twenty-fi ve years (Fig. 1-14).

Fig. 1-14. Product life cycle of a vehicle.

Product Life Cycle
Vehicle

For electronic components, however, these phases are dramatically shorter due to the continuing
advancements in hardware technology. As one consequence, supplying the market with electronic
spare parts over the long term represents a considerable challenge. Clearly, challenges such as
these must be taken into consideration during the development phase of a vehicle.

The fact that electronic hardware has a decidedly short life cycle has an impact on software
architecture as well. In development, the trend toward standardization of software architecture
is one example of this impact. Another example is the trend toward a hardware-independent
specifi cation of software functions that ensures simplifi ed porting of software functions to new
generations of hardware in the future.

Introduction and Overview

-23-

For vehicles already in the fi eld, updates to the software running in the ECUs are benefi cial; in
other words, the life cycles of the ECU software are shorter than that of the ECU hardware. The
deployment of Flash technology supporting easy reprogramming of ECUs—in conjunction with
the networking of all ECUs onboard the vehicle—facilitates cost-effi cient software updates in
the fi eld. This often is done via the central offboard diagnostic interface of the vehicle, without
the need for costly removal or exchange of the ECUs in the vehicle. Therefore, the extremely
long vehicle life cycles must be taken into consideration during development.

1.4.2.4 Safety Requirements—High and Still Rising

Safety requirements for vehicle functions are very stringent compared to safety requirements
in other industries, such as manufacturing systems engineering or telecommunication. This is
due to a 100% probability of a person—the driver—being in the proximity of the vehicle in the
event of an accident. Therefore, the respective functions usually are classifi ed for a high safety
integrity level. This is generally not the case in the machine-building industry, as the prob-
ability of persons being in the vicinity of any machine can be lowered considerably, reduced by
appropriate access restrictions to workers.

Basic safety regulations are defi ned in standards, such as DIN 19250 [18] or IEC 61508 [19],
and in ECE Directives (e.g., [20, 21]). The prerequisite for awarding road-use and registration
permits to vehicles consists of the “simple” procedure of providing verifi cation of functional
safety.

In the past few years, the safe and reliable operation of electronic systems in the vehicle is
becoming crucial, because they do important safety-related work. Such functions range from
providing a situation analysis (e.g., speedometer display) to giving a situation assessment
(e.g., black-ice warning), or from recommending an action (e.g., navigation system) to executing
it (e.g., accelerating or braking intervention), or even to correcting a driver’s action, such as in
active steering intervention (in a vehicle equipped with active front steering, or AFS) [22].

For this reason, operational safety analysis strongly infl uences function development and, as a
consequence, software development. Stringent reliability requirements force the implementa-
tion of fault detection and fault handling procedures, with redundant system design being one of
the most powerful of these procedures. In fact, stringent operational safety requirements have
reinforced the trend toward distributed and networked systems in the vehicle.

These considerations and constraints force special requirements on development processes and
tools as well. Examples are the certifi cation of tools, as well as standardized software compo-
nents such as the OSEK operating systems.

1.4.3 Core Process for Electronic Systems and Software Development

The many demonstrated interactions among vehicle, electronic, and software development
necessitate an integrated development process that covers all steps—from the analysis of user
requirements to acceptance tests of electronic systems.

AUTOMOTIVE SOFTWARE ENGINEERING

-24-

This book focuses on the integrated development of electronic systems and software, using a
procedural approach suggested by the V-Model [15]. The V-Model integrates quality inspection
and test procedures by differentiating between a system view and a component view. Therefore,
it is widely used in the automotive industry.

The referenced development process model may be visualized in the form of the letter “V.” An
adapted V-Model provides for the representation of the project phases and interfaces between
system and software development. The same is true for the specifi c steps of vehicle develop-
ment. Figure 1-15 shows an overview of this so-called core process, which is discussed in detail
in Chapter 4 of this book. The methods and tools supporting this core process are introduced
in Chapter 5.

The core process comprises a number of distinct development steps:

• Analysis of user requirements and specifi cation of logical system architecture

 The objective of this process step is to defi ne the logical system architecture based on the
project-relevant user requirements. Logical system architecture includes defi nition of the
function network, the function interfaces, and the communication among the functions

Fig. 1-15. Overview of the core process for the development
of electronic systems and software.

Control Unit

System
Development

Software
Development

Next Page

Introduction and Overview

-25-

across the entire vehicle or, as the case may be, for a single subsystem. This process step
does not yet produce any decisions with regard to technical implementation.

• Analysis of the logical system architecture and specifi cation of technical system

architecture

 The logical system architecture is the basis for the specifi cation of the actual technical system
architecture. The analysis of technical implementation alternatives is based on a unifi ed
logical system architecture and is supported by a variety of methods of the participating
engineering disciplines. The technical system architecture also includes a defi nition of all
functions or subfunctions that will be implemented by means of software. This defi nition
is also called software requirements.

• Analysis of software requirements and specifi cation of software architecture

 The software requirements thus defi ned are analyzed in the next step, and the software
architecture is specifi ed. That is, the software system boundaries and interfaces are defi ned,
with software components, software layers, and operating modes.

• Specifi cation of software components

 This step is followed by the specifi cation of software components. The procedure initially
assumes an “ideal-world” environment. This means that this step ignores any implementa-
tion details, such as the implementation in integer arithmetic.

• Design, implementation, and tests of software components

 In the design phase, the previously ignored real-world aspects are subject to scrutiny. At this
point, all details affecting the implementation must be defi ned. The resulting design deci-
sions govern the implementation of software components. At the end of this step, software
components are tested.

• Integration of software components and software integration tests

 When the development of the software components is completed—frequently done by
applying the principle of division of labor—and components have passed the subsequent
tests, integration can begin. After integration of the components into a software system, a
software integration test concludes this step.

• Integration of system components and system integration tests

 In the next step, the software must be installed on the ECU hardware to provide the respec-
tive ECU with functional capabilities. The ECUs then must be integrated with the other
electronic system components such as setpoint generators, sensors, and actuators. In a sub-
sequent system integration test, the interaction of all systems with the plant is evaluated.

• Calibration

 The calibration of the ECU software functions comprises their parameterization; the setting
of parameter values must frequently be carried out individually for each type or variant of

Previous Page

AUTOMOTIVE SOFTWARE ENGINEERING

-26-

a given vehicle. Parameter settings may be supplied by the software in the form of charac-
teristic values, characteristic curves, and characteristic maps.

• System test and acceptance test

 Finally, a system test focusing on the logical system architecture can be performed, with an
acceptance test that concentrates on user requirements.

1.4.4 Support Processes for Electronic Systems and Software
Development

The core process must be complemented by a number of additional processes, ranging from the
systematic identifi cation and documentation of requirements, fault messages, and modifi cation
requests through planning and implementation tracking, to the archiving of variant data. These
so-called support processes include requirements management, confi guration management,
and project and supplier management, as well as quality assurance (Fig. 1-16). For a detailed
discussion of the referenced support processes, see Chapter 3.

To ensure continuous progress in the development of electronic systems and software, a num-
ber of widely disparate groups and tasks must be managed, supported, and integrated. These
include all development steps, the customer/supplier relationship between companies and

Fig. 1-16. Overview of support processes for the development
of electronic systems and software.

Electronic
Vehicle
Systems

Requirements

Introduction and Overview

-27-

within companies, intermediate development results, development happening parallel in time,
and transition/synchronization points between development steps. Similar to what is general
practice in the representation of business processes, development processes also can be clearly
represented in graphical form.

1.4.4.1 Customer/Supplier Relationships

Figure 1-17 [23] shows a graphical process structure of customer/suppplier relationships. Effi -
cient teamwork, of course, presupposes a close integration of methods and tools as well.

Fig. 1-17. Diagram of customer/supplier relationships. (Ref. [23])

ments

Vehicle

Manufacturer

Supplier

Organizational
Unit X

Supplier

Organizational
Unit Y

Subcontractor

Modeling and
Simulation Tool

Rapid Prototyping
Tool

Modeling and
Simulation Tool

Code Generation
Tool

1.4.4.2 Simultaneous Engineering and Different Development Environments

In many cases, the mandate of shortening the development time calls for the concurrent handling
of development tasks (i.e., simultaneous engineering). In software development, simultaneous
engineering means that typical development activities, such as analysis, specifi cation, design,
implementation, and integration of a given software function, followed by testing and calibra-
tion, are all being performed for that function, while all of these activities are performed for
any number of software functions in development at the same time. In addition, various dif-
ferent development environments must be coordinated or ideally integrated; that is, simulation

AUTOMOTIVE SOFTWARE ENGINEERING

-28-

procedures and development steps in the laboratory, on the test bench, and in the vehicle must
be designed with the highest possible degree of standardization and then synchronized with
each other. Figure 1-18 shows a sample structure for simultaneous engineering within various
development environments.

Fig. 1-18. Simultaneous engineering and different development environments.

Test Bench

Software Function Software Function Software Function

Software Function Software Function Software Function

Software Function Software Function Software Function

Software Function Software Function Software Function

Software Function

Software Function

Software Function

Software Function

1.4.5 Production and Service of Electronic Systems and Software

Quite often, the fact that software variants lend themselves, in terms of production and service,
to easier handling than their hardware counterparts, results in the call for the software imple-
mentation of variant-specifi c portions of a given electronic system.

In those cases, vehicle variants give rise to the software variants of ECUs. For this reason, both
production and service must provide a procedure for programming the ECUs with software
variants or updates, or for inputting the parameter values for software functions at the end of
the manufacturing process.

Service is faced with the additional demand for the support of troubleshooting in electronic
systems through suitable diagnostic procedures and with the relevant interfaces and tools. The
long product life cycles, high volume production, and worldwide distribution of vehicles com-
prise the framework conditions to be taken into account in the development of suitable service
concepts.

Methods and tools for production and service are discussed in Chapter 6.

Introduction and Overview

-29-

1.5 Methods and Tools for the Development of Software for Electronic
Systems

Virtually every development step can benefi t from suitable tool-assisted methods that contribute
to the improvement of quality while providing risk and cost reductions. Accordingly, the inte-
gration of the various tools gains special signifi cance. The following sections discuss possible
approaches to tools integration and their effect on the three critical success factors of quality,
risk, and cost.

The V-Model is implicit in its assertion that the user requirements initially are almost completely
identifi ed and analyzed, and that a suffi ciently accurate specifi cation for the technical system
architecture may be derived from those fi ndings. Tool integration is based on a series of subse-
quent steps that are closely defi ned.

However, experience shows that these prerequisites are not fulfi lled in many cases. Often at the
start of development, user requirements are not fully understood and are updated as development
work progresses. For this reason, specifi cations initially tend to refl ect merely a rough idea of
the system; the defi nition of details occurs gradually. During system integration, component-
related delays result in delays of the integration process and of all subsequent steps. Whenever
software development tasks are handled by different companies, the execution of integration and
test steps for a given component frequently is limited by the unavailability of related components
or by outdated versions of related components.

For these reasons, the reality of development is characterized by incremental and iterative pro-
cedures, forcing developers to repeat some steps or even all steps of the entire V-Model many
times.

However, a number of methods or tools are available to support a process-oriented approach to
software function development. Applying such methods and tools will help to ensure the timely
validation of requirements, specifi cations, and implemented components, in the laboratory and
on the test bench, as well as in the vehicle.

1.5.1 Model-Based Development

In software development, interdisciplinary cooperation (e.g., among powertrain, chassis, and
electronics development) presupposes a common, integrated understanding of problems and
solutions. When designing control engineering functions for a vehicle, for example, reliability
and safety aspects also must be considered, as well as the implementation of these control func-
tions by means of software in embedded systems.

A graphical function model that includes all system components frequently serves as the basis
for gaining a common understanding of functions. Therefore, customized model-based soft-
ware development methods with notations such as block diagrams and fi nite state machines are
increasingly replacing software specifi cations in plain text form.

Aside from a common appreciation of issues and solutions, software function modeling offers
additional benefi ts.

AUTOMOTIVE SOFTWARE ENGINEERING

-30-

Provided the specifi cation model is formal, that is, unambiguous and without leeway for inter-
pretation, the specifi cation can be executed on the computer in a simulation. It then can be
experienced in the vehicle at an early point in time with the aid of rapid prototyping. All of
these benefi ts have contributed to a wide acceptance of “digital specifi cation.”

Using automated code generation methods, specifi ed function models can be implemented in
software components for ECUs. To accomplish this, function models must be enhanced by
adding design information that also includes required nonfunctional product properties such as
optimization measures.

The operating environment of ECUs can be simulated by means of so-called laboratory vehicles,
or lab cars. Lab cars facilitate early testing of ECUs in a laboratory setting. Using lab cars for
testing facilitates the reproduction of test cases and offers greater fl exibility than test bench and
in-vehicle tests can provide.

The calibration of software functions often can be fi nalized only at some point toward the end
of the development process. In many cases, this procedure is carried out in the vehicle with all
systems running and requires support by means of suitable methods and tools.

To summarize, a model-based approach to software function development comprises a number
of well-defi ned, clearly separated development steps, as shown in Fig. 1-19 [24].

Fig. 1-19. Overview of the model-based development process.

Software Function Model Driver-Vehicle-Environment Model

Implementation of Software Functions Driver-Vehicle-Environment

driver, vehicle, and environment

Design & implementation

Logical
System
Architecture

Technical
System
Architecture

Introduction and Overview

-31-

A model-based approach is also suitable for the development of function networks and networked
ECUs. In those contexts, however, the process gains additional degrees of freedom, such as
the following:

• Combinations of modeled, virtual, and implemented functions
• Combinations of modeled, virtual, and implemented technical components

1.5.2 Integrated Quality Management

Creating high-quality software is the objective of any systematic approach to software design.
Software quality characteristics include adequate functional range, reliability, usability, effi ciency,
adaptability, and portability.

Quality management covers all measures that will ensure that a given product meets its require-
ments. Quality can be “built into” a product, as long as guidelines for quality assurance, plus
measures for quality control and testing, have been established and are followed.

1.5.2.1 Quality Assurance Guidelines

Quality assurance includes a complement of “preventive” measures, such as the following:

• Employment of appropriately educated, experienced, and trained developers
• Use of a suitable, specifi ed development process
• Use of guidelines, measures, and standards supporting the process
• Use of a suitable tool environment supporting the process
• Automation of manual, error-prone work procedures

1.5.2.2 Quality Control, Validation, and Verifi cation Measures

The aim of quality control measures is fault detection. Quality control should be carried out
after as many individual tasks within the function development process as possible. Therefore,
quality control means performing a series of scheduled tasks throughout the entire development
cycle.

Software quality control differentiates between controlling for specifi cation errors and the design
and implementation errors. Research has shown that specifi cation errors predominate in most
development projects. Therefore, the V-Model differentiates between validation and verifi cation
in quality control and testing.

Validation Versus Verifi cation

• Validation is defi ned as the process of evaluating a system or a component of the system
to establish that it is satisfactory for its intended application and that it meets customer
expectations. Accordingly, function validation as a process has the aim of establishing that
the specifi cation meets customer expectations and that it will have customer acceptance.

AUTOMOTIVE SOFTWARE ENGINEERING

-32-

• The term verifi cation describes the process of evaluating a system or a component of a
system to establish that the results of a given development phase meet the requirements for
that phase. Accordingly, software verifi cation establishes that an implementation adequately
meets the specifi cations defi ned for the respective development step.

Quite often, traditional development, integration, and quality control methods for software do
not allow for a clear separation of verifi cation and validation. Modern development tools, how-
ever, offer a clear advantage over traditional tools. With modern development tools, function
validation in the vehicle without the actual ECU present is possible because the tools support
rapid prototyping with an experimental system.

Figure 1-20 shows the validation and verifi cation steps available through the application of
simulation, rapid prototyping, and code generation tools.

1.5.3 Reducing the Development Risk

A risk is defi ned as an event whose occurrence may seriously interfere with the scheduled fl ow
of a project. Several different measures for intervention to minimize risk are available for func-
tion development. Two of these warrant closer examination.

1.5.3.1 Early Validation of Software Functions

Early function validation with rapid prototyping greatly contributes to curbing risk, as the more
costly implementation of ECU software can be done after the function has been successfully
validated in the vehicle. Unnecessary iteration within the software development process thus

Fig. 1-20. Function validation and software verifi cation, including simulation,
rapid prototyping, and code generation for the ECU.

Rapid Prototyping Code
Generation

for Electronic
Control Unit

Simulation System Experimental System

Ve
rif

ic
at

io
n

an
d

Va
lid

at
io

n

of
 S

of
tw

ar
e

Fu
nc

tio
ns

D
esign &

 Im
plem

entation

of Softw
are FunctionsVa

lid
at

io
n

of

So
ftw

ar
e

Fu
nc

tio
ns

Specification of

Softw
are Functions

Va
lid

at
io

n
of

So
ftw

ar
e

Fu
nc

tio
ns

Specification of

Softw
are Functions

Electronic
Control Unit

Simulation

Introduction and Overview

-33-

can be avoided. The validated function model can be used as the specifi cation for the design
and implementation by the automated and tool-supported code generation for a specifi c ECU.
It also may serve as a reference for the subsequent software verifi cation.

To enable early validation, the following methods may be considered:

• Formal specifi cation and modeling
• Simulation and rapid prototyping

Integration and test systems for laboratory application support the early validation of ECUs
without requiring an actual vehicle. One such method is the previously discussed simulation
of an ECU environment by means of lab cars.

This process must accommodate the special requirements of the frequently cross-corporate
development, integration, and test tasks. For example, prototype vehicles are available only
in limited numbers. Frequently, the manufacturer of a component that he is required to supply
does not have a complete or updated environment for that unit at his disposal. There is a good
likelihood that the strictures imposed by the test environment also limit the scope of available
test procedures.

The component integration comprises a synchronization point for all participating component
developments. The testing of integration, system, and acceptance can be carried out only when
all components are physically present and have been integrated. Delays related to individual
components will result in delays in the integration process and will delay the execution of all
subsequent test steps.

Therefore, a software function test for ECUs can be carried out only when all of the components
making up the overall vehicle system (i.e., ECUs, setpoint generators, sensors, actuators, and
plant) are available. The use of lab cars facilitates early tests of ECUs without the need for
real-world environment components. This approach also prevents the possible exposure of test
drivers or vehicle prototypes to a range of hazards.

Virtual validation methods of this kind will continue to gain in signifi cance. However, even
in the future, the fi nal validation of a given function, that is, the test of whether or not the user
requirements are being met, can be carried out only from the user perspective, meaning accep-
tance testing in the actual vehicle.

1.5.3.2 Reuse of Software Functions

A second way to check risk is reuse. The prerequisite for successful reuse is a clear modular-
ization of the system as a whole. If operationally proven software at the source code level is
targeted for reuse today, new software and system architecture often cannot be introduced easily,
and portability to future generations of microcontroller models often is limited.

However, distinct advantages with respect to reuse may be realized at the model level. Here,
risk can be minimized through the reuse of proven specifi cation models of functions and envi-
ronment, and through the reuse of test cases, as well as calibration data from simulation to the
laboratory and test bench down to the vehicle.

AUTOMOTIVE SOFTWARE ENGINEERING

-34-

1.5.4 Standardization and Automation

Standardization and automation efforts may be employed as major contributors to cost savings
and quality improvement in function development.

1.5.4.1 Standardization

The major documentation on the standardization of processes and description formats for
measuring, calibration, Flash programming, and diagnostic tools appears in ASAM [17] and
ISO [25, 26]. These standards are widely used in the automotive industry. Figure 1-21 shows
an overview of the approved software architecture for tools, and for the ASAM-MCD 1b, 2,
and 3 interface standards.

Meanwhile, the introduction of approaches to the standardization of the software architecture for
the microcontrollers used in ECUs has also been successful. For example, a differentiation is
made between the “actual” software functions (i.e., the control and monitoring functions of the so-
called application software) and the platform software that is partially hardware dependent.

The platform software category also includes the software components required for onboard and
offboard communication. The distinction between platform and application software enables
developers to specify application software functions that are largely hardware independent,
which in turn facilitates porting to a variety of microcontrollers.

Fig. 1-21. Software architecture for tools and ASAM standards. (Ref. [17])

M
C

D
 D

at
a

Coordination Layer

Automation
System

Interactive
Application

Introduction and Overview

-35-

Those software components that cover the hardware-related aspects of microcontroller input/
output (I/O) units are grouped together in the so-called hardware abstraction layer (HAL) of
the platform software. As shown in Fig. 1-22, the I/O units required for the communication
with other systems via data bus are excluded from the HAL; the required bus drivers are viewed
separately. Platform software also includes the software components of higher-level layers
required for communication with other ECUs on the network, or with tools such as diagnostic
testing devices.

Fig. 1-22. Software architecture for microcontrollers and OSEK/ISO standards. (Ref. [16])

Flash Loader

ISO Diag. Protocol

Bus Driver

ISO Network Layer

A
pplication S

oftw
are

P
latform

 S
oftw

are

OSEK-NM
Network

Management

OSEK-COM
Interaction Layer

OSEK-OS
Operating System

Examples of standardized software components are real-time operating systems and communica-
tion and network management based on the OSEK [16] standard, as well as diagnostic protocols
based on ISO [25, 26].

So far, standardization has concentrated mainly on the components belonging to the platform
software category, as vehicle manufacturers and automotive suppliers perceive them to be
without competitive signifi cance (Fig. 1-22) [27, 28]. These software components provide
standardized application programming interfaces (APIs). In this way, the platform software can
be standardized for a variety of applications. Application software functions can be developed

AUTOMOTIVE SOFTWARE ENGINEERING

-36-

largely independently of the hardware. Chapter 2 provides a detailed discussion of the software
architecture and standardized components for microcontrollers.

The complete standardization of all platform software components provides further potential with
regard to cost savings and quality control. For the application software functions that often carry
competitive value, however, the introduction of open standards is not in the interest of vehicle
manufacturers and their suppliers. Still, when the aspects of liability and copyright protection
have been settled, both sides can benefi t from an enterprise-wide standardization (e.g., through
the assembly of function libraries). Vehicle manufacturers then could deploy software func-
tions across the domains of different suppliers. Suppliers would have the opportunity to deploy
standardized software functions to all of their customers.

1.5.4.2 Automation

The automation of error-prone routine tasks offers great potential for function development.
The higher reproducibility achieved by automation permits cost and time-related benefi ts and,
above all, quality improvements.

More and more automotive manufacturers and suppliers are automating the following develop-
ment steps:

• Production of function prototypes by means of rapid prototyping tools
• C-code generation for ECUs (Fig. 1-20).

With the use of lab cars, test procedures previously carried out in the vehicle can be transferred
to the laboratory for subsequent automation.

Measurement and calibration tools support remote control interfaces for automating calibra-
tion, measuring, and test tasks [29]. Via this interface, time-consuming calibration tasks can be
automatically performed on the test bench. For this purpose, a separate standard was developed
(e.g., ASAM-MCD 3).

Automation of some process steps in the right branch of the V-Model presupposes, however,
that automation as an option is already integrated into the design phase (i.e., in the left branch
of the V-Model). The relevant keywords are “design for testability” or “design of experiments.”
These design methods promise great benefi t but remain currently in development [30, 31].

Routine tasks performed by developers in the course of version, confi guration, and variant
management tend to allow the introduction of errors. However, these routine tasks can be
automated via suitable interfaces from the development tools to confi guration-, version-, and
variant-management systems.

1.5.5 Development Steps in the Vehicle

Compared to other industries, in-vehicle development constitutes a unique feature of the
automotive industry. For many development steps that must be carried out in the vehicle, it is
often not possible to connect the development tools to the infrastructure (i.e., to the corporate

Introduction and Overview

-37-

data network). Thus, software development that includes both simultaneous engineering and
in-vehicle development requires not only robust but sophisticated tools for in-vehicle use, but a
very clear methodological approach to the management of development results and consistent
data management.

The measuring technology required for in-vehicle testing and calibration must be designed to
withstand applications in the most harsh environmental conditions, characterized by extreme
temperature ranges, humidity, electromagnetic compatibility issues, fl uctuating supply voltages,
vibration, and cramped installation spaces. In addition, the user interface to the in-vehicle mea-
suring technology must be suitable for in-vehicle use.

The in-vehicle measuring technology used in development for the validation of a vehicle func-
tion—comprising the interaction of a system of ECUs, setpoint generators, sensors, and actua-
tors—must belong to a higher performance class than that selected for the sensor systems of the
ECUs onboard a production vehicle. In particular, the data interface connecting the ECUs and
measuring tools must be able to transfer data at a high transmission rate to enable the capture
of internal ECU signals.

-39-

CHAPTER TWO

ESSENTIAL SYSTEM BASICS

An important prerequisite for the development of automotive software is the smooth interaction
of a variety of engineering disciplines. Examples that come to mind are mechanical engineering,
electrical engineering, and software technology, to name only a few. It would be safe to say
that several players representing a variety of disciplines often work simultaneously toward the
completion of a diversity of tasks. The successful and effi cient completion of the tasks at hand
is predicated on a shared appreciation of issues and solutions.

This chapter provides an introduction to the various contributing disciplines exerting signifi cant
infl uence on software in its application as a subsystem. This chiefl y concerns the development of
open-loop and closed-loop control systems, discrete embedded real-time systems, and distributed
and networked systems providing reliability and safety functions.

The information in this book is intended to provide readers with a basic understanding of both
the functional principles and the interaction of the various software components of a microcon-
troller, as shown in Fig. 1-22 of Chapter 1. For the purposes of this book, it stands to reason that
this objective cannot be to consider a full treatment and in-depth investigation into the various
related disciplines. Instead, the text focuses on providing explanations of basic principles and
terms, to the extent that such information shall be relevant and required throughout subsequent
chapters.

The terminology used throughout this book, although based on the technical engineering language
used in the original German manuscript, has been carefully translated.

The order in which the various engineering disciplines are examined should not be construed
to represent any kind of order of importance. However, because the respective disciplines are
interdependent at various levels, their order of discussion results from the stipulation that, taken
by itself, this introduction should be effective enough without requiring the reader to look up
information in subsequent sections of this book.

2.1 Open-Loop and Closed-Loop Control Systems

Most vehicle functions in the areas of powertrain, chassis, and body perform some kind of
control task. For this reason, in-depth familiarity with the methods and technical terms related
to the technologies involved comprises a necessary foundation for the design of many of these
functions.

AUTOMOTIVE SOFTWARE ENGINEERING

-40-

2.1.1 Modeling

In the initial phase of the design procedures related to controlling and monitoring functions,
these may be regarded as an abstraction of the technical implementation. The task of abstracting
(i.e., modeling) produces a model. A distinction is made between the task of modeling for the
controlling or monitoring device (the so-called open-loop control model or closed-loop control
model) and that of modeling for the system to be controlled or monitored (the so-called open-
loop plant model or closed-loop plant model).

The approach chosen to fi nd solutions to controlling tasks is largely independent of the char-
acteristic aspects of physical construction of the respective technical system to be controlled.
A major decisive factor infl uencing the design of open-loop and closed-loop control devices is
the operating characteristic, both static and dynamic, of the technical system to be controlled.
In an effort to simplify this somewhat complex matter, this book takes a cue from automotive
industry jargon in referring to control units throughout the text. This term describes devices that
perform—in addition to other functions—both open-loop and closed-loop control tasks.

Of secondary importance is the type of physical variable—be it temperature, voltage, pressure,
torque, output power, or rotational speed—to be controlled, with the technical implementation
of a given device.

This abstraction potential enabled the technology governing open-loop and closed-loop control
systems to develop into a separate engineering discipline. In fact, this branch of engineering
science is trying to identify common properties in systems characterized by great technical
diversity. With the relevant fi ndings laying the foundation for the development of commonly
applicable design methods for control systems, this discipline has matured into a connecting
element for a diversity of engineering branches.

2.1.2 Block Diagrams

In many cases, modeling is done by means of graphic visualization, with preference given to
so-called block diagrams. These depict the response characteristics of individual components,
as well as the signal fl ow occurring between the components of a system. Figure 2-1 shows
the block diagram representing the logical system architecture for open-loop and closed-loop
vehicle functions.

Figure 2-1 facilitates the explanation and defi nition of the essential terms of closed-loop and
open-loop control technology.

The term closed-loop control task defi nes a procedure during which a variable X to be controlled
(i.e., regulated) is subjected to continuous capture. It is then compared with reference variable W
on a similar ongoing basis. Depending on the result of this compare operation, variable X is
infl uenced with a view to attaining an approximation of reference variable W. The resulting
sequence of actions occurs within a closed circuit, the so-called control loop. The purpose
of the closed-loop control procedure is to approximate the value of controlled variable X to
that of reference variable W, irrespective of the disturbance values introduced by interference
variable Z [32].

Essential System Basics

-41-

Fig. 2-1. Function model using a block diagram of open-loop
and closed-loop vehicle control systems.

Setpoint
Generators

Open-/Closed-
Loop Control,

Monitoring

By contrast, the term open-loop control task defi nes a procedure within a system during which
one or more input variables infl uence specifi c output variables in conformity with the design
characteristics of that system. The distinguishing feature of the controlling action is the open-
loop sequence of actions involving either a single transfer element or an entire open control
loop [32].

Open-loop and closed-loop control models describe the components of a system in the form of
block diagrams, with visual blocks depicting transfer elements, and arrows connecting the blocks,
representing signal fl ows. More often than not, control systems for automotive applications
belong to the category of multi-input/multi-output systems. For this reason, the signals being
processed are vector shaped (Fig. 2-1). A number of signal types are differentiated:

 Measured or feedback variables R

 Output variables of open-loop/closed-loop control U

 Reference variables or setpoint values W

 Driver-specifi c setpoint values W*

 Open-loop/closed-loop controlled variables X

 Manipulated variables Y

 Interference variables Z

In terms of the blocks making up the function model, a distinction is made between the open-
loop/closed-loop controller model, the actuator models, the plant model, the models covering
setpoint generators and sensors, the driver model, and the environment model. The driver is
able to infl uence the functions of one or the other control system by introducing setpoint values.
The components engaged in the acquisition of these driver-specifi c setpoint values—such as
switches or pedals—are also termed setpoint generators. By contrast, sensors capture the signals
occurring in the control section, or plant.

AUTOMOTIVE SOFTWARE ENGINEERING

-42-

Fig. 2-2. Block diagram of a PI controller.

It follows that, in standard operation, the reference variables or setpoint variables W can normally
be introduced by the users of a system by means of a setpoint generator, or transferred in the
form of default parameter values from a higher-level system. More often than not, the systems
involved are of the hierarchical type.

Another benefi t inherent in this kind of modeling encompasses a broader set of consequences.
Because the open-loop and closed-loop control models are abstractions based on the technical
implementation, they also are ideally suited to the modeling of the various software control func-
tions of ECUs. This, in turn, facilitates an accurate description not only of the interaction of the
software of the respective ECUs with the setpoint generators, sensors, and actuators, but with
the components of the vehicle and miscellaneous electronic systems. For the reasons given, the
open-loop/closed-loop control modeling approach on the basis of block diagrams is also widely
used in conjunction with the development of software-implemented vehicle functions. Thus,
it serves as a connecting element for a consistent development process, despite the fact that it
tends to neglect essential software aspects.

Example: Block diagram for a PI controller

Block diagrams also are used to describe individual blocks within the closed-loop control
circuit, as in the example of the controller block. Figure 2-2 represents the block diagram
of a controller featuring two components. One of these features proportional response
characteristics, while the other provides integral signal-handling characteristics. Thus, this
type of controller is termed PI controller (proportional-plus-integral control).

X t k X t dtout I in() = ()Ú

inX (t) out P inX (t) k X (t)=

inX (t)

External View:

Internal View:

PI Controller

PI Controller

Essential System Basics

-43-

A characteristic feature of any controller is the comparison of controller input variables
W and R. As is the case with the PI controller shown in Fig. 2-2, this comparison often is
accomplished by calculating the difference between the two input variables, that is, reference
variable W and feedback variable R. The difference thus obtained—the so-called system
deviation—becomes the input variable for both controller sections:

the proportional component, with response characteristic

X t k X tout P in() = () (2.1)

and the integral component, with response characteristic

Xout I int k X t dt() = ()Ú (2.2)

with their assigned magnifi cation factors or controller parameters kP and kI. Adding the
outputs of both controller components produces the PI controller output variable U.

Therefore, the so-called transfer function of the PI controller is expressed as

U t k W t R t k W t R t dtP I() = () - ()() + () - ()()Ú (2.3)

For each block within the block diagram, there exists an external and internal view (Fig. 2-2).

Models of this type, applied to all blocks of the control loop, form the basis for the analysis and
specifi cation of open-loop/closed-loop controllers, down to systems design, implementation,
and testing.

Because it is neither practical nor intended to make reference to the numerous modeling, analysis,
and design methods for open-loop and closed-loop control systems, reference is made to the
relevant specialized literature [33–36].

The decisive factor determining the characteristics of a control function is the transfer func-
tion—the so-called control algorithm—on one hand, and the settings of the relevant control
parameters, on the other hand. Taken as a group, the various control parameters attached to a
given controller function are termed parameter set. The control parameters used in many vehicle
functions utilize, in addition to scalar quantities such as kP and kI in the preceding example,
characteristic curves and three-dimensional characteristics maps in lieu of control parameters.

Example: Ignition map

One such example is the ignition map required onboard by engine ECUs (Fig. 2-3). Depend-
ing on the current working point of the engine (i.e., the input parameters of engine speed and

AUTOMOTIVE SOFTWARE ENGINEERING

-44-

load and/or relative air charge), the ignition map provides the most suitable ignition angles
with respect to the fuel consumption and emission characteristics of the engine [4].

Because the parameter values contained in the ignition map are engine-specifi c, they must
be determined and fi ne-tuned during the development phase for a vehicle.

As already noted in the discussion of control devices, from the vantage point of controller technol-
ogy, it is of secondary importance whether, in the fi nal analysis, the implementation of a control
function is effected with the use of a mechanical, hydraulic, or electronic system. For example,
arriving at the implementation of the PI controller shown in Fig. 2-2 may involve a variety of
different approaches that are totally divergent in terms of applied technologies. However, it
is critical to observe that the area of vehicle manufacture is one fi eld of endeavor in which the
implementation of control functions by means of ECUs in conjunction with mechanical, elec-
trical, or hydraulic components provides a number of benefi ts in terms of attainable reliability,
vehicle weight, required installation space, and costs. For a number of reasons, this form of
implementation is most often preferred. Accordingly, the following sections will discuss the
applicable functional principles and the confi guration of ECUs in greater detail (Fig. 2-4).

As perceived from the development standpoint of software to be used by the microcontrollers
powering ECUs, the open-loop/closed-loop controller models also are known as function models,
whereas the models describing setpoint generators, sensors, actuators, plant, driver, and environ-
ment are termed surrounding models.

2.2 Discrete Systems

In contrast to the analog signal processing occurring in mechanical, electrical, or hydraulic
components, the input variables of ECUs are discretely processed by the digital microprocessors

Fig. 2-3. Ignition map stored onboard by engine ECUs. (Ref. [4]).

Essential System Basics

-45-

typically found in such devices. In consequence, this also calls for the discrete implementation
of open-loop/closed-loop control functions.

This section presents several terms and basic information relevant to discrete systems [37, 38].
Figure 2-5 shows the simplifi ed block diagram of an electronic control unit.

Once acquired by the setpoint generators and sensors, the external input signals W and R fi rst are
preprocessed in the input module of the ECU to a point where they become suitable for further
processing by the microcontroller as internal input variables Wint and Rint. Similarly, the output

Fig. 2-4. Open-loop/closed-loop control functions implemented in an ECU.

Setpoint
Generators

Open-/Closed-
Loop Control,

Monitoring

Fig. 2-5. Model of an ECU comprising a block
of an open-loop/closed-loop control system.

Input
Modules

Output
Modules

AUTOMOTIVE SOFTWARE ENGINEERING

-46-

modules convert the internal output variables Uint of the microprocessor into the external output
signal U required by the actuators. More often than not, input and output modules comprise
signal conditioning or gain circuits. The software development for the microprocessor of a
microcontroller concerns itself with the internal signals. Therefore, to simplify the discussion
that follows, the text will no longer differentiate between internal and external signals.

Unless explicitly stated otherwise, the internal signals discussed in the following text will be
termed W, R, and U.

2.2.1 Time-Discrete Systems and Signals

In analog systems, all occurring signals comprise continuous functions of time. Therefore,
when observing signal X for the duration of interval (time) t, the unambiguous state X(t) may
be assigned to the signal (Fig. 2-6(a)). Signals of this type are termed continuous time and
value signals.

Fig. 2-6. Sampling modes for continuous signal. (a) Continuous time and value.
(b) Discrete time and continuous value. (c) Continuous time and discrete value.

(d) Discrete time and value.

(a)

(b)

(c)

(d)

Essential System Basics

-47-

If a signal of the type X(t), as shown in Fig. 2-6(b), is measured or “sampled” only at specifi c
discrete instants t1, t2, t3, and so forth, the result is a discrete time and continuous value signal
or a sampled signal. It is defi ned by the expression

X t X t X t X tk() = () () (){ }1 2 3, , ,... (2.4)

with k = 1, 2, 3, and so forth.

The interval dT T tk k k= - -1 is termed sampling rate. The sampling rate may be constant for
all sampling instances, or it may vary.

Example: Sampling rates in the engine ECU

The engine ECU performs a number of individual functions. Using sensors to acquire engine
status and driver command, it controls the engine-specifi c actuators.

The two basic functions of ignition and injection must enable the actuators of the engine at
instants that are synchronized with specifi c crankshaft positions. A change in engine speed
also changes the sampling rate of these functions.

However, other functions, such as the acquisition of the driver command via the drive pedal
position by means of the pedal travel sensor, can be executed at constant timeline intervals
(i.e., at a constant sampling rate).

The sampling rate dT represents an essential design parameter for time-discrete systems. The
required sampling rate is determined by the dynamics inherent in the closed-loop or open-loop
control section (or plant). A rule of thumb for determining the sampling rate for controlling
continuous-time systems by means of time-discrete controllers states that the sampling rate dT
should be selected to be somewhere within the range of a minimum of one-tenth and a maxi-
mum of one-sixth of the essential time constants of the controlled system [34]. The behavior
of time-discrete control functions is decidedly dependent on the selected sampling rate dT. It
is quite normal for a control unit to process several controller functions at once, each having a
different sampling rate, as shown in the preceding example.

If at least one time-discrete signal occurs in a given system, this is known as a time-discrete
system. In the case of microcontrollers, for example, such time discretization characteristic
arises from the time-discrete sampling of input signals.

2.2.2 Value-Discrete Systems and Signals

The analog-digital converters (A/D converters, for short) customarily used in the acquisition of
input signals are also termed sampling elements [34]. A consequence of the limited word size of
these devices is the occurrence of amplitude quantization (i.e., the formation of a value-discrete
signal (Fig. 2-6(c)).

AUTOMOTIVE SOFTWARE ENGINEERING

-48-

The described amplitude quantization comprises a nonlinear effect. In the case of analog-digital
conversion, for example, the nonlinearity is manifested by the limitation of the value range by
Xmin and Xmax, where each state X(t) is unambiguously assigned exactly one discrete value Xi
of the quantity

X X X Xn1 2 3, , ,...{ } (2.5)

where X X Ximin max£ £ .

The difference X t X ti() - () is referred to as the quantizing error.

A similar effect occurs in the output of control unit signals, the so-called digital-analog conver-
sion. Here, a pulse width modulated signal is output in many cases. For the purpose of this text,
all methods employed for the purpose of outputting discrete signals will be collectively referred
to as digital-analog conversion (D/A conversion, for short). In D/A conversion, the assigned
value Xi is held constant until the subsequent sampling cycle. Accordingly, D/A converters are
also termed holding elements [34].

2.2.3 Time- and Value-Discrete Systems and Signals

If both discretization effects occur together, the result is a time- and value-discrete signal
(Fig. 2-6(d)).

If at least one time- and value-discrete signal occurs in a given system, the same is termed a
time- and value-discrete system or digital system.

Any variables being processed as input variables for a program being executed on the microcon-
troller of an ECU represent time- and value-discrete signals. The microprocessor may be drawn
as a block in the closed control loop or open control loop, as shown in Fig. 2-7.

Here, the normally time- and value-continuous input signals W and R are mapped onto the
time- and value-discrete signals Wk and Rk. From these, a program calculates the time- and
value-discrete output signals Uk which, in turn, are mapped onto the time- and value-continuous
signals U. The response characteristics of open-loop and closed-loop control functions, as well
as the respective control parameters, must be implemented by software components running on
the microcontroller.

2.2.4 State Machines

Whereas physical variables normally comprise continuous time and value signals, and the
response characteristics of continuous time and value systems may be described in terms of phys-
ics by differential equations, the response characteristics of discrete systems may be described
by means of difference equations.

Essential System Basics

-49-

The process of time and value discretization causes the transition from one discrete state X tk() to
a subsequent state X tk +()1 to be reduced to an event. The number of possible or relevant states,
as well as the number of possible or relevant events, often are limited in the majority of discrete
technical systems. This fact is exploited through the use of state machines for modeling.

Example: Controlling the low-fuel indicator lamp

The fuel level sensor measures the level inside the fuel tank of a vehicle and produces an
analog signal (i.e., a signal proportional to the measured fuel level) within the range of 0 and
10 V. This analog signal is used as the input for controlling the low-fuel indicator lamp. It
is then subjected to time- and value-discrete sampling in the instrument cluster.

In this process, an analog signal value of 8.5 V is the reading produced by the spare fuel
quantity of 5 liters remaining in the fuel tank. A signal value of 10 V corresponds to an
empty tank, and a signal value of 0 V a full tank. It follows that the low-fuel indicator lamp
must be energized in the presence of a signal value greater than 8.5 V.

To prevent a fl ickering of the lamp by virtue of it being switched on and off in rapid suc-
cession by minute movements of the fuel volume in the tank, a hysteresis function must be
implemented. It is desirable that the low-fuel indicator lamp be switched off only at the
point where a fuel volume exceeding 6 liters, corresponding to a signal value of less than
8.0 V, has been reached. Figure 2-8 shows the relevant switching operations.

Based on the foregoing, the only factors of interest in the control of the low-fuel indicator
lamp are the instants—or events—of overshooting the “signal value less than 8.0 V” and “signal
value greater than 8.5 V” thresholds, and the previous “off” or “on” state of the lamp.

Fig. 2-7. Model of a microcontroller comprising a block
of an open-loop/closed-loop control system.

A/D
Conversion

A/D
Conversion

D/A
Conversion

Software Component
Calculating

Open-Loop/Closed-Loop
Control Functions

AUTOMOTIVE SOFTWARE ENGINEERING

-50-

Figure 2-9 shows a diagram of the discrete “Lamp off” and “Lamp on” states, with the
possible transitions between these states, to which the corresponding events have been
assigned.

This type of state transition graph, also termed state machine, serves as a graphical notation for the
representation of discrete systems. It frequently is used to model discrete vehicle functions, too.

For a detailed discussion of the representation of continuous and discrete signals and systems,
reference is made to suggested reading and advanced literature [37, 38].

Fig. 2-8. Switching operations of a low-fuel indicator lamp.

De-Energize

Fuel Tank Content (liters)

Fuel Tank Content (liters)

Signal Value (V)

Fig. 2-9. State/transition graph of a low-fuel indicator lamp.

“Signal Value > 8.5 V”

“Signal Value < 8.0 V”

Essential System Basics

-51-

Fig. 2-10. Identifi ers of embedded systems.

Setpoint
Generators

Open-/Closed-
Loop Control,

Monitoring

2.3 Embedded Systems

Electronic control units, setpoint generators, sensors, and actuators form an electronic system
that infl uences the status of the plant, or control section. In most cases, the ECU, comprising a
component of the overall driver–vehicle–environment system, remains entirely “out of sight.” For
example, if the ECU is dedicated exclusively to controller functions, it will not be equipped with
a direct user interface of any kind. Usually, this is a characteristic common to ECUs deployed
in powertrain, chassis, and body applications. The driver and the vehicle occupants exercise a
degree of infl uence on the ECUs that may be described as indirect in many cases, negligible on
many occasions, and nonexistent in some instances. The user interfaces acquiring the reference
variables are almost always indirectly implemented and often are restricted (Fig. 2-10). Systems
exhibiting the described features are also termed embedded systems.

As perceived by the ECU, setpoint generators can be handled in the same way as sensors
(i.e., with a view to acquiring user instructions). For this reason, the discussion throughout the
following sections, in instances where this will foster an easier understanding of the subject
matter, will consider setpoint generators as a special type of sensor. In a similar fashion, all
components engaged in delivering a driver feedback of some kind will be regarded as special
types of actuators. This feedback may cover events or states and may take the form of visual
displays or acoustic signals.

AUTOMOTIVE SOFTWARE ENGINEERING

-52-

It follows that the function development of ECUs also must account for the response character-
istics of the control unit interfaces, with that of the setpoint generators, sensors, and actuators.

In turn, the actuators and sensors often compose systems incorporating electrical, hydraulic,
pneumatic, or mechanical, and, to an increasing measure, electronic components. In cases where
signal conditioning or post-processing occurs in conjunction with actuators and/or sensors featur-
ing electronic components, the term intelligent actuators or sensors often is used.

The response characteristics encompass the dynamic response along a given timeline, on one
hand, and the static behavior, such as the range of physical values or the physical resolution of
the transmitted signals, on the other.

There always exist direct interfaces between an embedded system and its immediate environment
(i.e., between an ECU and its closed-loop or open-loop plant). By contrast, in most cases, there
are only indirect interfaces between the system and its user (i.e., the driver or passengers).

For this reason, software development for the microcontrollers of an ECU must accommodate an
essential difference. It often is possible to make certain assumptions with regard to the dynamic
behavior of an open-loop or closed-loop control system. Such assumptions may facilitate the
acquisition of the plant’s current state variables by means of cyclical sampling using a fi xed or
variable sampling rate. However, when it comes to acquiring driver commands, assumptions of a
different nature provide more advantages in many cases. For example, in the context of switches
acting as operating elements, a driver command should rather be seen as an event that recurs as
a single event now and then but that calls for immediate response as soon as it occurs.

Generally speaking, the microcontroller therefore is required to process both periodic and ape-
riodic events. For this reason, a basic understanding of the construction, operating principles,
interfaces, and programming of microcontrollers of the type used in ECUs is an essential pre-
requisite for all developers participating in function development.

2.3.1 Microcontroller Construction

A microcontroller incorporates the following components, all of which function interactively
(Fig. 2-11) [39–41]:

• Microprocessor. This functions as the central processing unit (CPU). The microprocessor
contains its own control unit and arithmetic and logic unit (ALU). The latter unit handles
arithmetic and logical operations, whereas the former unit ensures the execution of instruc-
tions received from the program memory. This division of labor facilitates adaptation to a
variety of practical applications through appropriate programming.

• Input and output modules (I/O modules). These handle the data transfer with the periphery.
This includes input/output devices, circuits for controlling interrupts of a program, and bus
systems carrying communications with other control devices, such as CAN [2].

• Program and data memory. This is nonvolatile, permanent storage holding the program,
such as the open-loop and closed-loop control algorithm, and the constant parameter sets,

Essential System Basics

-53-

such as open-loop and closed-loop control parameters. Ideally suited to this task are the
nonvolatile memory technologies. This memory often is organized in such a fashion that
the program and the associated parameter sets are stored in separate memory segments.
Accordingly, the term program and data memory is used.

• Data memory. This stores the data that are changed as a consequence of program execution.
Because of its special characteristics, this memory segment is also termed random access
memory (RAM). Ideally suited to this task are read/write memory technologies. Depending
on the requirements of the application, volatile or nonvolatile read/write memory is used.

• Bus system. This system interconnects the individual microcontroller components.

• Clock generator. Also known as an oscillator, this device ensures that all operations taking
place within the microcontroller adhere to the same clock frequency.

• Watchdog module. This is a number of monitoring functions that closely observe program
execution.

Fig. 2-11. Diagram of a microcontroller. (Ref. [39])

Program &
Data Memory

Nonvolatile
Read Memory

Nonvolatile &
Volatile

Read/Write
Memory

Control Unit
Arithmetic Unit

4-, 8-, 16-, or 32-bit

Bus System Data Connection, 4-, 8-, 16-, or 32-bit width
Clock

Generator

Interrupt
Controller

Watchdog
Module

Event
Counter

Signal
Acquisition
& Output
w. Time

Reference

Analog-
to-

Digital
Converter

Digital
Inputs /
Outputs

Serial
Inter-
face

Bus
Controller

for
Communi-

cation
w. External

Modules

Data Memory

AUTOMOTIVE SOFTWARE ENGINEERING

-54-

With advancing technology, the various microcontroller components shown here are increasingly
integrated on a single processor chip. This makes the microcontroller capable of operating as a
standalone unit. To meet the requirements of a given application, additional external modules
may be connected. One example would be external memory extensions. For this reason, a
distinction often is made between internal and external memory.

2.3.2 Memory Technologies

Having discussed the differing demands on program memory versus data memory, this section
will take a closer look at the various semiconductor memory technologies.

Semiconductor memory is used to store the following:

• Data, such as I/O data, states, and intermediate results that often require rapid read and write
access

• The executable program, which, in most cases, requires permanent storage

• Constant parameter sets, which also require permanent storage in many cases

Memory storage encompasses the following activities:

• Writing
• Short-term or permanent storage
• Retrieval and reading of information

Semiconductor memory exploits physical effects that allow the easy generation and recognition
of two different states. The benefi t of semiconductor memory lies in its technological compat-
ibility with the components deployed in other sections of the microcontroller, and in the manifold
integration options offered by this combination.

To store information, the state pairs “conductive/nonconductive” or “charged/noncharged” are
exploited. The following sections discuss the major technologies, either in accordance with their
standardization or with a view to their most common applications (Fig. 2-12).

Depending on their individual application, semiconductor memory uses either bit or word-
oriented organization, where “word” describes the logical collection of bits suitable for parallel
processing by the microcontroller. Thus, the word length is equal to the number of bits being
processed in parallel. Microcontrollers customarily accommodate word lengths of 4, 8, 16, 32,
or 64 bits. A group of 8 bits is termed a byte (1 byte = 8 bits).

2.3.2.1 Read/Write Memory

• RAM

 The random access memory (RAM) provides direct access to any main memory location.
Information can be read from and written to RAM as often as desired. Main memory uses
volatile RAM, meaning that the memory contents will be lost in the event of operating power.

Essential System Basics

-55-

In random access memory, a differentiation is made between static RAM (abbreviated as
SRAM) and dynamic RAM (abbreviated as DRAM) [39].

 Static RAM is written to only once and retains its memory contents as long as there is a
working voltage present. Because leakage currents would cause the memory contents of
dynamic RAM to be lost over time, these must be periodically refreshed.

 Also, the integration of an additional backup battery in the power supply maintaining the
RAM facilitates nonvolatile data storage. The designation for this nonvolatile RAM is
NV-RAM.

2.3.2.2 Non-Erasable Read-Only Memory

The read-only memory (ROM) provides direct access to any main memory location. However,
as the name implies, its contents can only be read but not changed by means of write access.

• ROM/PROM

 ROM is nonvolatile memory. The memory contents are retained even in the absence of a
working voltage. ROM customarily accommodates program code, such as the algorithms

Fig. 2-12. Overview of memory technologies. (Ref. [39])

Nonvolatile Memory

Semiconductor Memory

Volatile Memory

Vendor-Programmed User-Programmable

Programmable
in

Programming Unit

In-System
Programmable

Static
Memory

Dynamic
Memory

UV-Erasable Electrically ErasableNon-Erasable

AUTOMOTIVE SOFTWARE ENGINEERING

-56-

for open-loop and closed-loop control functions, and constant data, such as the associated
parameter sets. This information can be accessed at any time and either may be programmed
into memory by the manufacturer—as one of the fi nal steps of production—or may be
programmed by the user onto specially prepared memory modules by means of dedicated
procedures. These programmable read-only memory modules are also termed program-
mable ROM (PROM).

2.3.2.3 Reprogrammable Nonvolatile Memory

On some types of read-only memory, the contents can be erased and reprogrammed with differ-
ent contents. This group includes the following:

• Erasable PROM (EPROM)

 This rewritable read-only memory can be fully erased through exposure to ultraviolet (UV)
radiation and then newly programmed. However, note that this procedure requires relatively
high expenditures in terms of special equipment.

• Electrical EPROM (EEPROM)

 The electrical EPROM (EEPROM) is also termed E2PROM. This rewritable read-only
storage can be electrically erased and reprogrammed. The erasure and rewriting procedure
can be accomplished either at a separate station or in the ECU. The EEPROM makes it
possible to rewrite each individual line of memory.

 For these reasons, this storage technology is also employed as a nonvolatile data memory.
One example application, in engine management, would be the storing of adaptive control
parameters once the engine has been shut off. Another example would be the storing of
detected faults in the so-called fault memory. A detailed discussion of fault memory confi gu-
ration appears in Section 2.6. The EEPROM also can be used to store software parameters
required by variant control in production, as well as in automotive service procedures. A
detailed discussion of available procedures appears in Chapter 6.

• Flash EPROM

 The Flash EPROM (sometimes simply termed Flash) comprises the next development
level of the EPROM and EEPROM. This memory allows the erasure, or fl ashing, of entire
memory areas or complete memory contents through the application of electrical pulses.
Once erased, the affected areas can be reprogrammed.

 Flash memory programming can be accomplished with the use of a programming unit.
However, the decisive advantage of Flash technology lies in the fact that the Flash memory
allows in-system reprogramming with the use of a reprogramming tool, even while contained
in an ECU installed onboard a vehicle. For this reason, Flash technology is applied in situ-
ations where relatively large volumes of data must be committed to nonvolatile storage but
possibly require modifi cation in the course of the product life cycle (e.g., serving as program
or data memory in ECUs). The procedures used in Flash programming are discussed in
Chapter 6.

Essential System Basics

-57-

2.3.3 Microcontroller Programming

The program executed by the microprocessor onboard a microcontroller normally is stored per-
manently in nonvolatile memory. It is not exchanged or modifi ed to handle different applications.
An exception to this generalization occurs whenever a new software version is downloaded and
Flash programmed as part of a software update.

This section examines microcontroller programming in some detail. Here, the term software
encompasses the entirety of programs and data stored in the memory of a microcontroller-driven
system. The programs are executed by microprocessors.

This means that in software engineering, specifi cations such as those arising from the descrip-
tions of control functions must be implemented both in the form of program code suitable for
execution by the microprocessor, and a parameter and data set to be stored in the data memory
of the microprocessor.

2.3.3.1 Program Version and Data Version

In the following discussion, the program code will be termed program version; it must be down-
loaded into the program memory of the microprocessor.

The parameter set will be designated data version; its download destination is the data memory
of the microprocessor.

By way of simplifi cation, mention often is made of the terms control unit software or ECU
program. However, note that the physical confi guration of a given ECU may integrate sev-
eral microcontrollers (i.e., function computer and monitoring computer). Therefore, the term
microcontroller software provides greater accuracy, as does the distinction between the program
version and data version of microcontroller software.

2.3.3.2 Functional Principles of Microcontrollers

With regard to programming, it would be feasible to start with the simplifi ed model of the
microcontroller shown in Fig. 2-13. As depicted in the fi gure, the microcontroller consists of the
microprocessor, the memory area holding the instructions—also termed program memory—and
the input/output modules [39]. All of these components exchange data and control information
via buses.

The microprocessor comprises the programmable entity handling the addressing and manipula-
tion of data, as well as the control of the time-specifi c and logical execution of a program.

The various memory areas provide storage for data and program instructions. A read/write access
type of memory (e.g., RAM) is required to provide storage for variable data. The memory type
suited to the tasks of storing program instructions and permanent data is read-only memory
(e.g., ROM). Most microprocessors also contain a small, integrated memory module holding
the so-called registers. Their purpose is to provide rapid read and write access.

AUTOMOTIVE SOFTWARE ENGINEERING

-58-

The input and output modules (I/O modules) provide the means for accepting external informa-
tion and passing data to peripheral devices. To facilitate adaptation of their functionalities to
the application they are serving, I/O modules provide limited programming options. Typical
examples of I/O modules are analog-digital converters used for data input, as well as pulse width
modulation modules and digital-analog converters to handle data output. Timers are employed for
counting external pulses or measuring intervals between events. Communications with external
components and/or other microcontrollers can be implemented by means of serial and parallel
interfaces. One example is digital data communications with extraneous microcontrollers by
means of the CAN bus [2]. Depending on the requirements of a given application, additional
functions may be integrated in a microcontroller.

2.3.3.3 Principal Microcontroller Operations

The blocks shown in Fig. 2-13 provide for the principal operating tasks of the microcon-
troller:

• Data processing
• Data storage
• Data exchange with peripherals

Fig. 2-13. Simplifi ed diagram of a microcontroller.

Arithmetic
Unit

Control
Unit

Program &
Data Memory

Data Memory

Input & Output Modules

Nonvolatile
Read Memory

Nonvolatile
& Volatile
Read/Write

Memory

Logical
Communication
Link

Essential System Basics

-59-

With these principal functions, the microcontroller can be used for the purposes of data transfer,
storage, and processing. The following sections provide a closer look at the individual micro-
controller building blocks facilitating these operations.

2.3.3.4 Microprocessor Architecture and Instruction Set

The microprocessor processes the inbound data entering via the input modules and controls
the fl ow of data. Its registers provide storage for operands, results, and addresses. Figure 2-14
shows an example of microprocessor architecture [39].

Fig. 2-14. Typical microprocessor architecture. (Ref. [39])

Control Unit Arithmetic Unit
Immediate Data-
Specific AddressControl Signals

Control Logic

Instruction
Register

Instruc-
tion
Address

Read/Write Memory

Instruction
Pointer

Address Buffer

Arithmetic
Logic Unit

Operand
Register

Operand
Register Program &

Data Memory
Data

Memory

Input & Output Modules

In this simplifi ed diagram, optional extensions that would increase computing speed were omit-
ted for the sake of clarity.

The architecture may be described in terms of the quantity of all registers available to the pro-
grammer.

AUTOMOTIVE SOFTWARE ENGINEERING

-60-

Certain confi gurations requiring merely infrequent changes are set by specifi c control registers.
As a result, the control registers represent a quasi-static instruction set extension. For example,
the interrupt control register defi nes which interruptions, or so-called interrupts, are permitted
and which are disabled. Additional control registers may be used to defi ne the functionality of
the arithmetic and logic unit (ALU) and of the I/O modules.

Some operations may infl uence program processing onboard the microprocessor. For example,
if an interrupt request is received from the periphery, this may generate program branching to a
defi ned memory address. While the so-called interrupt service routine stored at that location is
being processed, only interrupts having higher priority may interrupt this routine.

All other interrupt requests are stored in memory and are processed only after the currently
active interrupt service routine has ended. The status information generated in the process can be
committed to intermediate storage in program memory. However, in certain circumstances, this
may result in extremely long instructions. For this reason, to save capture of the state or status
of the microprocessor, special registers—in addition to the control registers—are integrated in
the microprocessor. This group of status registers also includes the program status register, the
interrupt status register, and the multiplier status word. Whenever this type of interrupt logic
is implemented in the form of a hardware solution, it also is known as a hardware interrupt
system.

Often, to reduce the number of read/write operations of the microprocessor memory, several
special computing registers, so-called accumulators, are integrated in the microprocessor. In
this way, intermediate results and frequently needed variables can be held onboard the micro-
processor. The reduction in the number of read/write memory operations accomplished in this
way facilitates an increase in clock frequency and, at the same time, reduces the current draw
of the microprocessor.

Operand Memory

The information linking arithmetical or logical operations is known as operands. To ensure rapid
operand loading prior to and after an arithmetical operation, several options are available. With
the memory location of the operands being the determining factor, the following microprocessor
architectures are distinguished:

• Memory/memory architecture

 The memory/memory architecture provides rapid operand loading by means of the main
read/write memory (i.e., the RAM). This is accomplished by explicitly linking the operand
memory addresses and the result of an arithmetical operation at the instruction level. Using
this method, for example, two operands stored in RAM can be added together with the use of
a single instruction. The result is then immediately available for write-back to RAM. The
designation “memory/memory architecture” is derived from the operand storage location.

• Accumulator architecture

 The accumulator architecture utilizes a memory cell that is integrated in the microprocessor.
This cell, termed accumulator, is permanently designated as both source and sink for any
arithmetical operation. Only the address of the second operand is part of the instruction

Essential System Basics

-61-

code. Prior to each arithmetical operation, the fi rst operand must be copied from memory
to the accumulator by means of a load instruction. Subsequent to the operation, the result
is again copied from the accumulator to the memory location.

• Memory/register architecture

 The memory/register architecture integrates a series of registers in the microprocessor. Both
operands are explicitly encoded in the instruction. However, only one of the operands can
be addressed directly through its memory address. The second operand and the result are
addressed in one of the registers. In a manner similar to the accumulator architecture, one
of the operands must be copied from memory to a register prior to the arithmetic operation.
With the operation completed, the result must be written back to memory. However, if the
number of registers is suffi ciently large, intermediate results may be held in registers, dis-
pensing with the need to constantly copy this data back and forth. Again, the designation
“memory/register architecture” is derived from the operand storage location.

• Load/store architecture

 The load/store architecture explicitly addresses both operands of an operation in the registers.
For this reason, each operation must be preceded by loading the operands into the registers.
The result is then copied back to memory again.

Operand Addresses

An additional distinguishing feature is the available number of implicitly and explicitly encoded
addresses. A simple example will facilitate an explanation. The operation C = A + B requires
an address for each of the three operands:

• Operand A

• Operand B

• Result operand C

• Explicit addressing

 Instruction set architectures permitting the random selection of the preceding three addresses
(i.e., providing the option of explicit encoding of three addresses) are known as nondestruc-
tive instruction set architectures.

• Implicit addressing

 Because three addresses often occupy an excessively large number of bits in an encoded
instruction, implicit addressing is used in many architectures. In implicit addressing, one of
the addresses of the two source operands also serves as the destination address. Therefore,
the result of the operation is stored at the address of one of the source operands, which causes
that operand to be overwritten (i.e., it is thus destroyed). This destructive procedure gave
rise to the designation destructive instruction set architecture.

AUTOMOTIVE SOFTWARE ENGINEERING

-62-

The full complement of instructions for a given microprocessor is termed instruction set. Aside
from differentiations in operand memory and operand addresses, the architectures governing
instruction sets for microprocessors differ in many aspects, among them the instruction size
and/or the manner in which instructions are executed [39].

In hardware-oriented programming, many additional details of the deployed microcontroller—
some of them quite specifi c—must be considered. This includes, for example, additional special
requirements related to interrupt processing, memory organization, and Flash programming, as
well as a variety of possible microcontroller operating states with regard to current draw (power
reduction modes). Because it is beyond the scope of this book to discuss these issues in detail,
reference is made to the documentation supplied with the respective microcontroller.

2.3.3.5 I/O Module Architecture

The input/output modules provide for the input of external signals and the infl uencing of manipu-
lated variables by means of output signals. In this way, the I/O modules comprise a link between
the microprocessor and its environment. In addition to a connection to the internal data bus
of the microcontroller, each I/O module features external connections termed pins, which are
suitable for connecting sensors and actuators, for example.

Figure 2-15 shows the schematic diagram of an I/O module [39]. Its principal tasks may be
divided as follows:

• Communications with the internal data bus of the microcontroller
• Communications with the environment
• Data storage
• Watchdog functions and timer control
• Fault recognition

Addressing

Input/output module types are differentiated as follows:

• Isolated I/O

 Two separate address areas accommodate the microprocessor memory and the memory des-
ignated for the I/O modules. Because only special instructions can be used for I/O modules,
their programming is subject to severe limitations.

• Memory mapped I/O

 Microprocessor and I/O modules share a memory area with a common address range. This
arrangement has the advantage of allowing the large number of instructions dedicated to
addressing microprocessor memory to be used for the I/O modules. One drawback—the
occupation of address space—does exist, especially affecting microprocessors utilizing a word
length of 4 or 8 bits. By contrast, state-of-the-art microprocessors handling word lengths of
16 or 32 bits operate only in conjunction with memory mapped I/O architectures.

Essential System Basics

-63-

Operating Mode

Another distinguishing characteristic of I/O modules consists of the supported operating modes.
Four different operating modes can be identifi ed:

• Programmed I/O

 The I/O module is directly controlled by the microprocessor, which handles its entire set of
functions by means of a single program. The microprocessor is thus forced to wait while an
I/O module is performing an operation. Therefore, this operating mode is used exclusively
with microprocessors handling only input/output tasks (e.g., controlling intelligent sensors
and actuators).

• Polled I/O

 The I/O module is capable of performing independent operations, during which the input/
output data are committed to intermediate storage in special buffers. The microprocessor
periodically checks the status of the I/O module and transfers new data if required. This
operating mode is suitable mainly for those microprocessors that feature only a software-
based interrupt system, a so-called software interrupt system.

Fig. 2-15. Typical architecture of an input/output module. (Ref. [39])

Program &
Data Memory

Data Memory

Nonvolatile
Read Memory

Nonvolatile &
Volatile

Read/Write
Memory

Data Register Control Register Status Register

Control Logic

Interrupt
Line

AUTOMOTIVE SOFTWARE ENGINEERING

-64-

• Interrupt-driven I/O

 The I/O module independently processes all input/output operations. Using a so-called
interrupt line, it informs the microprocessor of the presence of new data or of a required
microprocessor operation. As an essential advantage of this operating mode, the micropro-
cessor and I/O modules are able to operate in parallel. The microprocessor program must be
interrupted only in situations where the I/O module requires microprocessor assistance.

• Direct-memory I/O access (DMA)

 In this operating mode, the I/O modules are capable of a direct data exchange with the
memory area without the need for microprocessor participation. This operating mode is
supported mainly by microprocessors belonging to the top-end performance category. As is
the case with the interrupt-driven I/O, this operating mode requires hardware that prioritizes
all waiting requests and even blocks these if required.

More often than not, the software components covering the described hardware-oriented aspects
of the I/O modules of a microcontroller are grouped together in a layer of the platform software,
the so-called hardware abstraction layer. As depicted in Fig. 1-22 in Chapter 1, this book omits
from the hardware extraction layer those I/O units that are required for communicating with
other systems (e.g., via data buses). The software components required for communication are
considered separately. Their construction is discussed in Sections 2.5 and 2.6. Also, to evalu-
ate the infl uences on the real-time behavior of the microcontroller, a basic understanding of the
interrupt system of the microcontroller is an essential prerequisite.

2.4 Real-Time Systems

It has already been noted that the execution of control functions by the microprocessor—referred
to as processor in the sections to follow—is also subject to requirements based on time. This
is where the term real-time system has its origin. This section discusses the required terms,
basic principles, and confi guration of real-time systems in general, and of real-time operating
systems in particular.

2.4.1 Defi ning Tasks

Before attempting a description of the various methods used in the management and allotment of
resources for a single processor or an entire processor network, it makes good sense to provide
a balanced but general overview of all of the tasks to be handled and/or processed.

A network of processors is capable of handling several tasks simultaneously. In the follow-
ing discussion, the term task will be used to describe each unit of work that may be scheduled
or executed by one processor or a processor network, and that is slated for potential or actual
parallel processing. In this context, it is of secondary importance whether the various tasks are
actually handled by a network of processors, or whether they are executed in a quasi-parallel
fashion by a single processor.

Essential System Basics

-65-

The defi nitions used in this book closely follow the OSEK standard [16]. Therefore, rather than
applying the term process—although widely used in literature—to describe a unit of work to be
processed in a parallel fashion, the term task will be used—again, in adherence to OSEK. This
section discusses the defi nition and organization of task processing in relation to time.

Example: Various engine management tasks

In engine management, it may be logical, for example, to perceive the individual functions
of ignition, injection, or pedal value acquisition to be tasks that must be executed by the
microcontroller of the engine ECU on the basis of defi ned, time-specifi c requirements. In
the following section, tasks are represented by horizontal bars in relation to a timeline, as
shown in Fig. 2-16.

Fig. 2-16. Miscellaneous tasks handled by the engine ECU.

To dispense with the necessity of applying a variety of different designations in conjunction with
the processing of a given task—such as ignition, injection, or acquisition—summary reference
is made to task execution.

Task execution by a processor occurs sequentially. That is, the processor executes one instruc-
tion after another. In the diagrams to follow, the order in which the instructions of a task are
executed is represented by a time axis, or timeline, that follows a left-to-right progression.

In the event that several tasks are to be executed by a processor in a quasi-parallel fashion, the
processor must be allotted specifi c intervals for the individual tasks. At specifi c points along
the timeline, switchovers between the various tasks are required. The resulting time-based
graph assigning specifi c processor intervals to the various tasks is termed arbitration diagram
(Fig. 2-17).

Note that the term arbitration, denoting either the portioning-out of snippets of time to the pro-
cessor or the assignment of bus access permissions, may be used interchangeably with the term
scheduling introduced in Section 2.4.4, albeit with the caution that the application of the latter
is more OSEK-specifi c and relates explicitly to the allotment of processor time.

AUTOMOTIVE SOFTWARE ENGINEERING

-66-

Example: Allotting processor time to three tasks

Figure 2-17 shows the processor arbitration diagram for the three Tasks A, B, and C. In this
fi gure, a single task may be characterized by different states. The fi gure shows the respective
time slot during which the task is being executed by the processor. In adherence to OSEK,
this task state is labeled Running throughout this book.

Accordingly, Task A is initially in the Running state. When the processor has switched to
another task—Task B in Fig. 2-17—that task assumes the Running state, and so forth.

However, because the processor is capable of processing only one task at a time, it stands
to reason that only one task may assume the Running state at any time. In consequence,
the task executed prior to the switchover—Task A in our example—is required to enter into
another state.

The following section discusses the various defi ned task states, with the events triggering task
switching, and different strategies for task switching in real-time systems.

2.4.2 Defi ning Real-Time Requirements

At this point, with a view to planning and controlling tasks in real-time systems, it makes good
sense to formulate exact defi nitions for a suitable description of the time-specifi c task require-
ments. To this end, a clear-cut differentiation between a point in time (instant) and a time period
(interval) is needed.

2.4.2.1 Instants of Task Activation and Task Deadline

Two important parameters distinguishing a given task in a real-time system from that in a non-
real-time system are the instants of task activation and task deadline (Fig. 2-18) [42].

• In a real-time system, the activation point of a task is the instant at which task execution is
triggered or enabled.

• The task deadline point is the latest point in time at which task execution must be con-
cluded.

Fig. 2-17. A processor arbitration diagram for Tasks A, B, and C.

Essential System Basics

-67-

• The response time is the interval between the activation point and the conclusion of task
execution.

• The maximum permitted response time for a given task is also termed relative deadline. The
task deadline, also termed absolute deadline, can be calculated by adding, on the timeline,
the relative deadline to the activation point.

• The interval between two activations of a given task is termed activation rate. The activa-
tion rate must not be confused with the interval between two task executions, the so-called
execution rate.

This type of task-limiting condition, which is imposed on task execution in the form of a specifi ed
time window, is termed real-time requirement. In the simplest case, a real-time requirement for
a task can be described by its activation points and the associated relative or absolute deadlines.
Task real-time requirements are frequently defi ned by the activation rate or an activating event
and a relative deadline.

It is important to differentiate between the real-time requirements imposed on a task—effectively
a time window for task execution—and the time interval required for task execution, which is
also termed task execution time. As shown in Fig. 2-18, whenever the execution of a task is
not interrupted, the term execution time describes the interval between the start and end of task
execution. If task execution is interrupted, the task execution time is equal to the sum of those
intervals between the start and end of task execution during which the processor is handling
that task.

Fig. 2-18. Defi nition of real-time requirements. (Ref. [42])

Activation Rate

Execution Rate

Execution
Time 2

Execution
Time 1

Response Time 1 Response Time 2

Relative Deadline Relative Deadline

AUTOMOTIVE SOFTWARE ENGINEERING

-68-

2.4.2.2 Hard and Soft Real-Time Requirements

The discussion thus far has established that real-time systems must complement specifi c input
values by providing correct output values within a specifi ed time interval.

Real-time requirements often are divided into two categories, that is, hard and soft real-time
requirements. The relevant literature mentions many different defi nitions of hard and soft real-
time requirements. This book takes its orientation from the following defi nition, which adheres
to the specifi cations in [42].

A real-time requirement for a given task may be said to be hard, and the task termed a hard real-
time task if there is a request for a validation confi rming that specifi ed real-time requirements for
that task are always fulfi lled. The validation in this case would be proof obtained by means of
a procedure that is both accurate and verifi able. On the other end of the scale, if a verifi cation
of this type is not requested, all real-time requirements for a given task are deemed to be soft,
and the task is termed a soft real-time task.

Thus, hard real-time requirements for tasks may not be confused with, let alone equated to, the
safety relevance or “speed” of task execution.

Example: Real-time requirements for the functions of an engine ECU

The dynamics of the numerous engine subsystems to be controlled vary widely. The real-
time requirements for the functions of the engine ECU vary accordingly.

Those functions that must be executed in synchronization with specifi c crankshaft positions,
and thus require variable sampling rates, exhibit the highest, or fastest, sampling rates in
conjunction with high engine speeds. Depending on the number of cylinders and the maxi-
mum engine speed, the fastest sampling rates for the calculation of injection and ignition
are in the range of approximately one to two milliseconds.

Very high sampling rates are also used for intake and exhaust valve positioning functions,
or for engine management functions referenced to combustion pressure. Typical sampling
rates are in the range of 50 microseconds for valve positioning, and approximately 5 micro-
seconds in the area of combustion pressure acquisition.

By contrast, other subsystems exhibit signifi cantly lower dynamics. Thus, the respective
functions, such as those controlling engine cooling, can be handled with signifi cantly lower
sampling rates.

Therefore, it is safe to say that a typical real-time system for engine ECUs is characterized
by a large number of tasks. These are subject to a variety of real-time requirements—some
of them very demanding—specifying both constant and variable activation rates.

Essential System Basics

-69-

2.4.2.3 Defi ning Processes

A collection of different individual tasks featuring identical real-time requirements may be pro-
cessed either as a set of tasks or combined to one single task. The term process is used in this
context throughout this book. A succession of processes with identical real-time requirements
can be grouped together into a single task (Fig. 2-19). Here, the real-time requirements are not
specifi ed for the various processes but instead for the resulting task. The processes of a given
task are consecutively executed in the specifi ed order.

Fig. 2-19. Defi nition of processes and tasks.

2.4.3 Task States

2.4.3.1 Basic Task State Model (per OSEK-OS)

As demonstrated in Fig. 2-18, compliance with a task real-time requirement does not make it
mandatory for the activation point to be congruent with the commencement of the actual execu-
tion (i.e., the starting point). During the interval between activation point and execution, the
task enters a special intermediate state, which may be assumed, for example, at a point where
the processor is busy handling the execution of another task. In adherence to OSEK, this state is
termed Ready throughout this book. By contrast, the state assumed by the task prior to activation
and after execution is termed Suspended. These states and the transitions between them can be
visualized with the aid of a state machine. Based on OSEK-OS, the so-called basic task state
model is shown in Fig. 2-20. (The abbreviation OS stands for operating system.)

The task transitions are designated Activate, Start, Preempt, and Terminate. As applied to
Fig. 2-18, the state transition Activate occurs at the activation point, the transition Start marks
the starting point, and the transition Terminate occurs at the end point of task execution. The
task transition Preempt is designated for situations in which several tasks compete for the
processor. Depending on the selected processor arbitration strategy, it is conceivable that one
task, although in Running state, is displaced—or preempted—by a competing task before its
execution can run its course. In this case, the task being preempted undergoes the Preempt task
transition. A detailed discussion of several arbitration or scheduling strategies appears later in
Section 2.4.4.

AUTOMOTIVE SOFTWARE ENGINEERING

-70-

2.4.3.2 Extended Task State Model (per OSEK-OS)

In addition to the basic task state model, OSEK-OS defi nes an extended task state model. As
shown in Fig. 2-21, it defi nes an additional task state, that is, Waiting.

Fig. 2-20. The basic task state model (per OSEK-OS V2.2.1).
(Ref. [16])

Fig. 2-21. The extended task state model (per OSEK-OS V2.2.1).
(Ref. [16])

In certain circumstances, a task may need to interrupt its execution in order to wait for an event
that will allow it to continue processing. It then enters the task state Waiting until it may resume
its execution. The transition into this Waiting state is triggered by the task itself. During the
Waiting state, the processor can be assigned to another task. The additional state transitions
necessary for this strategy are designated Wait and Release.

Essential System Basics

-71-

2.4.3.3 Task State Model (per OSEK-TIME)

To assist time-controlled arbitration strategies, the time-triggered task state model was defi ned
per OSEK-TIME and is shown in Fig. 2-22. (The abbreviation TIME stands for Time-Triggered
Operating System.) A detailed discussion of time-triggered arbitration strategies appears later
in this chapter in Section 2.4.4.6. This task state model differentiates among the three states
Suspended, Running, and Preempted. The direct transition from the Suspended to the Running
state is designated Activate. The absence of the Ready state denotes that the activation point
and starting point for the execution of a task always coincide.

Fig. 2-22. The time-triggered task state model (per OSEK-TIME V1.0).
(Ref. [16])

As is the case with the task state models conforming to OSEK-OS, tasks in the Running state
can have their execution interrupted by other tasks. If this occurs, the interrupted task undergoes
the Preempt task state transition.

2.4.4 Strategies for Processor Scheduling

This section discusses several strategies for processor scheduling. The fi rst order of business
for a strategy of this type is to make a selection in situations where several tasks compete for
processor time. Using the example of the OSEK-OS extended task state model, a similar situ-
ation is depicted in Fig. 2-23. Five tasks in the Ready state compete for the processor.

Generally speaking, this situation may be said to exist as soon as a certain number of tasks have
entered each of the possible states. It is possible to discern between the set of inactive tasks
in the Suspended state, the set of ready tasks in the Ready state, the set of waiting tasks in the
Waiting state, and the set of executed tasks in the Running state. Of course, in the case of a
single processor, the latter set encompasses only one element [43].

AUTOMOTIVE SOFTWARE ENGINEERING

-72-

In addition to the various task state models discussed in this section, OSEK-based real-time
operating systems also support several strategies for processor scheduling. The operating sys-
tem component required for the implementation of the scheduling strategy is termed scheduler.
The component required to start execution is designated dispatcher. The structure of real-time
operating systems is discussed later in this chapter in Section 2.4.5.

2.4.4.1 Processor Scheduling—In Sequential Order

One available strategy enabling processor scheduling for the set of Ready tasks is the processor
allocation based on the sequential order of task activations. This is accomplished by arranging the
set of Ready tasks in a queue organized according to the FIFO (First In, First Out) principle.

In plain terms, this means that tasks that were activated at a later time need to wait until the
execution of their counterparts with earlier activation is concluded. It stands to reason that this
may take some time in some circumstances.

2.4.4.2 Processor Scheduling—By Priority

A strategy that is not based on the order of task activation may be implemented, for example,
by mapping scheduling rules on a scale of priorities, and by sorting the set of Ready tasks in
accordance with that priority scale.

Fig. 2-23. Task management by means of state sets. (Ref. [43])

Quantity
of Waiting
Tasks

Quantity
of Ready
Tasks

Quantity
of Inactive
Tasks

Task in Suspended State

Task in Ready State
Task in Running State

Task in Waiting State

Essential System Basics

-73-

2.4.4.3 Processor Scheduling—Combined Sequential and Priority Strategy

OSEK allows for the allocation of such a priority rating to any task, where a higher number cor-
responds to a higher priority. Tasks possessing the same priority rating are managed on the basis
of the FIFO principle. The overall management of the set of Ready tasks follows the combined
strategy depicted in Fig. 2-24. As a consequence, the respective next task to be executed is the
“oldest” one with the highest priority, shown in the upper left portion of the fi gure.

Fig. 2-24. Managing the set of Ready tasks (per OSEK-OS). (Ref. [16])

For this reason, the X-axis of the arbitration diagram frequently arranges the tasks in ascending
order of priority, as shown in Fig. 2-25.

Fig. 2-25. Preemptive processor scheduling—two tasks (per OSEK-OS).

Task in Suspended State

Task in Ready State
Task in Running State

Task in Waiting State

AUTOMOTIVE SOFTWARE ENGINEERING

-74-

Another differentiation criterion of priority-controlled arbitration strategies is the issue of
whether the scheduling of a higher-priority task occurs with or without preemption of the task
being executed at the time and which is in the Running state. Accordingly, a differentiation is
made between preemptive and nonpreemptive scheduling.

2.4.4.4 Processor Scheduling—Preemptive Strategy

The preemptive processor scheduling strategy allows for the interruption of the execution of a
low-priority task by a task that has a higher priority. If this interruption may occur at any point
of the execution, this is termed fully preemptive scheduling. A scenario of this kind is depicted
in Fig. 2-25. The execution of Task A is interrupted by the higher-priority Task B, as soon as
Task B has entered the Ready state. Processing of Task A continues only after Task B has been
executed.

2.4.4.5 Processor Scheduling—Nonpreemptive Strategy

The nonpreemptive processor scheduling strategy dictates that the switchover from a low-priority
task to a higher-priority task may occur only at specifi c points in time. This would be the case,
for example, after the conclusion of the currently active process of the low-priority task. Alter-
natively, the switchover may occur after all processes associated with the low-priority tasks
have been executed. This results in a situation where a non-interruptible process or task with
low priority can delay the execution of a task with higher priority. A scenario of this kind, with
Task A and Task B, is depicted in Fig. 2-26.

Fig. 2-26. Nonpreemptive processor scheduling—two tasks (per OSEK-OS).

Task in Suspended State

Task in Ready State
Task in Running State

Task in Waiting State

Essential System Basics

-75-

As is the case with the real-time requirement and the task state, the priority is a so-called attribute
that is assigned to each task.

However, the differentiation between preemptive and nonpreemptive scheduling is not a task
attribute but instead an attribute of the scheduling strategy. This strategy is applied to the entire
set of Ready tasks that must be scheduled.

For example, it also would be possible to divide the collection of Ready tasks into a fi rst subset
for preemptive scheduling, and into a second complementary subset slated for nonpreemptive
scheduling. In the event that both subsets compete for the same processor, an appropriate
scheduling strategy again must be defi ned at the subset level—possibly in the form of a priority
for each subset.

2.4.4.6 Processor Scheduling—Event-Driven and Time-Controlled Strategies

Under the auspices of a dynamic processor scheduling strategy, scheduling decisions are made
only in the course program execution during the so-called runtime, or online. This means that
fl exible responses to events are possible during execution, which in turn may cause the processing
sequence of the Ready tasks to be rearranged. If this is the case, the term event-driven strategy
often is used. The time expended in the calculation of scheduling decisions, that is, the execution
time of the scheduler itself, may well infl uence the real-time characteristics of the entire system.
This effect contributes to an increase of the execution time required by the real-time system itself,
the so-called runtime overhead. Because of the possible response to random events, an accurate
prediction of the runtime characteristics of an event-driven system is not possible.

By contrast, a static processor scheduling strategy allows for all scheduling decisions to be fi nal-
ized prior to program execution, or offl ine. Because this strategy requires that all events must
be known beforehand, it stands to reason that the nature of this approach introduces restrictions
in terms of responses to events. Thus, the only possible responses are related to predefi ned and
therefore time-dependent events. Hence the term time-driven strategy is often used. The effect
on the real-time characteristics of the overall system of the time expended in the calculation of
scheduling decisions is negligible because—if a scheduler is needed at all—only a very simple
function is needed. The runtime overhead of the real-time operating system is correspondingly
lower.

The arbitration diagram can be calculated prior to the actual execution and stored in the form of
a dispatcher table. In this way, a specifi c point in time is defi ned for the activation of each task.
This dispatcher table is evaluated by the dispatcher function, which starts the task execution at
the predetermined point instants.

Figure 2-27 shows an example of a dispatcher table. The associated arbitration diagram appears
in Fig. 2-28. The situation depicted here defi nes a fi xed time window for the execution of each
task. When the table has been processed in a procedure termed dispatcher round, the activation
of the task succession is repeated, beginning with the fi rst—or top—table entry. In this example,
this occurs after a dispatcher cycle interval of 40 time units has elapsed.

AUTOMOTIVE SOFTWARE ENGINEERING

-76-

The runtime characteristics of a system of this type may be accurately predicted, provided the
time window allotted for a given task is suffi ciently large for the execution of that task. Because
the execution time required for a task can vary, depending on the program path being processed,
an estimation of the maximum required execution time—a kind of worst-case estimate—is nec-
essary. This so-called worst-case execution time (WCET) for a given task becomes a determin-
ing variable for the defi nition of the lower threshold for the time windows, which also affects
time control. Appropriate methods for determining the WCET are discussed in Section 5.2 of
Chapter 5.

Fig. 2-27. Static dispatcher table.

Dispatcher Round

Fig. 2-28. Static scheduling diagram.

Time Window for Task B

Dispatcher Cycle
Task in Suspended State
Task in Running State

Task in Preempted State

Essential System Basics

-77-

2.4.5 Organization of Real-Time Operating Systems

Generally speaking, real-time operating systems distinguish three essential components. The
components shown in Fig. 2-29 follow the organization of a real-time operating system as
described in OSEK-OS.

Fig. 2-29. Simplifi ed organization of real-time operating systems.

Information about
Time- and

Event-Controlled
Activation for All Tasks

Information about
Required and Available
Resources for All Tasks

Quantity of
Inactive Tasks

Quantity of
Ready Tasks

Priority Queue of
Ready Tasks

Executed Task

Activation by
Real-Time Clock or Event

• One component handles the activation of tasks and manages the set of Ready tasks. Task
activation may be time dependent (based on a real-time clock) or event driven (e.g., an inter-
rupt). To accomplish this, this component requires all information regarding the activation
points or activating events for all tasks.

• The scheduler evaluates the set of Ready tasks and prioritizes their execution in accordance
with the processor scheduling strategy.

• The dispatcher manages the resources for all tasks. For example, provided that resources
are available, it starts the execution of the task with the highest priority rating.

AUTOMOTIVE SOFTWARE ENGINEERING

-78-

2.4.6 Interaction Among Tasks

It was already noted that tasks were introduced as working units—or individual tasks—for pos-
sible or actual parallel processing, all of which carry an individually defi ned real-time requirement.
This assertion notwithstanding, different tasks work together to provide a primary function. For
example, the three tasks shown in Fig. 2-16 represent a basic function of the engine ECU.

Thus results the necessity of interaction among the tasks, that is, the exchange of information
across individual task boundaries [43]. The discussion throughout the following sections
touches on available mechanisms for inter-task interaction, such as event-based synchroniza-
tion, cooperation using global variables, and message-based communication.

2.4.6.1 Synchronization

Figure 2-30 shows the processing sequences of two tasks engaged in event-based interaction.
This type of diagram is also termed message sequence chart [44]. It is used repeatedly in depict-
ing task interaction throughout the following sections. The time axis t in the message sequence
chart is characterized by a top-to-bottom progression.

In this example, receiving Event X in Task B causes a state transition from B1 to B2 in Task B.
Further, the feedback about Event Y sent to Task A causes the recipient to enter a correspond-
ing state transition. In this way, the synchronization of so-called quasi-concurrent tasks—or
quasi-parallel tasks—can be accomplished, ensuring a logical processing sequence. Section B2
or, more precisely, State B2 in Task B, will be entered only after receiving Event X and thus
after State A1. State A3 in Task A will be entered only after receiving Event Y and thus after
State B2.

Because the task execution is quasi-parallel, confl icts may arise (e.g., when several tasks attempt
to access shared resources). Examples of some of the typical confl ict situations are depicted here

Fig. 2-30. Message sequence chart describing the synchronization
between quasi-concurrent Tasks A and B.

Essential System Basics

-79-

(e.g., Figs. 2-33 and 2-35). Any mechanisms designed to facilitate inter-task interaction must
consider confl icts of this nature, with a view to resolving them by way of synchronization.

The set of all states and the set of all events causing state transitions in a distributed system can
be depicted by state machines (Fig. 2-31).

Fig. 2-31. The state machine for Task A and Task B

Interactions of this type among tasks for which only one event is of relevance and there is no
content information (i.e., data are transferred) are termed synchronization. Real-time operating
systems generally support a number of mechanisms for inter-task synchronization.

2.4.6.2 Cooperation

If payload data are to be transferred during an interaction, additional mechanisms will be required.
The simplest option consists of the interaction of different tasks by means of shared data areas,
so-called global data areas [43]. This procedure is also known as cooperation. By way of
example, Fig. 2-32 shows a global Variable X that is used for the purpose of cooperation between
Tasks A and B. Task A writes a value x onto Variable X, and this value is read by Task B.

Note that this approach of utilizing global variables may, in certain circumstances, result in data
inconsistencies in real-time systems. Figure 2-33 depicts a critical situation of this type. Task A,
engaged in the process of writing to global Variable X, is interrupted by Task B. Because the
write access is not yet concluded, Variable X now contains an invalid or inconsistent data frag-
ment, which, at this instant, is being read by Task B. Thus, further processing of this piece of
inconsistent data may be expected to produce wholly unpredictable consequences.

Therefore, it is logical to require an assurance of data consistency of any cooperation mechanism.
Because of its importance, this demand bears formulating in most certain terms: It must be war-
ranted that the following will be true for the time interval framed by the start and end points of

AUTOMOTIVE SOFTWARE ENGINEERING

-80-

Fig. 2-33. Inconsistent data and global variables.

Fig. 2-32. Cooperation using global variables.

a Task Ti. All data being accessed by the Task Ti shall change their value if—and only if—that
value is changed by the Task Ti itself!

There are two methods by which this requirement may be met:

• Method 1 guarantees the data consistency during a write access. All interrupts are locked
for the duration of a write access to the global Variable X (Fig. 2-34). This is not required
in the case of so-called atomic operations, that is, operations being handled by the processor

Fig. 2-34. Interrupt lock during write access, ensuring data consistency.

Essential System Basics

-81-

in a continuous fashion. For example, for a processor with a word length of 16 bits, write
operations to 8-bit and 16-bit variables are termed atomic, whereas this is not the case with
write operations to 32-bit variables. Accordingly, the interrupt inhibit for a 16-bit proces-
sor must be activated only while writing to variables greater than 16 bits (e.g., for 32-bit
variables).

• Method 2 concerns data consistency during read access. If a global variable is read repeat-
edly while a task is being processed, the consequence may be inconsistent values of the
variable during task execution. Figure 2-35 shows an example of this. Task A initially
writes the value x1 to Variable X. This value x1 is then read and processed by Task B. In
the course of events, Task B is interrupted by Task A, and Task A again writes a value to
Variable X—only this time, the value is x2. As processing continues, if Task B were to use
value x2 for its calculations, the consistency of its output variables could not be guaranteed.
Again, there may be unpredictable consequences.

Fig. 2-35. Inconsistent values resulting from interruption of Task B by Task A.

 One such example is the further processing of Variable X in Task B in a division Z
Y

X
= .

Although the division is carried out only if X 0, a division by 0 may occur. This will hap-
pen, for example, if, prior to carrying out the division, x1 was used to verify whether x1 0,
and if, during the actual division, the value x2 = 0 is used because Task B is interrupted in
the interval between the verifi cation and division operations.

 The data consistency during read access must be ensured by way of synchronization based
on a defi ned event.

AUTOMOTIVE SOFTWARE ENGINEERING

-82-

2.4.6.3 Communication

Any inter-task interaction across separate local data areas requires data transport. A mechanism
for handling data transport is termed a communication [43].

A communications method of this kind also may be employed to resolve the synchronization
issue described in Fig. 2-35. In this way, the consistency of the value of global variables sub-
ject to read and write access during task execution may be preserved through additional copy
mechanisms.

With respect to read-accessed variables, this means that local copies of the input variables are
made each time a task execution is started—regardless of the point in time at which these input
variables may be needed. Expressed differently, the starting point of task execution becomes
the defi ned synchronization point. The values that were valid at the synchronization point are
then used for the duration of task execution. Given the circumstances, this copy mechanism
also may require that the interrupts be locked.

Relative to the example in Fig. 2-35, this means that a local copy of Variable X is stored at the
time the execution of Task B is started. In the subsequent diagram in Fig. 2-36, this copy car-
ries the value x1. Accordingly, Task B uses the value x1 contained in this copy for the entire
duration of task execution.

Fig. 2-36. Consistent values resulting from local message copies.

The mechanism providing tasks with repeated write access to variables is similarly structured.
Again, the procedure starts with an internal copy that is written to the global variable only at
the end of task execution. In other words, it is also the end point of task execution that may be
defi ned as a synchronization point.

Next Page

Essential System Basics

-83-

It stands to reason that the described mechanisms must be applied to all input and output vari-
ables for a given task. Thus, it must be ensured that the entire collection of input and output
variables is consistent within itself, and that a given Variable X may not be permitted to adopt
an older value, while Variable Y uses a more recent value.

This book—as does OSEK—refers to any mechanism facilitating inter-task communications as a
message mechanism. Therefore, instead of referring to a write access—with the aforementioned
protective measures—to a global variable, the term sending a message is used. Conversely, the
action of reading—with the described protective measures—from a global variable is referred
to as receiving a message.

Additional variants of the message mechanism are discussed in Section 2.5.5.1.

At this point, note that in certain circumstances, and with the application of the nonpreemptive
scheduling strategy, there may not even be a chance for the critical situations discussed here to
occur. The simple reason is that this scheduling strategy does not normally permit the interruption
of a write operation to a global variable. Also, the interruption of the execution of a low-priority
task by a higher-priority task—if possible at all—may occur only at predefi ned points. These
points can be defi ned in such a way that they become noncritical. In such cases, the behavior
of both global variables and messages in inter-task interaction is identical. This characteristic
may be exploited with a view toward achieving offl ine optimization of the required memory
and runtime resources by reducing the volume of unnecessary copies. To this end, Section 5.4
in Chapter 5 presents a more detailed discussion of suitable methods.

2.4.6.4 Interaction Among Tasks in the Logical System Architecture

The simple examples presented in the preceding sections clearly indicate that a logical view of
the interaction among tasks, comprising an abstraction of the real-world technical implementa-
tion on the basis of events, global variables, or messages, provides advantages in many cases.
This being the case, the following sections also utilize message sequence charts at the level of
logical system architecture, as shown in Fig. 2-37, in the depiction of the interaction among
tasks being executed on a single processor or on multiple processors. In this context, instead of
referring to mechanisms such as events, global variables, and messages, the collective term is
signal. Therefore, in Fig. 2-37, Task A sends a Signal X to Task B, which may be implemented
by way of several mechanisms.

Fig. 2-37. Logical view of the interactive relation
between Task A and Task B.

Previous Page

AUTOMOTIVE SOFTWARE ENGINEERING

-84-

For detailed information on real-time systems and real-time operating systems, reference is made
to the relevant specialized literature [42, 43, 45] and to the OSEK specifi cations [16].

2.5 Distributed and Networked Systems

Until this point, the discussions and observations were limited to information germane to the
topic of electronic systems with autonomous operation (Fig. 2-38).

Early in the course of development, rising expectations concerning the functions provided by
electronic systems led to demands for a new concept, that is, the transition from separate indi-
vidual systems with autonomous operation to a fully integrated system. A multifunctional system
of this kind requires the knowledge of all essential functions and signals onboard the vehicle.
This integrated system is a result of the networking of the various ECUs of the vehicle, as well
as the implementation of comprehensive general functions (Fig. 2-39). One example of this is
the traction control system—a high-level function implemented by the concerted action of both
the engine and ABS ECUs. As a consequence, rather than requiring individual optimizations,
this approach also facilitates a general optimization.

However, as may be expected, the design and implementation of these so-called distributed and
networked systems present a variety of additional challenges. In addition to the implementation
of various quasi-concurrent tasks on a single processor, the development now has reached a point
where the interaction of many interdependent tasks with spatial distribution and truly parallel
execution, termed truly concurrent tasks, is taking center stage. The respective task interaction
is handled by a communications network (Fig. 2-40).

Fig. 2-38. Electronic systems with autonomous operation.

Essential System Basics

-85-

Fig. 2-39. Networked ECUs forming a distributed and networked system.

Network Node BNetwork Node A

Network Node D

Technical
Communication
Link

Network Node C

Fig. 2-40. Implementation of control and monitoring functions by an ECU network.

ECU Network

Generators

Open-/Closed-
Loop Control,

Monitoring

Some of the features, properties, and mechanisms of distributed systems were fi rst mentioned
in Section 2.4. To the extent that additional terms will be required for better understanding of
subsequent sections, these are introduced next.

AUTOMOTIVE SOFTWARE ENGINEERING

-86-

Throughout this book, the defi nition of distributed and networked systems follows the defi ni-
tion in [38]:

A distributed and networked system comprises several sub-systems
engaged in communication. In this process, data control, hardware and
the data itself are—at least in part—decentrally organized.

A distributed and networked system often represents an integration of several processors featuring
individual onboard memory. The processors are interconnected by a communications network.
The system control occurs in parallel in the various local areas and handles the control of quasi-
concurrent tasks. The data to be processed are distributed among the various memory areas.

Thus, a network of electronic control units—or an ECU network—of the type deployed in
vehicles may be called a distributed and networked system.

Compared with centralized systems, distributed and networked systems provide a large array
of benefi ts in the automobile.

• They provide for the spatial distribution of individual systems that work together to provide
a coherent function. For example, the body systems, such as the vehicle access system,
are characterized by extreme spatial distribution. The various individual systems in the
doors (e.g., locking system, power window unit, and mirror adjustment), in the roof area
(e.g., sliding sunroof control or soft top controller), the tailgate controller in the trunk, and
cabin interior systems (e.g., such as seat adjustment and steering column adjustment) must
work together. Compared with a centralized system, distributed or networked systems
provide a signifi cant reduction of wiring expense.

• Quite often, distributed and networked systems also provide benefi ts in terms of simple
expandability and scalability. The automotive customer is able to assemble his or her own
vehicle from a portfolio of optional extras. Given the modular implementation of these
optional functions by means of distributed and networked systems, expandability is simple
and cost effective, and scalability is particularly great. Even vehicle variants such as sedan,
convertible, coupe, or station wagon—or engine or transmission variants—can be imple-
mented with distributed and networked systems. An added value is the reuse or multiple
use of components in the manner contemplated by a modular or building block strategy.

• Compared with individual systems with autonomous operation, distributed and networked
systems frequently exhibit a higher level of functionality. A case in point is the adaptive
cruise control system (i.e., a driver-assistance system with distance-sensing radar). In con-
trolling vehicle speed to harmonize with traffi c fl ow, the system also provides “high-level
functions” for engine control and the braking system (see Fig. 1-7 in Chapter 1).

• Distributed and networked systems also provide advantages in terms of fail-safe or failure-
tolerant design. This plays an important role in system reliability and safety. A detailed
discussion of reliability and safety aspects appears later in this chapter in Section 2.6.

Essential System Basics

-87-

2.5.1 Logical and Technical System Architecture

If the communications between ECUs are handled, as depicted in Fig. 2-39, by assigned hard-
wired communication links between two ECUs in each case, the result is a rapid rise in the number
of peer-to-peer connections. However, considering the aspects of cost, reliability, weight, and
maintenance, this approach cannot be implemented onboard a vehicle. It stands to reason that
the technical connectivity between the network participants, the so-called network nodes, calls
for a decidedly simpler implementation. In actual practice, the approach of mapping individual
communication links onto a shared communications medium, the so-called bus, has been very
successful (Fig. 2-40).

Thus, the difference between the view of logical communication links and that of technical com-
munication links is benefi cial for the development of distributed and networked systems.

To illustrate this assertion, the following sections make use of the notation featured in Fig. 2-41.
Logical communication links are drawn as connecting arrows, whereas technical communica-
tion links are represented by solid lines. To emphasize this differentiation, the network nodes
in the logical system architecture are shaded grey, and those in the technical system architecture
remain white.

Fig. 2-41. The logical and technical system architecture of distributed and networked systems.

Logical
Communication
Reference

Network
Node A

Network
Node B

Network
Node C

Network
Node D

Technical
Communi-
cation Link

Network
Node A

Network
Node B

Network
Node C

Network
Node D

Logical System
Architecture

Technical System
Architecture

The challenge inherent in designing, commissioning, and testing distributed and networked
systems consists of mapping the logical communication links among network nodes onto the
technical communication links, that is, the shared communication medium, the bus.

AUTOMOTIVE SOFTWARE ENGINEERING

-88-

Characteristic issues arise from situations where several network nodes compete for send access
to the bus. For this reason, the communication system must ensure that only one network node
is sending on the bus at any time. Various strategies for bus arbitration—the so-called bus
access—are discussed later in this chapter in Section 2.5.6.

2.5.2 Defi ning Logical Communication Links

As shown in Fig. 2-37, message sequence charts can be used as a logical notation for descriptions
of communication links among tasks being executed by different processors. The client/server
model and the producer/consumer model comprise essential models for the description of com-
munication links.

2.5.2.1 Client/Server Model

Figure 2-42 shows the sequential progression of a communication procedure in the form of a
client/server model. Task A—the client—calls for the service from the communication system
by issuing a request. The communication system informs Task B—the server—of this request
by sending an indication. The server reports the execution of the service by sending a response
to the communication system. The latter informs the requesting party—Task A—of the execu-
tion of the requested service by sending a confi rmation. In the case of services for which there
is no confi rmation, response and confi rmation are dropped.

Fig. 2-42. Message sequence chart for confi rmed service
in a client/server model.

Client Server

Request Indication

The client/server model always describes a peer-to-peer relation between client and server, even
in situations where several clients or several servers may exist.

Example: Communications between an ECU and diagnostic tester

Onboard the vehicle, the client/server model is ideally suited to the task of defi ning the off-
board communications between the diagnostic tester and the ECUs. The diagnostic tester
converts the instruction of the user into event-driven communications with an ECU. To

Essential System Basics

-89-

accomplish this, the diagnostic tester, acting as a temporary network node, assumes the role
of client and issues its standard request for a service on a server—the ECU. Figure 2-43
shows an example of the logical and technical system architecture.

Fig. 2-43. Offboard communications between a diagnostic tester and ECUs.

Network Node A

Diagnostic Tester
(Temporary
Network Node D)

Network Node B Network Node C

Network Node A

Network Node B Network Node C

Diagnostic Tester
(Temporary
Network Node D)

Logical System
Architecture

Technical System
Architecture

2.5.2.2 Producer/Consumer Model

Figure 2-44 shows the sequential progression of a communications procedure according to the
producer/consumer model. This type of logical notation is suited to the description of services
in which one task (the producer) furnishes, without prior request, several other tasks (the con-
sumers) with information.

Fig. 2-44. Message sequence chart for a service in the producer/consumer model.

AUTOMOTIVE SOFTWARE ENGINEERING

-90-

The producer/consumer model describes a relation between a producer and several consum-
ers. Thus, it is suitable for sending signals to a group of network nodes or to all network nodes
(broadcast relation).

Example: Onboard communications among ECUs

The producer/consumer model is suited to the implementation of control and monitoring func-
tions that are distributed across several network nodes and that require periodic exchanges
of signals. Therefore, the predominant application of the model is the defi nition of onboard
communications, that is, communications among several networked ECUs onboard the
vehicle. Figure 2-45 shows an example of the logical and technical system architecture.

Fig. 2-45. Onboard communications among ECUs.

Network Node A

Network Node B Network Node C

Network Node A

Network Node B Network Node C

Logical System
Architecture

Technical System
Architecture

2.5.3 Defi ning the Technical Network Topology

The architecture determining the organization of technical communication links is termed network
topology. Figure 2-46 presents schematic diagrams of the three important basic confi gurations
(i.e., the star, ring, and linear topologies).

More sophisticated network topologies can be assembled on the basis of these three basic con-
fi gurations. Individual network segments can be interconnected by so-called gateways.

2.5.3.1 Star Topology

In the star topology, the network nodes are interconnected via peer-to-peer connections with a
central network node Z. All communications are handled via the central network node Z. Thus,
the node Z requires (n – 1) interfaces in the presence of n network nodes. A failure of the central
node Z curtails all communications.

Essential System Basics

-91-

2.5.3.2 Ring Topology

The ring topology comprises a closed daisy-chain of peer-to-peer connections. All network
nodes are designed to function as active elements, capable of regenerating and forwarding
inbound information. This topology permits the implementation of networks of great spatial
expanse. It is instructive to note, however, that unless suitable measures (e.g., for the detection
and bridging of failed nodes) are introduced, the failure of a single network node may disable
the entire network.

2.5.3.3 Linear Topology

The characteristic feature of the linear topology is the passive connection of all network nodes
to a common communication medium. A unit of information sent by one network node is avail-
able to all other nodes. The linear topology facilitates easy cabling and network node connec-
tion and allows for simple expandability. The failure of one network node will not necessarily
cause the entire network to fail. A random number of logical communications relations can be
implemented without great effort.

Because of the benefi ts discussed, the linear topology is frequently found in vehicles. The most
well-known representative of linear topologies is the controller area network (CAN) [2]. It has
been deployed in vehicles since the beginning of the 1990s.

2.5.4 Defi ning Messages

In most automotive applications, serial communication systems are employed. This requires that
signals among tasks being executed on different processors must be transferred serially. This is
accomplished by embedding the signals to be transferred in standardized message frames, whose
size is defi ned in most cases. A message frame that is fi lled with information is termed message.

Fig. 2-46. Network topologies.

Network Node A Network Node B Network Node A Network Node B Network Node A Network Node B

Network Node C Network Node D Network Node C Network Node D Network Node C Network Node D

Star Topology Ring Topology Linear Topology

Network
Node Z

AUTOMOTIVE SOFTWARE ENGINEERING

-92-

The serial transfer procedure may produce situations where one signal is divided into several
messages; conversely, it is also possible that one message transports several signals. The mes-
sages are conveyed via a communications medium (e.g., an electrical or optical medium). To
aid the synchronization of tasks being executed on different processors, blank messages devoid
of signals may be used.

The information conveyed by means of a message is termed payload data. Figure 2-47 shows
a typical message structure.

Fig. 2-47. Message, payload data, and signals.

State, Control, &
Test Information

Payload Data

In addition to the payload data, the message frame contains information about the message
itself, such as an identifi er for addressing purposes, as well as status, control, and CHECKSUM
information required, for example, for the recognition and handling of transmission errors.

2.5.4.1 Addressing

Addressing is used to map the relations between the sender and recipient of a message. Here,
a differentiation is made between node addressing and message addressing.

For example, if a message is to be transferred from network node A to network node B, node
addressing causes the address of network node B to be entered in the identifi er of that message.
Upon receiving the message, each network node compares the identifi er of the incoming mes-
sage with its own address and processes only those messages carrying identifi ers that produce
a match.

However, if each message is unambiguously marked with a message address, an incoming
message can be easily received and evaluated by several network nodes. In this process, each
network node employs frame fi ltering to determine whether or not the incoming message is of
interest to the respective node. The benefi t of this addressing method lies in the fact that a given
message needed by several network nodes must be transmitted only once, and that it becomes
available to all receiving network nodes at the same time.

Essential System Basics

-93-

2.5.4.2 Communications Matrix

All communications relations within a network may be collected in the form of sender/recipient rela-
tions in a table termed a communications matrix, or C-matrix, for short. As a result, the C-matrix
will contain all network information bearing relevance to communications.

A sectional excerpt of a C-matrix appears in Fig. 2-48. The left-hand column lists all network
nodes (i.e., all networked ECUs). The next columns to the right present the messages and the
payload data in the form of signals being sent by the respective network node. The remaining
columns again indicate the network nodes. Here, the senders and recipients of messages are
identifi ed by the respective code letters. The letter “R” stands for Recipient, denoting those
network nodes that receive and evaluate messages. Correspondingly, the letter “S” identifi es a
message sender.

Fig. 2-48. Communications matrix.

Left Front
Right Front
Left Rear
Right Rear

Network Node Message Signal

AUTOMOTIVE SOFTWARE ENGINEERING

-94-

2.5.5 Organization of Communications and Network Management

To recap, although messages must be sent and received at the technical network level, in many
cases the item of interest at the logical network level is the payload data (i.e., the transferred
signals). Thus, each network node requires a component that handles the mapping of signals
onto messages, and vice versa. This component of the communication system is also termed
transport layer. Figure 2-49 shows an overview of a communications model.

This section discusses the structure of the transport layer (per OSEK) in greater detail. The latter
follows the ISO reference model for data communications [46, 47], the so-called open systems
interconnection model, also known as the OSI model.

OSEK-COM—the acronym “COM” standing for communications—defi nes software components
for communications among network node software and standardizes the associated interfaces.
OSEK-NM—the acronym “NM” denoting network management—provides corresponding defi ni-
tions for network management. Figure 2-50 shows an overview of the software components.

Because almost all of the ECUs onboard a vehicle are networked, the vehicle-wide standardiza-
tion of this communications layer architecture provides benefi ts in the areas of specifi cation,
integration, and quality assurance. In this context, the OSEK standards cover the realm of
onboard communications. Standards for offboard communications (e.g., of the type requiring
support for diagnostics or software updates in the service shop) were developed by ASAM and
ISO [17, 25, 26].

Fig. 2-49. Communications model.

(e.g., signals)
Payload Data

Transport
Protocol

Message
Queue

Bus Access
Control

Network
Interface

Network
Node A

Network
Node B

Essential System Basics

-95-

2.5.5.1 Communications (per OSEK-COM)

OSEK-COM defi nes several variants of the message mechanism introduced in Section 2.4.6.3.
Regarding communications among tasks, a differentiation is made between queued messages
and unqueued messages.

• For unqueued messages, the size of the message receive buffer, the so-called message queue,
is always limited to a single message. An unqueued message is overwritten with the Send-
Message() service as soon as a new message arrives. The message contents can be read by
the application with the use of the ReceiveMessage() service. Because the message is not
deleted by the read access, it may be read as often as desired. This type of communication
is especially suited to the communications among tasks subject to execution at different
activation rates. For this reason, this is often the method of choice for communications
among different tasks running on the same network node.

• However, in the case of queued messages, a message queue can accommodate several
messages. The message queue is organized on the basis of the FIFO (First In, First Out)
principle. Thus, the messages are read and processed in the order that they are received.
The ReceiveMessage() service always reads the “oldest” message in the message queue.
The message is deleted after reading, and the application always works with a copy of the
message.

Fig. 2-50. Overview of software components (per OSEK-COM V3.0.1). (Ref. [16])

7-Layer Model

to ISO/OSI

OSEK-COM

Layer Model

OSEK-OS

Operating System

AUTOMOTIVE SOFTWARE ENGINEERING

-96-

A further distinction is made between event messages and state messages on the basis of message
type. Depending on whether the message refers to the occurrence of an event or the value of a
state variable, the use of one or the other communications method makes good sense.

• In the event that each occurring event is of relevance, the loss of a single message may
cause the loss of synchronization between sender and recipient. The messages ensuring
this synchronization also are termed event messages.

 An application case in point is rotational speed measurement by means of incremental
encoders. The loss of one event—here a transition of the speed signal—introduces a fault
to the speed calculation.

• By contrast, if the current value of a state variable is of interest, the overwriting of an older
value by the current value may be permitted. The messages used in this case also are termed
state messages.

 One application case in point is temperature acquisition. Most of the time, the loss of one
measured value from a temperature sensor may be permitted because this will not normally
cause faulty temperature calculations.

2.5.5.2 Network Management (per OSEK-NM)

In addition to the communication-specifi c functions residing in the various layers of the OSI
model, the operation of a communication system calls for a number of additional organizational
functions. To facilitate the implementation of these functions, the communications model was
extended by the so-called network management throughout all of its layers.

For example, the network management handles the setting of operating parameters and the
control of the operating modes of the microcontroller onboard a network node. On one hand,
this includes the switchover between the different operating states of the microcontroller, with a
view to reducing current draw. On the other hand, it involves the operation of network segments
by placing network nodes in Wake Up or Shut Down states. Further, the network management
monitors the network nodes participating in communications. It also provides logging and
reporting functions for errors detected in this process, to which application-dependent responses
thus become possible.

Example: Node monitoring per OSEK-NM

OSEK-NM implements node monitoring by means of a logical ring (Fig. 2-51). This is
accomplished by passing a special type of message—a so-called token—from one network
node to the next (i.e., in each case, from the logical predecessor to the logical successor).
When a token has been passed around the logical ring, a determination may be made whether
all nodes are active and free or errors. If the token is no longer being received by a cer-
tain node for a defi ned period, this will be recognized as a fault or failure by the network
management of that node. Appropriate responses are then possible in the application of
the affected node.

Essential System Basics

-97-

2.5.6 Strategies for Bus Arbitration

In the event that several nodes attempt to send a message on the bus, bus arbitration must
be subject to unambiguous rules. Making the correct selection from a number of available
approaches for resolving bus access confl icts is a major determinant in the deployment of this
communication system in real-time systems. Thus, this section presents an overview of typi-
cal strategies. For a detailed discussion of the topic at hand, reference is made to the relevant
specialized literature [48]. The commonly applied bus access strategies and their designations
are described in Fig. 2-52.

Fig. 2-51. Logical ring for node monitoring (per OSEK-NM V2.5.2).
(Ref. [16])

Logical Ring

Fig. 2-52. Organization chart of bus access strategies. (Ref. [48])

Decentralized
Control

Centralized
Control

Bus Access
Method

Uncontrolled
(Random)

Collision-Free Collision-Prone

Master/Slave
Architecture

Multimaster
Architecture

AUTOMOTIVE SOFTWARE ENGINEERING

-98-

2.5.6.1 Bus Access Strategies—Centralized or Decentralized Implementation

It is possible to make a general differentiation between two categories of bus access strategies.
First, there are strategies that are implemented in a central network node, the so-called master.
Second, there are the strategies with decentralized implementation. In the case of centralized
implementation, the term master/slave architecture is also used, whereas the term multimaster
architecture describes decentralized implementation. A master/slave architecture can easily be
implemented, although it must be said that a failure of the master will bring down the entire
communication system. As a rule, a decentralized multimaster architecture is more costly to
implement, but, barring unforeseen outside infl uences, the communication system remains
functional despite the failure or shutdown of a network node.

2.5.6.2 Bus Access Strategies—Controlled or Random

Although master/slave architectures always employ controlled strategies for bus access, the
multimaster architectures allow for a differentiation between controlled and uncontrolled
(i.e., random) bus access strategies.

With the multimaster strategies with random bus access, the various network nodes switch over
to send access to the bus as soon as it becomes available. Due to the fact that several nodes may
attempt bus access simultaneously, this strategy is also termed carrier sense multiple access,
abbreviated as CSMA strategy.

Depending on whether or not such strategies may have the inherent potential of causing colli-
sions on the bus, a differentiation is made between strategies with, and those without, collisions.
Those strategies that, although not avoiding collisions, provide a means of detecting and handling
collisions once they have occurred are termed CSMA/collision detection strategies, abbreviated
as CSMA/CD strategies. The most famous example of an implemented CSMA/CD strategy is
the Ethernet [48].

Strategies capable of avoiding collisions are known as CSMA/collision avoidance strategies,
abbreviated as CSMA/CA strategies. This type of collision-free bus access may be implemented,
for example, by enabling the network nodes to detect an impending simultaneous bus access.
This occurs early during a so-called arbitration phase that precedes the actual transfer of payload
data. On the basis of priorities that may be attached to the messages to be transmitted, only the
one network node intending to send the message with the highest priority continues its send
access to the bus. In this context, a prioritization on the basis of network nodes instead of mes-
sages is conceivable. The most well-known example of a CSMA/CA strategy using message
prioritization is the CAN [2].

Among multimaster strategies with controlled bus access, a differentiation can be made between
the so-called token-controlled and time-controlled methods.

A token is a message with special attributes that is passed from one network node to the next.
As soon as a node has received a token, it will be permitted to access the bus for the purpose
of sending messages for a defi ned time period. When this interval elapses, the node passes the
token to its logical successor.

Essential System Basics

-99-

In the time-controlled method, fi xed time windows for exclusive bus access are defi ned for each
network node. Thus, this approach is termed time division multiple-access strategy, abbrevi-
ated as TDMA strategy. Examples of TDMA-based methods are FlexRay [49], Time Triggered
Protocol (TTP) [50], and Time Triggered CAN (TTCAN) [51].

When associating the existing bus technologies with the strategies under discussion, observe that,
similar to the processor scheduling in real-time systems, it also may be possible to implement
a combination of strategies. A case in point is FlexRay, a TDMA method that uses a fi xed time
window for random bus access.

2.5.6.3 Bus Access Strategies—Event-Driven and Time-Controlled

Selecting the right communication system depends on many factors, that is, the required trans-
mission performance, safety and reliability requirements, or the spatial expanse of the network.
A determinant for real-time operating characteristics is the differentiation between event-driven
and time-controlled access strategies. Introduced in Section 2.4.4.6, this differentiation criterion
not only determines the predictability of the interval required for task execution on a network
node. It also defi nes the time period—termed communication latency—required to transmit a
message in a given communication system. For example, event-driven systems, such as the
CAN, allow for estimates of the latency only in relation to the message with the highest priority.
By contrast, the latency in wholly time-controlled systems can be estimated for all messages.

For time-controlled multimaster architectures accommodating multiple processors, a system-
wide global time, or timebase, is required. Because the local real-time clocks may run out of
sync due to minor deviations (Fig. 2-53), synchronization mechanisms for the real-time clocks
on all network nodes are required. These mechanisms must be supported by the communica-
tion and real-time systems of all network nodes. OSEK-TIME [16] standardizes a variety of
synchronization methods.

Fig. 2-53. Deviations among local system clocks in a network.

Network
Node A

Network
Node B

Network
Node N

2.6 System Reliability, Safety, Monitoring, and Diagnostics

Despite the diversity of onboard control systems in a modern vehicle, the failure of even a single
function, such as the braking or steering system, in a traffi c situation may cause a catastrophic
accident involving injuries and fatalities. For obvious reasons and independently of the techni-
cal implementation, great demands are made on the reliability and safety of the subject vehicle
functions.

AUTOMOTIVE SOFTWARE ENGINEERING

-100-

Therefore, the development of electronic systems contributing to increased road safety—such
as the electronic stability program (ESP), a failure of which may nonetheless lead to dangerous
situations—demands special consideration of applicable safety requirements.

This also applies to those vehicle functions that provide increasing degrees of driver assistance,
assuming more and more “responsibility” in the process.

Example: Increasing safety relevance of electronic systems in the vehicle

The safety relevance of electronic system functions in automotive onboard systems is on
the rise:

 • From a situation analysis, such as the display of road speed, fuel level, engine, or outside
temperature,

 • To a situation assessment, such as a black-ice warning,

 • To a recommendation for action, such as from the navigation system,

 • To the execution of an action, such as acceleration and braking intervention by an adap-
tive cruise control (ACC) system, or even a corrective steering intervention in the case
of an active front steering system (AFS) [22].

For all of these reasons, the reliability, safety, monitoring, and diagnostics of vehicle functions
continue to gain in signifi cance. When designing safety-relevant electronic systems, the charac-
teristics of distributed and networked systems, such as the predictability of real-time behavior,
must be investigated as judiciously as the failure and malfunction characteristics of subsystems
and components. This requirement also stems from the need to develop the capability to sup-
port the rapid detection of faults, failures, and malfunctions occurring in systems, subsystems,
and components in production and service with suitable diagnostic procedures. Thus, this
section presents an introduction to the technical basics of reliability, safety, monitoring, and
diagnostics. The discussion excludes other aspects that are beyond the scope of this book, such
as legal conditions.

2.6.1 Basic Terms

In investigating the demands made on vehicle functions, it is critical to observe the differentiation
among the terms reliability, availability, and safety. Reliability and availability are defi ned in
the DIN 40041 and DIN 40042 standards, whereas safety is defi ned in DIN 31000, as follows
[52]:

• Reliability. Denotes, with respect to an observation unit, the complement of properties
concerning the suitability for the fulfi llment of specifi ed requirements for a defi ned time
period.

• Availability. Denotes the degree of probability of encountering a system in a serviceable
condition at a specifi ed point in time.

Essential System Basics

-101-

• Safety. Describes a condition in which the risk is not greater than the limit risk. The limit
risk is deemed equal to the greatest justifi able risk.

Furthermore, the terms fault or defect, failure, and malfunction must be distinguished:

• Fault or defect. Comprises the unallowable deviation of at least one property or feature of
an observation unit. A fault is deemed a state. The unallowable deviation is equal to the
difference between the actual value and the specifi ed value of a feature or property.

 Differentiations are made among different fault categories, such as design fl aws and construc-
tion, assembly, and manufacturing faults. Other types of faults include faulty maintenance,
hardware and software faults, and operator error or faulty operation. A fault may, but must
not necessarily, impair the function of the observation unit. The consequence of a fault may
be failure or malfunction.

• Failure. Comprises, in an observation unit, the random discontinuation of the execution of
a task subsequent to the commencement of its utilization due to a root cause inherent in the
subject observation unit and within the specifi ed limits of allowable utilization. As such,
the failure comprises an infringement of the serviceability of an entity known to have been
functional prior to fault manifestation or failure. A failure is deemed an event. A failure is
a consequence of the occurrence of one or more faults.

 The various types of failures are differentiated in accordance with their manifestation:

– Based on failure frequency, such as one-time, multiple, or consequential failures

– Based on predictability, such as unpredictable failures occurring statistically independent
of elapsed operating hours or other failures

– Systematic failures, such as early and wear-out failures occurring in a frequency, depend-
ing on certain infl uencing variables

– Deterministic failures, such as failures that may be predictable in certain conditions

– Based on the size and extent of the resulting impediment

– Based on chronological failure characteristics, such as catastrophic failures or degrada-
tion failures

• Malfunction. Comprises a temporary failure occurring after the commencement of utilization.
A functional malfunction—nomen est omen—manifests itself as the temporary interruption
of, or impediment to, a function. The commencement of utilization may coincide with the
system commissioning or acceptance inspection.

Example: Fault versus failure

An incandescent lamp burns out. The fi lament breakage comprises a fault. A consequen-
tial failure of the lighting function occurs only at a later time when the lighting function is
enabled.

AUTOMOTIVE SOFTWARE ENGINEERING

-102-

2.6.2 System Reliability and Availability

Reliability is the capacity to perform the desired functions over a specifi c period of time.
Reliability can be impaired by failures and malfunction, both a consequence of faults. Thus,
measures aiming at increasing reliability constitute attempts to prevent the occurrence of failures
and malfunctions.

In the systematic investigation of tasks related to reliability, observations based on statistical
models have been quite successful [53–55].

In this context, the mean time to failure (MTTF), the reliability function R(t), and the failure
rate λ(t) represent essential statistical reliability characteristics.

2.6.2.1 Defi nition of Reliability Function R(t) and Failure Rate l(t)

A large number i = 1, 2, 3, ... N of observation units is investigated. The failure characteristics of
an observation unit i may be described by the time Ti, during which the unit remains functional
(Fig. 2-54). Ti is termed the time to failure (TTF) of observation unit i.

To obtain the relative cumulative failure frequency F t() in the observation of a large number of

similar units under identical conditions, the following formula will apply:

F t
n t

N
() = ()

0

 (2.6)

where n t() is the number of failed observation units as per time t, and N0 is the starting inven-
tory of observation units at instant t = 0.

F t() is also termed an empirical failure function.

This, the empirical reliability function R t(), is defi ned as

R t
N n t

N
F t() =

- () = - ()0

0
1 (2.7)

Fig. 2-54. Defi nition of time to failure Ti.

Failure Behavior
for Observation Unit i

Utilization Time t

Essential System Basics

-103-

According to the law of large numbers, the failure frequency F t() transitions for N0 into
the failure probability F t(). Accordingly, the complement of failure probability is the reliability
function R t()

R t F t() = - ()1 (2.8)

Thus, R t() expresses the probability with which an observation unit may be expected to be
functional in the interval between 0 and t. Often, the failure rate l t() is used instead of the reli-
ability function R t(). It has an important function in reliability and safety analyses.

The empirical failure rate l t() is defi ned by the ratio between the number of failures in interval

(t, t+ dt) and the number of observation units that have not yet failed at instant t:

l
d

t
n t t n t

N n t
() =

+() - ()
- ()0

 (2.9)

For N0 and δt 0, the empirical failure rate l t() converges toward the failure rate l t(), the
latter can be expressed, using the preceding defi nitions, by means of reliability function R t():

l t
R t

dR t

dt
() = - () ◊ ()1

 (2.10)

If the failure rate l lt() = = constant, the reliability function is derived as

R t
dR t

dt
() = - ◊ ()1

l
 (2.11)

or

R t e t() = -l (2.12)

In this case, the failure probability follows a statistical exponential distribution.

In many cases, the failure rate l t() changes over time. Figure 2-55 shows a typical progression
that is also referred to as a bathtub life curve. Probability theory refers to this type of failure
probability distribution as Weibull distribution.

Example: Empirical determination of failure rate

One thousand microcontrollers are tested simultaneously and under identical conditions
for 1000 hours. The test yields 10 failures at a roughly constant failure rate. What is the
failure rate?

AUTOMOTIVE SOFTWARE ENGINEERING

-104-

Using

N0 1000=

and

n h1000 10() =

allows for calculation

R h
N n h

N
1000

1000 990

1000
0 990

0
() =

- () = = .

Using

R h e h1000 1000() = - ◊l

yields for the failure rate

l ª ◊ = ◊ =- -1 10 10 10 105 6failures failures failures

h h
ppm

h

The abbreviation ppm denotes parts per million.

Fig. 2-55. Defi nition of reliability variables.

Reliability Function R(t)

Failure Rate l(t)

Utilization Time t

Utilization Time t
Early

Failures
Random
Failures

Wear-Out
Failures

Essential System Basics

-105-

2.6.2.2 Defi nition of Mean Time to Failure (MTTF)

For the mean time to failure (MTTF) of a large number N of observation units, the following
applies:

MTTF
NN i

i

N

T=
Æ• =

Âlim
1

1

 (2.13)

With the failure rate being constant—and only then—the following applies:

MTTF = 1

l
 (2.14)

Example: Empirical determination of MTTF

Thirty microcontrollers with a constant failure rate λ of 10–6 failures per hour are deployed
in a vehicle. What is the value of the MTTF, assuming that the failure of one microcontroller
can be tolerated?

Using

N0 30=

and

n MTTF() = 1

allows for calculation

R MTTF
N n MTTF

N
() =

- () =0

0

29

30

Using

R MTTF e() = - ◊l MTTF

yields the value for

MTTF hª ◊ =3 4 10 3 874. . years

2.6.2.3 Defi nition of Mean Time to Repair (MTTR)

In the case of repair-capable systems such as vehicles, the time to failure, that is, the failure-free
operating time or uptime TB as well as downtime TA, must be considered (Fig. 2-56).

AUTOMOTIVE SOFTWARE ENGINEERING

-106-

Accordingly, the mean failure-free operating time is represented by the MTTF, and the mean
failure time by the MTTR. The latter (i.e., the mean time to repair) is obtained as

MTTR
NN Ai

i

N

T=
Æ• =

Âlim
1

1

 (2.15)

2.6.2.4 Defi nition of Mean Availability

The mean availability is then defi ned as

V
mean operating time

total time

MTTF

MTTF MTTR MTTR

MTTF

= =
+

=
+

1

1
 (2.16)

Therefore, to attain a high availability value, the MTTF must be high compared with the MTTR. A
high rating for the failure-free operating time MTTF may be attained through perfection—e.g., the
deployment of highly reliable components—and a system architecture in which the failure of
components may be tolerated. For example, the deployment of redundant system components
may render failures tolerable.

A low rating for the failure or repair time MTTR may be attained by rapid and reliable fault
diagnostics (e.g., by means of diagnostic support during service inspections) or by means of
rapid and reliable troubleshooting (i.e., by the facilitation of simple repair procedures).

Example: Onboard diagnostics (OBD) requirements in engine management

Some reliability requirements to vehicle functions are imposed by legislation. A well-known
example involves the so-called onboard diagnostics (OBD) requirements for all emission-
related components around the engine. These requirements exert signifi cant infl uence on
the functions of engine ECUs. All emission-relevant components connected to the ECU are
subject to continuous monitoring, and the same is true of the ECU. Failures and malfunc-
tions must be recognized, stored, and displayed [56].

Fig. 2-56. Uptimes and downtimes for repair-capable systems.

Failure Behavior
for Observation Unit i

Nonfunctional

Essential System Basics

-107-

2.6.3 System Safety

In contrast to the considerations concerning reliability and availability for the defi nition of
safety, the functionality of a unit under scrutiny is not addressed. In other words, from the safety
standpoint, it is of no importance whether or not the observation unit is in serviceable condi-
tion—provided, of course, that this aspect does not represent an unjustifi ably high risk.

With a view to a given automotive onboard system, this means that it may be deemed safe
only if the consequence of both the fault-free and fl awed states will be a risk that is at best
negligible. This insignifi cantly negligible risk is accepted. The introduction of measures
aimed at raising the level of safety is designed to prevent the hazardous effects of faults,
failures, and malfunctions.

2.6.3.1 Defi nition of Terms in Safety Technology

The major terms used in conjunction with subjects germane to safety technology are defi ned in
the DIN 31000 standard.

Safety engineering uses the less-than-expressive collective term damage to describe the nega-
tive consequences of faults, failures, and malfunctions. Defi ned differently, damage is deemed
to represent a disadvantage suffered by virtue of the infringement of legally protected rights
caused by a specifi c technical process or status. It is true that the referred legally protected rights
encompass, in addition to human health, commodities such as property. Usually, however, and
although ecological damages are often included, safety engineering appears to consider dam-
ages of a purely economic nature as taking a back seat to the priority concerns of damage to
life and limb.

• Risk. The safety risk, briefl y termed risk (i.e., the quantifi cation of a hazard or peril), cannot
be fully excluded. Safety engineering often defi nes risk as the product of the probability of
the occurrence of a damage-causing event and the extent of damage that may be reasonably
expected at the time of the event. Both of these characteristic quantities represent a means
of measuring risk. An often-used alternative representation depicts risk as a multidimen-
sional variable. An event that results in damage is termed an accident. Thus, the following
applies:

Risk robabilityof accident ccident damage= ¥P A (2.17)

 or, alternatively,

Risk Probabilityof accident
Accident damage= { } (2.18)

• Limit risk. This represents the greatest justifi able risk. It may generally be said that the
limit risk cannot be quantitatively defi ned. For this reason, it is indirectly described in terms
of safety-specifi c requirements. These emanate from the entirety of all laws, directives,

AUTOMOTIVE SOFTWARE ENGINEERING

-108-

guidelines, standards, and rules applying in individual cases, and implicitly defi ne the limit
risk.

• Hazard. The term describes a situation in which there exists an actual or potential threat
to humans and/or the environment. This hazard may lead to an accident with negative
consequences for people, the environment, and the observation unit itself. Thus, a hazard
constitutes a situation in which the risk actually exceeds the limit risk.

 A variety of hazards—such as electrical, thermal, chemical, or mechanical hazards—may
originate from systems, that is, from a given system as a whole, and not from individual
components. In most cases, therefore, it is virtually impossible to recognize and avoid—let
alone prevent—all of the different types of hazards in advance. Thus, it may be argued that
there is—in conjunction with any system of whatever nature—a residual hazard that must
be accepted. The recognition of these hazards is the declared objective of the discipline of
hazard analysis.

• Safety. The term describes a situation in which the limit risk exceeds the risk.

Figure 2-57 shows graphically a visualization of the correlation of the four basic terms: risk,
limit risk, hazard, and safety.

Fig. 2-57. Graph showing the correlation of the basic terms
of safety engineering. (Ref. DIN 31000)

Low Risk Limit Risk Significant Risk

The defi nition of the term protection closely follows that of risk. Protection constitutes the
reduction of risk by means of such measures that limit the probability of occurrence (incidence
rate), the extent of damage, or both.

2.6.3.2 Determining Risk

A risk analysis observing system-specifi c risks of malfunction and failure is carried out in accor-
dance with DIN 19250 [18] and IEC 61508 [19]. The procedure uses the parameters designated
Incidence Rate W, Extent of Damage S, Abode Time A, and Hazard Prevention G.

As shown in the example of the risk analysis plot in Fig. 2-58, these parameters can be used to
determine the DIN requirement class, AK 0 through 8, or the IEC Safety Integrity Level, SIL 0
through 4. These two characteristic quantities represent a means of measuring risk.

Essential System Basics

-109-

The risk analysis must observe all system functions and evaluate their individual or collective
hazard potential. This involves the evaluation of possible malfunctions through the application
of appropriate risk parameters to each function provided by the system. The resulting fi ndings
then become the basis for the design of a suitable architecture for the system under scrutiny.

Example: Determining the requirement class for an electronic throttle control (ETC)

system

The requirement class for an ETC system—also termed electronic throttle control or elec-
tronic engine management system—is to be determined. Figure 2-59 shows a simplifi ed
diagram of an ETC system for a gasoline engine.

In this example, a critical driving situation shall be assumed.

 • Driving situation: Driving in a vehicle convoy at elevated road speeds

• Possible hazard: Inadvertent full acceleration and, as a result, rear-end collision or loss
of vehicle control when negotiating curves

Fig. 2-58. Risk analysis plot and safety requirement classes
(per DIN 19250, Ref. [18], and IEC 61508, Ref. [19]).

A - Abode time

A1: Rare to repeated

A2: Frequent to constant

G - Hazard prevention

G1: Feasible in certain conditions

G2: Hardly possible

W - Likelihood of occurrence of

 undesirable event

W1: Very low

W2: Negligible

W3: Relatively high

AUTOMOTIVE SOFTWARE ENGINEERING

-110-

Fig. 2-59. ETC system for a gasoline engine.

Accelerator
Pedal

Electrically
Operated
Throttle Valve

 • Risk parameters: S3—Injury or death of several persons
A1—Abode time rare to repeated

 W1—Very low incidence rate

This evaluation yields requirement class AK 4 and SIL 2, respectively, for the Accelera-
tion function. This classifi cation becomes the basis for the safety requirements defi ned in
standards such as IEC 61508, governing system structure (i.e., hardware, software, setpoint
generators, sensors, and actuators).

2.6.4 System Monitoring and Diagnostics

In the event that a safety-related system is no longer capable of reliably performing the sum of
its functions, and if this condition constitutes or tacitly implies the existence of a hazard both
existent and conceivable, a response in accordance with a defi ned logical safety procedure will
be required. As a prerequisite initiation of such safety response, malfunctions, failures, and
faults must be reliably detected.

For this reason and because fault recognition is an essential function in the reliability and safety
of electronic systems, it also comprises a central component of monitoring procedures [52]. In
the discussion of monitoring, fault recognition, and troubleshooting, this book adheres to the
terms and defi nitions originating from [52, 57].

2.6.4.1 Monitoring

Technical systems are subject to monitoring for the purpose of indicating current system status,
recognizing undesirable or forbidden system conditions (e.g., faults), and initiating appropriate
remedial actions wherever possible. Deviations from the “normal” system status occur as a con-
sequence of a malfunction or failure, the root cause of which may be one or more of a variety of
faults. It logically follows that the consequence of faults, absent appropriate countermeasures,
will consist of malfunctions and failures over the short or long term. The objective of monitoring
is to provide early fault recognition—that is, even before a malfunction or failure can occur—and
to take the action necessary to prevent their manifestation to the extent possible.

Figure 2-60 shows a typical fl ow chart of monitoring functions.

Essential System Basics

-111-

2.6.4.2 Fault Recognition and Fault Diagnostics

As a consequence of the monitoring objectives discussed in the preceding section, a fault rec-
ognition method—also termed fault diagnostics, or diagnostics, for short—is applied to verify
whether or not the correlation existing between a minimum of two values can be confi rmed.
Deviations exceeding specifi cations are classifi ed as fault symptoms.

Examples of fault recognition or fault diagnostic measures used in conjunction with electronic
systems are as follows:

• Reference value check

 A question—having a known response—is posed (inquiry/response game). To determine
the response, the system must perform the same functions or subfunctions used in normal
operation. If the obtained response fails to match the known response, this is interpreted as
a fault.

• Redundant value check

 Two or more comparable values are available, and their comparison facilitates the detection
of errors. There are several ways in which this function can be software-implemented:

1. Two or more algorithms with different principles are applied to the same input values.
The property of being based on different principles is known as diversity. Because all

Fig. 2-60. Diagram of monitoring functions.

Setpoint
Generators

Open-/Closed-
Loop Control,

Monitoring

Open-Loop & Closed-Loop
Control Functions

Watchdog/Monitoring Functions

Fault Recognition
Functions/

Fault Diagnostic
Functions

Fault Type Fault
Handling
Functions

AUTOMOTIVE SOFTWARE ENGINEERING

-112-

software faults are systematic faults, there is a mandatory requirement for diversity in
this type of software-based fault recognition method.

2. If the algorithms are run on one and the same microprocessor, this is called software
diversity; if they are executed on different microprocessors, this is called software and
hardware diversity.

3. To facilitate the detection of spurious faults, the same algorithm can be run repeatedly
on the same microprocessor while being applied to different input values.

• Monitoring communication links

 Cases in point are parity and redundancy checks, such as the parity check, cyclic redundancy
CHECKSUM (CRC CHECKSUM), or Hamming codes [58].

• Handshake

 To inform the sender of a message of its receipt, of the message status, or his or her own
status, the recipient of a message sends an acknowledgment to the sender. This communica-
tion is termed a handshake.

• Monitoring physical properties

 A typical example would be a temperature sensor whose high temperature readings are
indicative of faulty sensor signals. Another application would be a combination of checking
a signal value with regard to the compliance to certain limit values and observing changes
of the signal value over time, also known as derivation.

• Monitoring program execution

 This is accomplished, for example, by a watchdog circuit that responds to excessively long
program execution times by triggering a fault response, such as a microprocessor reset.

2.6.4.3 Error Detection and Correction

In digital communications, an error—occurring at the level of individual bits—is defi ned as a
situation in which the received information fails to match the information dispatched by the sender.
In this context, it is instructive to note the distinction that must be made between a fault, which
manifests itself in the system, and its possible root cause, which may be an invalid transmission
element or a fault in the software, termed error. Accordingly, the procedures used to locate the
software-based origin of issues are known as error detection methods.

Error detection and correction measures include the following:

• Redundant-value check

 In error correction, redundancy—or parity—checking is a method no less powerful than it
is in error detection. To ensure error correction, a criterion must be defi ned and available

Essential System Basics

-113-

that makes it possible to determine and apply the correct value. There are several ways in
which this may be accomplished:

1. Error detection already provides the information identifying the incorrect results.

2. In some cases, it may be possible to respond to a fault situation by applying a fault-
tolerant algorithm (i.e., acting “on the safe side”). An example would be the use of the
fi rst or higher value, value averaging, or similar algorithms.

• Disabling of subsystems or switching-off of the primary system

• Remaining in the fault state or initiating a change of strategy

• Fault storage, such as in the fault memory of the ECU unit (see Section 2.6.6)

• Fault remedy, such as through a microprocessor reset by means of a watchdog module

It also is possible to apply combinations of these measures.

2.6.4.4 Safety Logic

The safety logic defi nes the error correction measures applied to safety-relevant systems. Several
system classes are distinguished.

As a fi rst step, the so-called safe state is defi ned.

On systems capable of assuming this type of safe state, such as the defi ned emergency shutdown,
which is also frequently called an emergency stop, a safety response may consist of the initiation
of this state. It must be ensured that a safe state of this kind may be exited only in a controlled
manner, that is, not as a consequence of additional faults, malfunctions, or failures. A system
featuring this type of safety response is also known as a fail-safe system (FS system).

In some cases, the adoption of a safe state is naturally followed by the transition into a degraded
operating mode. Whenever this results in continued—albeit restricted—system serviceability,
such as the limp-home operating mode, this is termed fail-reduced system (FR system). Of
course, there may be situations in which the degraded operating mode is deliberately introduced
because of a scarcity of resources or with a view to risk minimization.

There are times when technical obstacles stand in the way of introducing a safe state. This
applies, for example, to many vehicle functions that are mandatory while driving. If a system
happens to fail, the adverse effect of the system failure on the behavior of the vehicle must be
neutralized, and a fall-back switchover to a suitable backup system will be required. In principle,
the implementation of the referred backup system may be similar to, or different from, the type
of system suffering the failure. A system featuring this type of safety response is known as a
fail-operational system (FO system).

For example, system requirements in terms of safety logic are frequently specifi ed in the form
of FO/FO/FS or FO/FO/FR. This means that a system meeting these specifi cations must remain
fully operational, regardless of two successive internal failures. It is the occurrence of a third

AUTOMOTIVE SOFTWARE ENGINEERING

-114-

failure that would permit the system to transition into a safe state and/or enter the “limp home”
operating mode.

When a manufacturer applies for general type approval as a prerequisite to vehicle registration,
an “easy” safety verifi cation is an absolute prerequisite. This requires that complex concepts
are generally seen to originate from basically simple and easy-to-grasp mechanisms. Thus,
simplicity is one of the fundamental design principles for safety-relevant systems [57].

Another design objective should be to limit the imposition of stringent safety requirements to
as few components as possible. For this reason, encapsulation and modular construction are
among other essential design principles for safety-relevant systems.

It would exceed the scope of this book to discuss additional principles and methods applied to
the development systems with built-in malfunction and failure tolerance. Among these, only
a few shall be mentioned here, that is, the fault tree analysis, the cause-and-effect analysis, or
the failure mode and effects analysis (FMEA). For more details on these, reference is made to
the specialist literature [59–61].

2.6.4.5 Functional Software Safety

Regarding functional safety, it is particularly interesting to observe the great differences exhibited
by the development and design branches of classic disciplines such as mechanical, hydraulic,
and electrical engineering, and of that of software engineering as a relative newcomer [59]:

• In open-loop and closed-loop control systems, the software frequently assumes the func-
tions of a previous analog open-loop or closed-loop controller of varying confi gurations.
This is an area where the conversion of the controller functions from analog to digital form
produces inaccuracies or diffi culties. Often, when translating continuous functions into
discrete functions, this requires considerable effort. The reason is that the specifi cations
for discrete functions are much more complex than their analog counterparts. It will suf-
fi ce to name value discretization, time discretization, and the handling of quasi-concurrent
functions.

• Compared with software testing, the physical continuity in analog systems facilitates general
testing procedures. More often than not, physical systems work within delineated areas
and tend to undergo physical distortion before they ultimately fail. In most cases, a small
circumstantial change will result in a small change in behavior. These are the cases in which
a few tests or experiments may be carried out at specifi c locations within the work area, and
continuity testing may be pressed into service to close existing gaps, such as by applying
the methods of interpolation and extrapolation [30]. This approach would be truly alien
with software, which may fail as a result of some minor hiccup somewhere in the realm of
input variable statuses. Furthermore, malfunctioning software may exhibit behavior that is
totally and unpredictably different from its standard performance.

• Substantial modifi cations to physical systems are not normally possible without great effort
and expenditure. This too does not apply to software because it is not subject to these
“natural” restrictions.

Essential System Basics

-115-

• Software does not fail due to superannuation. Its quality is not affected by production and
service aspects. Without exception, software faults exist already in the development phase.
For this reason alone, the application of diligence and care is of paramount importance in
software design and quality assurance.

In the development of reliable software, several major aspects must be taken into account:

• Development should proceed with great accuracy to ensure that the system will perform as
specifi ed in a variety of operating circumstances.

• There must be timely detection and remedy of runtime errors, such as deviations caused by
malfunctions or failures; the same applies to previously unmanifested development fl aws.

• Appropriate security measures must be put in place to prevent or detect system manipula-
tions, such as unauthorized interference with the program or data version of an ECU.

2.6.5 Organization of a Monitoring System for Electronic Control Units

Monitoring systems for ECUs often are implemented through a combination of hardware com-
ponents and software measures. Examples of hardware components would be the deployment
of intelligent output modules or a watchdog circuit. The software implementation of monitor-
ing functions allows for the realization of extremely fl exible concepts for responses to faults,
malfunctions, and failures.

As a defi nite benefi t compared with components of a purely mechanical or hydraulic implementa-
tion, the combination with electronic components provides for the detection and troubleshooting
of faults, malfunctions, and failures—not only in the mechanical and hydraulic components but
in the electronic components.

For the reasons given, many contemporary applications place the task of designing suitable
monitoring functions at the same high level of importance as the job of designing control func-
tions. It is safe to say that the steady increase in software-implemented monitoring functions is
exerting signifi cant infl uence on the entire design of system and software architecture in electron-
ics. Thus, it is necessary to consider the development of monitoring functions at an early stage
and across all development phases. With monitoring rated so highly, any mention of functions
in the text to follow should be understood to refer to the combination of open-loop/closed-loop
control functions and monitoring functions.

This section discusses the software monitoring system that is frequently deployed in ECUs.
Depicted in Fig. 2-61, the system distinguishes between two layers. The lower layer handles the
task of microprocessor monitoring. The upper layer is the location where monitoring functions
for setpoint generators, sensors, actuators, and control functions are implemented.

In most cases, microprocessor monitoring necessitates the use of a second computer, the so-called
monitoring computer. This being the case, the implementation of software functions dedicated
to microcontroller monitoring is distributed over both the function computer and the monitoring
computer. This has the effect that both computers are watching each other closely.

AUTOMOTIVE SOFTWARE ENGINEERING

-116-

If faults are detected, the appropriate corrective actions are triggered in both software layers on
both the function computer and the monitoring computer. Again, these corrective actions may
be implemented in the form of hardware or software functions. To this end, the fault symptoms
are available as starting values for the monitoring functions.

2.6.5.1 Microcontroller Monitoring Functions

The dedicated microcontroller monitoring functions check the individual components, such as
the memory areas onboard the microcontroller (e.g., Flash, EEPROM, or RAM), the input/output
units, or the microprocessor. Many checks are run as part of the startup routine immediately
after the ECU has been powered up. To ensure the detection of a component failure even during
ongoing operations, some checks are repeatedly run while the ECU is performing its normal
functions. Some checks requiring a relatively large contingent of computing time—such as
EEPROM checks—are performed in the post-shutoff period, that is, when the vehicle has been
parked. This prevents interference with other functions and dispenses with an otherwise required
time delay when the vehicle is started.

Fig. 2-61. Overview of the software monitoring system in ECUs.

A/D
Conversion

Open-Loop and Closed-Loop
Control Functions D/A

Conversion

Watchdog Functions

Monitoring Functions for
Setpoint Generators, Sensors, Actuators,

and Open- & Closed-Loop Control Functions

Watchdog/Monitoring Functions for
Microcontrollers

Memory
Watchdog

Program Flow
Watchdog

Watchdog for
Input/Output Modules

Microprocessor
Watchdog

Fault
Symptoms

Microcontroller 1 (Function Computer)

Microcontroller 2 (Monitoring Computer)

Essential System Basics

-117-

In addition, program fl ow is monitored. For example, the function verifi es whether or not a task
is activated and executed as scheduled, or whether required messages (i.e., transmitted over the
CAN bus) arrive at the anticipated regular intervals. A more detailed discussion of the imple-
mentation of error detection and error correction in real-time systems appears in Section 5.2.2
of Chapter 5.

2.6.5.2 Monitoring Setpoint Generators, Sensors, Actuators, and Control Functions

The setpoint generator and sensor monitoring functions verify, for example, continuity and
plausibility. This may be accomplished on the basis of known physical correlations between
the various setpoint generator and sensor signals. Implausible signal values will result in error
routines, such as the imposition of values initiating the “limp-home” operating mode.

Actuators also must be monitored for correct functioning and functional wiring. On one hand,
this requires sending test signals and checking the resulting responses. It stands to reason that
the procedure must establish specifi c conditions to prevent the occurrence of hazardous situ-
ations. On the other hand, the current values produced by the actuators being logged during
power-up can be compared with stored current limit values, with deviations serving as indicators
of corresponding fault conditions.

Another area subject to monitoring is the calculation of control functions. For example, to
check the plausibility of the calculated output values of a given control function, these are often
referenced to the output values of a simplifi ed monitoring function.

Example: Schematic of an engine ECU

The stringent safety and reliability requirements imposed on many engine management func-
tions require the deployment of a monitoring computer in the engine ECU (Fig. 2-62).

Fig. 2-62. Simplifi ed block diagram of an engine ECU. (Ref. [6])

Microcontroller 1 (Function Computer)

Microcontroller 2 (Monitoring Computer)

A/D
Conversion

D/A
Conversion

AUTOMOTIVE SOFTWARE ENGINEERING

-118-

A detailed discussion of the methods used to analyze and specify the monitoring concept for
safety-relevant functions of the engine ECU appears in Section 5.2.4 of Chapter 5.

2.6.6 Organization of a Diagnostic System for Electronic Control Units

The diagnostic system—as a subsystem of the monitoring system—comprises a part of the
basic confi guration of a production ECU. A distinction is made between onboard and offboard
diagnostics (Fig. 2-63).

Fig. 2-63. Onboard and offboard diagnostic functions.

Open-Loop and Closed-Loop
Control FunctionsA/D

Conversion
D/A

Conversion

Diagnostic Communications

Watchdog Functions

Offboard Diagnostic Functions

Diagnostic Tester

Watchdog/Monitoring Functions

Onboard Diagnostic Functions

2.6.6.1 Offboard Diagnostic Functions

Whenever fault diagnostics are performed by interconnecting (either during vehicle manufacture
or servicing) the ECU with a diagnostic tester, the procedure is termed offboard diagnostics. As
a rule, the diagnostic tester, stationed in the service shop, is connected to a central diagnostic plug
connector onboard the vehicle. This connector is the tap-in point for the entire ECU network
in the vehicle. In this way, all diagnostics-capable ECUs can be diagnosed.

2.6.6.2 Onboard Diagnostic Functions

In the event that the fault diagnostics are conducted inside the ECU, the procedure is termed
onboard diagnostics. If a fault, malfunction, or failure is detected, the onboard diagnostics

Essential System Basics

-119-

initiates appropriate troubleshooting procedures. In most cases, the onboard diagnostics func-
tion also writes fault information into the fault memory for subsequent access and evaluation
by means of a diagnostic tester in the service shop. Depending on the respective application,
fault recognition functions are run at the time of system startup. However, they also may be
cyclically conducted during standard system operation.

Figure 2-64 shows a typical organization of the onboard diagnostic system of an ECU. Aside
from software functions for diagnostics on setpoint generators, sensors, and actuators, onboard
diagnostics also include routines for verifying open-loop and closed-loop control functions.
The diagnostic system also includes the fault memory manager handling read/write access to
the fault memory, as well as the platform software components dedicated to offboard diagnostic
communications with the diagnostic tester.

During standard operation, the onboard diagnostics check the I/O signals of the ECU. In addition,
the entire system is constantly monitored for abnormal behavior, malfunctions, and failures.

Fig. 2-64. Overview of an onboard diagnostic system for ECUs.

A/D
Conversion

D/A
Conversion

Open-Loop and Closed-Loop
Control Functions

Monitoring Functions

Onboard Diagnostic Functions

Setpoint Generator
& Sensor

Diagnostic Functions

Actuator
Diagnostic
Functions

Fault
SymptomsFault Memory Manager

Bus Driver

Offboard Diagnostic Interface to Diagnostic Tester

AUTOMOTIVE SOFTWARE ENGINEERING

-120-

The automotive diagnostic system originally was intended as a support for quick and direct
troubleshooting routines in the service shop. Over time and through the added impetus provided
by legislation aimed at safety and reliability, it has matured into a comprehensive subsystem
of the ECU.

2.6.6.3 Diagnostics for Setpoint Generators and Sensors

The setpoint generators, sensors, and wiring interconnection with the ECU can be monitored
through the evaluation of input signals. In addition to the aforementioned functions, tests of this
nature also can serve to detect short-circuits in battery voltage or vehicle ground connections,
as well as wiring discontinuity. This may be accomplished in several ways:

• Supply voltage monitoring of the setpoint generator or sensor
• Verifi cation of the permissible range of the acquired values
• Plausibility check, provided ancillary information is available

Setpoint generator and sensor diagnostics are accomplished by measuring the input signals of
the ECU, as well as its internal variables. Offboard diagnostic communications then transfer
the associated signals to the diagnostic tester. This device provides an online display of the
transferred data. For the purpose of plausibility checks, the diagnostic tester also can be used
for measuring live bus signals (bus monitoring). If it is desirable to run plausibility checks on
additional signals, added diagnostic data acquisition modules may be installed in the vehicle.

2.6.6.4 Diagnostics for Actuators

Actuator diagnostics provide the vehicle service facility with pinpoint activation of individual
actuators of the ECU to verify their proper functioning. This testing mode is initiated by the
diagnostic tester. In normal circumstances, this device functions in only a standing vehicle and
given that certain precautions are met. In the example of the engine ECU, the diagnostic tester
will function only below a certain permitted engine speed or at engine standstill (key-on/engine-
off condition), in which case—and by necessity—the testing of open-loop or closed-loop control
functions ceases. However, absent the live actuator signals normally output by the ECU, these are
simulated by the diagnostic tester. The actuator functions are audibly confi rmed—for example, by
solenoid valve clicks or movement of an actuator fl ap—or by means of other simple methods.

2.6.6.5 Fault Memory Manager

The fault symptoms recognized by the onboard diagnostic functions normally are entered in the
fault memory of the ECU. In most cases, the fault memory is located in the EEPROM because
this facilitates the permanent storage of entries. Figure 2-65 shows a diagram of a typical fault
memory structure for engine ECUs. Statutory requirements (e.g., [56]) specify that each fault
entry must be accompanied by supplementary information in addition to the diagnostic trouble
code, or DTC. This information—the vehicle test record—includes indications of the operating
and environmental conditions prevailing at the time of fault symptom logging. Examples of
captured information would be engine speed and engine temperature, or the odometer reading

Essential System Basics

-121-

at the time of fault detection. Additional data committed to storage often consists of informa-
tion regarding the fault type. Also of interest are the fault status (i.e., static or sporadic fault) or
additional fault symptom characteristics. This includes indications of whether and how often
the fault symptom has been captured on previous occasions, and/or whether it is currently mani-
fested. The fault memory manager handles the entry and retrieval of fault symptoms in the fault
memory. The function is normally implemented as a standalone software component.

Engine management is one area subject to exhaust emission standards that are often country
specifi c. Emission standards contain the specifi cations for many faults infl uencing exhaust emis-
sions, with the diagnostic trouble codes (DTC), and the blink codes of the so-called malfunc-
tion indicator light (MIL), provided as a means of driver information. Given certain specifi ed
conditions, such as when DTCs fail to recur during a specifi c number of driving cycles, the
fault memory manager again may delete some of the fault symptoms—or malfunction indica-
tions—from storage.

Upon inspection of the vehicle in the service shop, this stored information can be retrieved by
the diagnostic tester via the offboard diagnostic interface of the vehicle. This facilitates the
actual troubleshooting and repair procedures. To effect the data transfer from ECU to diagnostic
tester, the memory contents shaded grey in Fig. 2-65 must be transported by means of messages
handled by offboard diagnostic communications. The fault memory manager handles all tasks
required in conjunction with the use of the diagnostic tester. The memory contents visualizes
the retrieved memory contents (e.g., directly in the form of the DTCs). However, a more widely
understood display mode is the plain-text display as shown in Fig. 2-65, and a display of the
environmental conditions in the form of physical variables. To this end, the diagnostic tester
requires a description of the fault memory of the respective ECU.

With the troubleshooting procedures successfully concluded, a specifi c command, sent by the
diagnostic tester to the fault memory manager, can clear the entire fault memory area.

Fig. 2-65. Structure of ECU fault memory.

Fault Symptom

Air Intake Temperature Sensor

Acceleration Information

Off

Off

Yes

Yes

No

No

AUTOMOTIVE SOFTWARE ENGINEERING

-122-

2.6.6.6 Offboard Diagnostic Communications

The communications between the diagnostic tester and ECU are defi ned in standards [25, 26].
In compliance with the standards, automobile manufacturers generally defi ne uniform offboard
diagnostic communications for all ECUs onboard a given vehicle. This forms the basis for a
similar vehicle-wide standardization of software components for the purpose of offboard com-
munications between ECUs and diagnostic tester (see Fig. 1-22 in Chapter 1).

2.6.6.7 Model-Based Fault Recognition

This discussion would not be complete without a brief foray into model-based fault or error
recognition—also termed model-based diagnostics. This method is increasingly deployed in
ECUs. Figure 2-66 shows a block diagram of the required functions.

Fig. 2-66. Principal block diagram of model-based fault recognition. (Ref. [52])

Open-/Closed-
Loop Control,

Monitoring

Setpoint
Generators

Open-Loop and Closed-Loop
Control Functions

Actuator
Model

Plant
Model

Sensor
Model

Feature Generation

Normal
Behavior

Change
Recognition

Fault
Handling

Model-Based
Fault Recognition/
Model-Based
Diagnostics

Monitoring
Functions

Fault
Type

Essential System Basics

-123-

Fault and/or error recognition exploits the known interdependencies of various measurable sig-
nals in both static and dynamic system behavior. These become the basis for the deployment of
actuator, plant, and sensor models, with the application of methods from control engineering,
such as model equations, state variable estimation, or state observers [34, 35]. Controller-based
faults, or those in sensors, plants, and actuators, can be recognized on the basis of input variables.
In most cases, these consist of controller output variables U and feedback variables R, and in
some cases, of reference variables W and manipulated variables Y.

Model-based fault recognition compares the behavior of real-world components with that of
modeled components and uses suitable methods to generate characteristics, so-called features.
If these features deviate from the reference values or normal behavior, the result is the identifi ca-
tion of fault types forming the basis for fault handling and troubleshooting.

2.7 Summary

As foreshadowed throughout the preceding sections, the task of designing automotive electron-
ics and software systems represents a high level of diffi culty, mainly because the requirements
dictated by the various applications are both comprehensive and diverse. For this reason, the
realization of the fulfi llment of the diversity of communications requirements in distributed and
networked systems by a single, cost-effi cient, standardized, and multipurpose network technol-
ogy has so far eluded the grasp of software engineers.

It is far from easy to defi ne an optimization criterion for system design. For example, if real-
time behavior were to be selected as an optimization criterion, this indeed would result in a
design providing a minimal burden on processors and buses. However, this solution would fail
to ensure suffi cient consideration of reliability and safety aspects. In other words, requirements
such as redundancy and aspects related to cost and quality assurance, such as component reuse,
would be shortchanged.

A design issue of the demonstrated complexity calls for a structured approach. This should be a
development process that spans the range of development phases, from the analysis of require-
ments and constraints to fi nal system acceptance testing.

One approach, that is, the grouping of subfunctions sharing identical requirement specifi cations,
has produced benefi ts in practical application. The electronic systems serving the respective
subsystems are interconnected by means of a suitable communications technology. The imple-
mentation of specialized functions reaching beyond the referred subsystems is accomplished by
interconnecting the subsystems by means of control units equipped with gateways.

Example: ECU network of BMW 7 Series [62]

Figure 2-67 shows a diagram of the ECU network featured in a recent model of the
BMW 7 Series. It comprises roughly sixty ECUs organized in fi ve subsystems.

Diagnostic information is queried via a point-to-point connection from the diagnostic tester
to the central offboard diagnostic interface to a central gateway control unit. From that point

AUTOMOTIVE SOFTWARE ENGINEERING

-124-

Fig. 2-67. ECU network of the BMW 7 Series. (Ref. [62])

Offboard Diagnostics Interface Central Gateway Control Unit

onward, communications continue via internal buses and gateway-equipped control units,
with the respective control unit in the subsystem under diagnostics.

The subsystems utilize a variety of communications technologies and network topologies:

 • The high-speed variant of the CAN bus [2] is deployed in the powertrain and chassis
areas of the vehicle.

 • The low-speed variant of the CAN bus [63] is the bus technology deployed in the area
of comfort and convenience systems; it is organized in two segments.

 • The star topology of the Bytefl ight bus [64] interconnects the control units of the passive
safety systems.

 • The multimedia systems require high data rates and accurate, time-synchronous data
transmission. These systems are interconnected by means of a ring topology via
MOST [65].

Essential System Basics

-125-

At the time of this writing (2005), the introduction of additional communications technologies
has already occurred [66] or is foreseeable:

• In the fi eld of multimedia applications, the discrepancy in innovation cycles—ranging from
a few months for multimedia devices to several years for the classic vehicle systems—has
resulted in a preference for the use of wireless communications technologies such as Blue-
tooth [67], restricting hardware changes onboard the vehicle to the lowest possible level.

• For application in the area of cost-sensitive body applications, the introduction of LIN [68]
as a cost-effi cient subnetwork technology is anticipated.

• For deployment in the area of safety-relevant systems, such as brake-by-wire or steer-by-wire
systems, deterministic communication systems with failure-tolerant designs are required.
Suitable networking technologies are FlexRay [49], TTP [50], and TTCAN [51].

-127-

CHAPTER THREE

SUPPORT PROCESSES FOR

ELECTRONIC SYSTEMS AND

SOFTWARE ENGINEERING

This section focuses on the processes supporting the development of electronic systems and
software (Fig. 3-1). Before continuing, it is time to provide suitably accurate defi nitions of sev-
eral colloquial terms related to system technology. The subjects to follow provide an overview
of the processes used in confi guration, project, subcontractor, and requirements management,
including quality assurance. The discussion of these subjects remains largely independent of
the topic of software development. Thus, it becomes much easier to apply the processes and
methods under discussion to all system levels in the vehicle, and to the development of setpoint
generators, sensors, actuators, hardware, and, last but not least, to software development.

Fig. 3-1. Support processes for electronic systems and software development.

Electronic
Vehicle
Systems

AUTOMOTIVE SOFTWARE ENGINEERING

-128-

3.1 Basic Defi nitions of System Theory

System theory [59] furnishes processes designed to handle complexity. Without making histori-
cal claims, the widely accepted approach to dealing with complexity may be likened to the old
motto Divide et impera (divide and conquer). It is based on three important assumptions:

1. Dividing the system into components will not distort the issue being observed.

2. Regarded individually, the components are essentially identical to the components of the
system.

3. The principles governing the assembly of components into a system are simple, stable, and
well known.

These assumptions are deemed permissible for formulating a variety of practical questions.

The properties of a system exist as a consequence of the interrelations among the components
forming the system (i.e., of the manner of component interaction and interplay). As the complex-
ity of a system increases, the analysis of its components and their interdependencies becomes
complex and expensive. That is exactly the type of system on which system theory brings its
investigative efforts to bear. In this context, note that the components of one system may dif-
fer entirely from the others. In fact, technical assemblies are as likely to be considered system
components as are people or even the environment.

The following sections have technical systems as their point of focus. This book takes its ori-
entation from the following system defi nitions [59, 60]:

• System. Comprises a group of interacting components that is separated from its surround-
ings (Fig. 3-2).

Fig. 3-2. Block diagram of a system.

Support Processes for Electronic Systems and Software Engineering

-129-

• System status. At a given point in time, the system status is determined by a collection of
properties used to describe the system at that respective point in time.

• System periphery. Also periphery for short. Describes a grouping of components and their
properties that are not part of the system but whose behavior may infl uence the system
status.

• System boundary. A delineation between system and system periphery.

• System interface. Any signal crossing the system boundary implicitly becomes a system
interface by virtue of this action.

• System input and system output. Designation given to system interfaces, refl ecting a dif-
ferentiation on the basis of the inbound or outbound direction of data transfer they are
handling.

• Subsystem. Because a system is almost always a part of its environment, it may be said to
be a component of a larger system. Therefore, it would be safe to assume that any group of
components that is considered a system also normally is a part of a hierarchy of systems.
In this way, a system likewise may contain subsystems (i.e., represent an assembly of sub-
systems).

• System level. As a rule, system theory uses several so-called observation or abstraction
levels, which are also called system levels.

• Fractal proliferation. This term is used if the different system levels exhibit similarities
(i.e., show common characteristics). For example, Fig. 3-2 depicts a similarity between
system A and subsystem B.

• Interior view and exterior view. These terms describe the differentiation between a system
observation from within or without the system. In other words, being “on the outside looking
in,” it is not always possible to tell whether the item being examined represents a component
or a subsystem. The outside view is an abstract system view of the system boundary and
the system interfaces.

Thus, it follows that any system view comprises an abstraction that is analytically developed
by the respective observer.

This makes it possible for different observers to develop differing system views of the same
system. For example, the modeling perspectives introduced in Chapter 2—such as the open-
loop/closed-loop control modeling approach on the basis of block diagrams, the microcontroller,
and safety technology views—all present a diversity of approaches for looking at electronic
vehicle systems.

Commonly accepted system modeling methods use the tools of abstraction through the formation
of hierarchies—or hierarchy-building—and modularization. These basic principles are applied—
often by intuition—to the bulk of tasks dedicated to the development of system views.

AUTOMOTIVE SOFTWARE ENGINEERING

-130-

An essential aid to orientation in modeling is the so-called 7+2 rule. In many cases, systems
containing more than 7 + 2 = 9 components appear complex to the human observer, whereas,
by contrast, systems containing fewer than 7 – 2 = 5 components often are perceived as trivial.
Systems containing 5 to 9 components appear manageable (Fig. 3-3).

Fig. 3-3. Organizational clarity, the basic rule in system modeling.

“Trivial” System “Manageable” System “Complex” System

The relations determining inclusiveness that exists between a system and its components are
termed aggregation relations or aggregations. The division or parceling of a system into com-
ponents is termed partitioning or decomposition. Conversely, the system-forming assembly of
components is known as integration or composition.

Example: System levels in automotive electronics

Electronic systems onboard the vehicle can be observed at several system levels. The diagram
in Fig. 3-4 labels the various levels in accordance with the sections that follow.

3.2 Process Models and Standards

System development avails itself of several specially developed process models and standards,
such as the Capability Maturity Model Integration® (CMMI) [13], the Software Process Improve-
ment and Capability Determination (SPICE) [14], or the V-Model [15].

Given the diversity of application options for each of these models, there must be an effi cient
means to determine which is most suited to an anticipated undertaking. Therefore, a process
model must be assessed and evaluated—and possibly adapted—as a prerequisite for application
to a specifi c project. There are numerous reasons for this. In many cases, the defi nitive focus of
individual process steps varies, depending on their application. For example, the calibration of
functions plays an important role in ECUs. In other fi elds of application (e.g., body electronics),
the same process step is of comparatively low signifi cance.

Support Processes for Electronic Systems and Software Engineering

-131-

Note that as a rule, even the individual disciplines discussed in Chapter 2 of this book partici-
pate in development to varying degrees. An ECU requires the implementation of a multitude
of different functions. However, in body electronics, distributed and networked systems are a
single contributor of great importance.

The V-Model distinguishes between the areas of system design, project management, confi gura-
tion management, and quality assurance. The so-called key process areas formulated in Level 2
of the CMMI differentiate between requirements management, confi guration management, quality
assurance, project planning, project tracking, and subcontractor management.

The following sections discuss the different aspects of confi guration, project, subcontractor, and
requirements management, including quality assurance, as depicted by Fig. 3-1.

Fig. 3-4. System levels in automotive electronics.

Vehicle
Level

Vehicle
Subsystem Level
(e.g., powertrain)

ECU Level

Microcontroller
Level

Software
Level

Software Subsystem

Software Component

AUTOMOTIVE SOFTWARE ENGINEERING

-132-

This chapter does not attempt a comprehensive treatment of the subjects listed in the preceding
paragraph. Instead, it intends to use real-life cases in point to demonstrate the benefi ts of the
referred processes. Emphasis is given to those process steps that are of major consequence in
vehicle development or those that incorporate specifi c individual features.

Example: Continual development and change management

Because of the long product life cycles of automobiles, the aspects of continual development
and change management of onboard automotive systems are of great importance. It must
be possible to manage the effects of change on a system and to track such changes. One
example of how the changes made to one component can affect various other components
in a system is shown in Fig. 3-5.

Fig. 3-5. The effect of changes made to one system component.

Signal Flow

Initially, a required change made to Component W directly affects Component Y. The
change that has occurred in Component Y then causes changes in Components X and Z.
Changes also may have repercussions extending beyond subsystem boundaries or across
system levels.

It stands to reason that, to safeguard continual system development and change management,
the supporting processes discussed in the following sections must be interlinked with the core
process. This is the only way in which lateral interdependencies among components within a
system can be managed and tracked.

Support Processes for Electronic Systems and Software Engineering

-133-

3.3 Confi guration Management

3.3.1 Product and Life Cycle

The life cycle of a product allows for the differentiation of three phases: development, produc-
tion, and operation and service (see Fig. 1-14 in Chapter 1).

The various components making up a system may have product life cycles of different durations.
For example, the persistent technological advancements in electronics have resulted in product
life cycles for vehicles that considerably exceed the life or change cycles of ECU hardware
and software. Also, the system requirements in the individual development, production, and
operational phases may vary.

Example: Differing requirements for ECU interfaces in development, production, and

service

Quite often, the varying requirements for the interfaces of the ECU during development,
production, and service can be met only by introducing different hardware features and
software functionalities to accommodate the individual phases of the product life cycle.
Figure 3-6 depicts some of the functional differences existing among development, produc-
tion, operation, and service. Further demands arise, for example, in terms of different data
transfer rates of the system interfaces.

Fig. 3-6. A diversity of requirements for ECU interfaces.

3.3.2 Variants and Scalability

The combination of an increasing contingent of vehicle variants and rising customer expecta-
tions (i.e., regarding the availability of options for individualization and expandability) results in

AUTOMOTIVE SOFTWARE ENGINEERING

-134-

demands for a greater number of variants and a higher degree of scalability in onboard vehicle
systems. The approach to meeting these system requirements may consist of introducing either
additional component variants or scalable system architectures. In Fig. 3-7, the range of variants
is extended by Component X, whereas the same result is achieved by the added Component Z
in Fig. 3-8.

Fig. 3-7. Creating system variants by assembling component variants.

Fig. 3-8. Creating system variants by exploiting scalability.

Support Processes for Electronic Systems and Software Engineering

-135-

3.3.3 Versions and Confi gurations

Because system variants may exist at all system levels, the hierarchical relations among system,
subsystems, and/or components should be subject to closer scrutiny. Relations may take the
shape of tree structures (Fig. 3-9) or network structures (Fig. 3-10).

Fig. 3-9. Tree structure.

System Level 1

System Level 2

System Level 3

System Level 1

System Level 2

System Level 3

In a tree structure, each component is assigned to only one system. In network structures, one
component may belong to several systems. For this reason, tree structures comprise a special
type of network structure, and the version management and confi guration management handling
system variants are based on network structures.

Over time, the continual development of systems and the introduction of new systems during the
vehicle production phase results in the development of new generations of system components.
As perceived from a vantage point at the component level, so-called component versions are
introduced at certain points along the timeline (Fig. 3-11).

Fig. 3-10. Network structure.

AUTOMOTIVE SOFTWARE ENGINEERING

-136-

The system level is also the area in which the relations—the references—with the contained
components are managed.

In this context, the term confi guration assumes special signifi cance. Here, a confi guration is
defi ned as a version-capable or versionable component, which in turn references a group of other
versionable components. In contrast to versions of components, confi gurations administer only
the references to the component versions contained in the confi guration and not the component
versions themselves. A component cannot be changed after it has been versioned. Thus, it fol-
lows that a versioned confi guration can reference only versioned components.

Based on these defi nitions, the term confi guration may even apply to the collection of aggregate
relations existing within a system. In other words, confi gurations matching this example contain
only the hierarchical relations. However, note that hierarchical relations likewise can be subject
to further development or change (Fig. 3-12).

Fig. 3-11. Various versions at the component level.

Fig. 3-12. Various confi gurations at the system level.

System A

Configuration C1 Configuration C2

Time

Z

X

Y

Component

Configuration C3

V1

V1

V1

V2

V2

V3

V1

V1

V1

V1

V2

V2

V3

V1

Support Processes for Electronic Systems and Software Engineering

-137-

As a consequence of the conditions discussed in the preceding section, different versions of a
given confi guration evolve over time. These offspring can be observed at the primary system
level in the same manner as a component or a subsystem.

The version and confi guration management—confi guration management, for short—facilitates
the administration of the demonstrated relations between systems and components. This makes
it an essential constituent of the development, production, and service processes. Confi gura-
tion management not only provides for the parallel development of variants, it also handles
the development of successive versions and ensures—at all system levels—the fulfi llment of a
variety of system requirements in individual phases of the product life cycle.

The confi guration management covers all of the process steps necessary for fi ling, administra-
tion, restoration, and exchange of results produced as in the course of development procedures.
This also includes the exchange of such information in all process phases, not only between the
various organizational units of a company but between the different development partners. The
confi guration management also governs, in addition to the work-related fi ndings and results,
all of the materials and tools, such as the deployed development tools. This is the only way in
which the reproducibility or repeatability of process steps can be ensured.

Several of the items managed by the confi guration management are as follows:

• Requirements
• Specifi cations
• Implementations, such as program versions and data versions
• Description fi les, such as for diagnostics, software updates, and software parameterization
• Documentation, and so forth

Especially during software development, the confi guration management is required to consider a
variety of aspects. These include, for example, the simultaneous or concurrent work progression,
the cooperation between vehicle manufacturers and suppliers, the separate handling of program
and data versions, the tracking of historical version and confi guration data related to software
components (Fig. 3-13), and the administration of requirements and description fi les. For all of
the reasons stated, the methodical integration of confi guration management in the development
process is an important prerequisite.

3.4 Project Management

The term project describes a collection of tasks that exhibits the following characteris-
tics [69]:

• The envisioned undertaking contains an inherent risk and is characterized by uniqueness
(i.e., it is not a routine situation).

• The task is defi ned in unambiguous terms.

• The accountabilities and objectives for a declared overall goal are clearly defi ned.

AUTOMOTIVE SOFTWARE ENGINEERING

-138-

• There is a clear limitation in time, providing a defi ned start date and end date.

• There is a limited deployment of resources.

• The organizational structure has been fi ne-tuned to suit the formulated objectives.

• In many cases, there exist discernible and differential contributory tasks—or project seg-
ments—and organizational units that are both interconnected and interdependent.

The objectives of a given project are expressed in the form of targets (Fig. 3-14):

• Quality targets: What are the requirements to be fulfi lled by the overall project result?

• Cost targets: What is the budget approved for the attainment of the overall result?

• Target deadlines or milestones: When is the overall result expected for presentation?

Because any development endeavor is characterized by several of these characteristics, it may
also be treated and handled as a dedicated project.

Fig. 3-13. Version history of component X.

Fig. 3-14. Project targets.

Support Processes for Electronic Systems and Software Engineering

-139-

On one hand, project management encompasses all aspects of project planning, which is the plan-
ning that concerns itself with the implementation of formulated project targets. It follows that
there will have to be separate quality, cost, and deadline planning—also termed project schedul-
ing—with concurrent organization planning, staff deployment scheduling, and risk analysis.

On the other hand, project management also includes the aspects of project control and project
tracking, that is, the tracking and monitoring of quality, costs, and deadlines during the entire
course of project implementation through the end of the project. This also entails being on the
lookout for risks that may have been hitherto concealed or unrecognized. If such detriments are
spotted, risk management will be trusted to apply the necessary course corrections.

3.4.1 Project Planning

To begin, the individual tasks making up a project must be defi ned. The sometimes arduous
road that leads to the conclusion of a project is lined with milestones, that is, markers or events
signifying the conclusion of individual project segments. Such a milestone typically may be
a scheduled delivery date for partial shipments, testing procedures, or a customer’s progress
payment. The time period required to complete an individual project segment is termed the
project phase.

Usually, it is possible to differentiate among at least four project phases (Fig. 3-15):

• Defi nition phase
• Planning phase
• Implementation phase
• Completion phase

Fig. 3-15. Project phases and milestones.

Each of these four phases has its own concluding milestone:

• Defi nition of project objectives is concluded.
• Project planning has been completed.
• Project implementation has been successful.
• Project reaches its scheduled end date.

AUTOMOTIVE SOFTWARE ENGINEERING

-140-

In some cases, the four major project phases are subdivided to create additional phases. This
becomes necessary especially in situations where several organizational units and different
corporate enterprises contribute to the project. More often than not, this is the case in automo-
tive development.

3.4.1.1 Quality Planning

For the entire course of the project, quality planning defi nes all those measures intended to
ensure that the overall project result will meet the formulated project requirements. Here, a dif-
ferentiation is made between the quality assurance guidelines and the quality testing measures
or methods. The actions required to serve quality assurance throughout all project phases are
defi ned in a so-called quality schedule.

3.4.1.2 Cost Planning

Cost planning encompasses the planning for all resources and fi nancial expenditures required
to complete the project. The instruments most often used in this context consist of personnel
deployment and fund disbursal schedules. Cost planning also must consider possible cost-saving
measures, such as the reuse of fi ndings from previous projects.

3.4.1.3 Project Scheduling

Project scheduling determines the length of time allowed for the completion of each project
phase. It is a process that assigns specifi c start and end dates to each phase and milestone. For
this planning step, it is crucial to consider, in addition to the possible ramifi cations of personnel
deployment to different projects, the consequences of handling concurrent projects. As if this
weren’t enough, the additional need to account for interdependencies among the project phases
turns project scheduling into a high-stakes juggling act.

Example: Project schedule—Development of a motor vehicle

Figure 3-16 shows an excerpt from the project scheduling of a motor vehicle development
project. The deadline scheduling for the entire vehicle must be coordinated and synchronized
with the scheduling assigned to all project segments. In this example, the development
schedules of vehicle, electronics, and software must be fi ne-tuned to produce the required
meshing of schedules.

As Fig. 3-16 indicates, several tasks are scheduled sequentially, whereas others are to be
carried out simultaneously. In many cases, development time can be reduced only by
planning for the concurrent handling of project tasks. For this reason, the scheduling and
synchronization of parallel development steps—termed simultaneous engineering—con-
stitutes a major challenge. This essential function is handled by a number of employees
usually belonging to different teams, and it is often shared across the corporate boundaries
of automobile manufacturers, suppliers, and other development partners.

Support Processes for Electronic Systems and Software Engineering

-141-

The job of accurately and completely defi ning the individual tasks, with the channels of infor-
mation fl ow and the placement of interconnecting synchronization points, may be handled by a
process model. Thus, it becomes an essential prerequisite for successful project management.
The intricate meshing of software development with electronics and vehicle development repre-
sents a marked contrast to the approaches prevalent in other areas of industrial application—with
telecommunications serving as an example. Therefore, it is safe to say that, by its very nature,
automotive systems engineering exerts a signifi cant infl uence on software engineering in the
automobile industry.

Regarding the time-based synchronization of two project phases characterized by interdepen-
dencies, a differentiation may be made among the following three cases in point. However, it
is not unusual for hybrid forms of these to occur in practical application.

Case 1: Phase B commences after the conclusion of Phase A (Fig. 3-17)

This scheduling approach is prescribed in situations where the completion of Phase A serves as
the precondition for the start of Phase B, or in cases where the processing of Phase B is in large
part dependent on the results produced by Phase A.

Fig. 3-16. Project schedule for motor vehicle development.

Subsystem development
(powertrain, chassis,
body, multimedia)

AUTOMOTIVE SOFTWARE ENGINEERING

-142-

Benefi ts: Provides sequential information fl ow without inherent risk

Drawbacks: Requires long processing times

Example:

The commencement of integration testing of the control unit software (Phase B) must wait
until the integration of that software (Phase A) has run its course.

Case 2: Phase B commences with segment information from Phase A, without early deci-

sions being taken in Phase A (Fig. 3-18).

This scheduling approach is applicable in situations where the working packet in Phase B is
relatively robust and thus unaffected by subsequent modifi cations made to original decisions
taken in Phase A.

Benefi ts: Shorter processing time

Drawbacks: Risk of delays caused by iterations in Phase B

Example:

Using a rapid prototyping system, the development of functions of the application software
(Phase B) can be started prior to the completion of the platform software (Phase A).

Fig. 3-17. Project phases—sequential scheduling.

Information
Flow

Fig. 3-18. Project phases—parallel scheduling, absence of early decisions in Phase A.

Information
Flow

Support Processes for Electronic Systems and Software Engineering

-143-

Case 3: Phase B commences with segment information from Phase A, prior decisions in

Phase A having been frozen (Fig. 3-19).

This scheduling approach is advantageous in situations where decisions made in Phase A are
rapidly approaching their fi nal form, that is, decisions placed close to the start of the timeline
are already close to reaching their fi nal status, and the risk of subsequent changes is relatively
low.

Benefi ts: Shorter processing times

Drawbacks: Risk of quality losses due to early constraints imposed in Phase A

Example:

Even before all functions of the application software have been specifi ed and implemented
(Phase A), those functions that have already been implemented are ready for calibration
(Phase B), albeit with the provision that there must be a very low likelihood of modifi cations
occurring toward the end of the Phase A timeline.

Fig. 3-19. Project phases—parallel scheduling, presence
of frozen prior decisions from Phase A.

Information
Flow

In all three of these cases, the information to be exchanged must be mapped onto the develop-
ment process. The task of defi ning processes is the subject of a more detailed discussion in
Chapter 4 of this book.

3.4.1.4 Development Roles and Responsibilities

As noted in Chapter 2, the development of vehicle functions requires in almost every instance
the participation of several professional disciplines. Therefore, it is not unusual to note the
interdisciplinary staffi ng of development teams. The individual team members contribute their
various qualifi cations—they may be said to assume a variety of roles.

With regard to the performance of tasks and outline of responsibilities, all contributory roles
require clearly defi ned demarcations. Table 3-1 presents an overview of various roles of the
kind frequently differentiated on development projects.

AUTOMOTIVE SOFTWARE ENGINEERING

-144-

The development of software functions for electronic systems is accomplished with the partici-
pation of all of the roles outlined in Table 3-1. Regarding the resulting role distribution, it must
overcome the hurdle of interdisciplinary, and frequently cross-corporate, cooperation. For the
reasons given, the interdisciplinary teamwork dedicated to the development of software functions
is best conducted on the basis of graphical function models. These are replacing the previously
used prose narrative specifi cations to an increasing degree.

In planning any project, the referred role distribution and the varying qualifi cations of the team
members must be taken into account.

Another special feature indigenous to the automobile industry is the variety of development
environments. For example, as shown in Fig. 1-18 in Chapter 1, virtual steps must be synchro-
nized by means of simulation, with the use of laboratory-based development procedures, on the
test bench or dynamometer, and in the vehicle.

3.4.2 Project Tracking and Risk Management

A risk comprises an event that may jeopardize the success of a project or even threaten the con-
sequence of economic loss. Thus, a project risk may well constitute a quality, cost, or deadline
risk.

Risk management encompasses all measures required to handle project-related risks. Because it
is closely interlaced with project control, risk management coordinates appropriate countermea-
sures in the event that an actual versus target comparison in the course of a project reveals certain
deviations. Function development may, as a measure of risk prevention, avail itself of the benefi t
of reused, previously validated functions. Another approach would be the early validation of

TABLE 3-1
ROLES AND TASK RESPONSIBILITIES

IN THE DEVELOPMENT PROCESS

Role Responsibilities

Function development Analysis of user requirements, and specification of logical
system architecture.

System development Analysis of logical system architecture, and specification
of technical system architecture.

Software development Analysis of software requirements, plus software
specification, design, implementation, and testing.

Hardware development Analysis of hardware requirements, plus hardware
specification, design, physical implementation,
integration, and testing.

Setpoint generator, sensor,
and actuator development

Analysis of requirements specific to setpoint generators,
sensors, and actuators, with their specification, design,
physical implementation, integration, and testing.

Integration, testing, and
calibration

Integration, testing, and calibration of onboard vehicle
systems and their functions.

Support Processes for Electronic Systems and Software Engineering

-145-

new functions by means of prototype development. All of the preceding notwithstanding, there
is no sure way to achieve a wholesale exclusion of project risks. Usually, the manifestation of
risk necessitates project planning amendments. For a detailed discussion of the topic at hand,
reference is made to the relevant specialized literature [69].

3.5 Subcontractor Management

The development of electronic systems in the automobile industry is frequently characterized by
a pronounced division of labor between vehicle manufacturers and suppliers or subcontractors.
Where the governing user requirements for a function to be developed are normally defi ned by
the vehicle manufacturer, the implementation of the desired functions by means of electronic
systems is frequently the exclusive domain of suppliers. However, the vehicle manufacturer
usually is responsible for fi ne-tuning and acceptance testing of the functions implemented
onboard the vehicle.

3.5.1 System and Component Responsibilities

Given the perils of this division of labor, a precise defi nition of the interfaces between the vehicle
manufacturer and subcontractors is an indispensable prerequisite. This can be properly visual-
ized by means of the V-Model diagram shown in Fig. 3-20. Whereas the vehicle manufacturer
bears the responsibility for the vehicle (i.e., on both the left-hand and right-hand branch of the
V-Model), the suppliers frequently are in charge of the component level.

Fig. 3-20. Distribution of responsibilities between the vehicle manufacturer and suppliers.

AUTOMOTIVE SOFTWARE ENGINEERING

-146-

The cooperation across corporate borders requires, in addition to the clarifi cation of technical
aspects, the settling of all issues addressing the organizational and legal levels of a project. For
this reason, contractor management is an area of great importance in vehicle management. It
encompasses all tasks to be considered in the context of interfaces between the vehicle manu-
facturer and suppliers and that of system development.

Although the referred interfaces may be defi ned differently on a case-by-case basis, they never-
theless require accurate and complete defi nitions in each case.

3.5.2 Interfaces for Specifi cation and Integration

The cooperation between the vehicle manufacturer and suppliers distinguishes between two
types of interfaces. In the example depicted in Fig. 3-20, these are as follows:

• The specifi cation interface in the left-hand branch of the V-Model

• The integration interface in the right-hand branch of the V-Model

These interfaces may become extremely complex. This can be demonstrated simply by virtue
of the great number of existing interrelations.

For example, if a system consists of n number of components made by n number of different
suppliers, it will be necessary to control, within the auspices of system development, a 1:n rela-
tion on the side of the vehicle manufacturer—on both the specifi cation side and integration side.
Now, we shall assume that a subcontractor supplies a given component to m number of different
vehicle manufacturers. This means that it will be necessary to control, within the auspices of
component development, an m:1 relation on the side of the component manufacturer—again,
on both the specifi cation side and the integration side.

3.5.3 Defi ning the Cross-Corporation Development Process

The complexity of interfaces notwithstanding, this situation provides many benefi ts to both
suppliers and vehicle manufacturers.

In most cases, electronic systems consist of embedded systems, that is, systems that are integrated
in a given context and that do not overtly manifest their existence to the respective user. The
value of the ECUs is rooted in the functions that they perform. In many cases, these functions
represent differentiating competitive factors.

For good reason, vehicle manufacturers therefore are acutely interested in those ECU functions
that have inherent properties providing a competitive edge. To software developers, this means
that the focus of their customer is pinpointed on those functions of the ECU application software
that hold the promise of competitive relevance.

To suppliers, this opens the door to a chance for the cross-customer development, testing, and
standardization of ECU hardware, platform software, and segments of the application software.
Customer-specifi c functions then can be added to and integrated into the application software.

Support Processes for Electronic Systems and Software Engineering

-147-

The discussion in the preceding sections has addressed a number of factors affecting the coopera-
tion between the customer—the vehicle manufacturer—and his or her suppliers. Despite their
obvious complexities, the resulting interrelations between the vehicle manufacturer and suppli-
ers can be depicted by means of a diagram. One such option is available in the so-called line
of visibility diagrams (LOV diagrams, for short) [23], which use the graphical symbols shown
in Fig. 3-21.

Fig. 3-21. Symbols used in LOV diagrams for process description. (Ref. [23])

Figure 3-22 shows an example of a LOV diagram. The top row depicts the process steps for
which the vehicle manufacturer, in its function as the customer, assumes the responsibility. The
rows that follow indicate the suppliers’ and subcontractors’ organization units, with the process
steps assigned to them. The connecting lines and arrows indicate the sequence of the process
steps. Each arrow represents the fl ow of an intermediate result, a so-called artifact. A separate
row is dedicated to the defi nition of methods and tools deployed for the various process steps.

3.6 Requirements Management

By its nature, requirements management is not necessarily designed exclusively for automotive
applications. This is a trait that it has in common with confi guration management. A telltale sign

Next Page

AUTOMOTIVE SOFTWARE ENGINEERING

-148-

of this fact is the deployment of standard tools handling requirements management for vehicle-
related projects. However, note that the necessity to consider the special demands of this type
of projects is in no way diminished. Reference is being made here, for example, to the support
of cross-corporate cooperation—in the fi eld of requirements management—that even transcends
location borders. Also worthy of note is the concerted action of requirements and confi guration
management for the purpose of versioning, not to mention the long product life cycles. All of
these underscore the demand for the methodical integration of requirements management into
the development process as a whole.

As its name implies, requirements management concerns itself with any and all tasks related
to the following:

• Requirements logging and recording
• Requirements tracking

However, note that the analysis of requirements, as well as the task of defi ning the specifi ca-
tions for the logical and technical system architecture, belong to the core process of system and
software development.

Fig. 3-22. Process description using a LOV diagram. (Ref. [23])

Customer
(vehicle man-
ufacturer)

Supplier
(subcontrac-
tor)

Previous Page

Support Processes for Electronic Systems and Software Engineering

-149-

3.6.1 Mining, Recording, and Interpreting User Requirements

Any product that is sent to market with hopes of garnering acceptance and success must satisfy
the requirements of its target user group. For this reason, it is essential to start defi ning, as
accurately as possible, the intended users of a given system and their expectations. Therefore,
the needs and wants of the future user are termed user requirements. Because it would be pre-
sumptuous to assume a certain level of technical background knowledge on the part of the user,
user requirements must be expressed in the language familiar to users.

User wishes—and expectations—thus become the drivers for all development steps to follow.
It also would appear logical that the process step concerned with the identifi cation, recording,
and interpretation of user requirements is decidedly different from all subsequent development
steps. Therefore, always with an ear to the ground and an eye on the market, developers should
conduct this step in a manner that combines intensive research and a high degree of interactivity.
Even given the fact that not all requirements expressed by the target group may appear practi-
cal or feasible, they should still be recorded and evaluated, if only to get a better handle on the
users’ expectations as a whole. For this reason, user requirements in most cases are available
only in the form of a motley assortment of list entries, resulting in a more or less structured,
rudimentary tabulation.

Based on the point in time of their acquisition, three types of user requirements may be distin-
guished:

• Requirements expressed at the start of a project

• Requirements voiced during the course of a project, normally referred to as requests for
change or supplemental requirements

• Requirements returned by way of feedback after the delivery of the fi nished product, nor-
mally called new requirements, fault reports, or suggestions for improvement

In the following discussion, all of the listed types of requirements are given equal treatment.

The term user applies to any and all persons who are in contact with the completed system in one
capacity or another, with the provision that his or her wishes and/or instructions exert infl uence
on the system. Often, it is possible to identify different user groups.

Example: User groups identifi ed in conjunction with a vehicle

For a given vehicle, there are other user groups in addition to the group of drivers. For
example, these include additional occupants and other road users such as pedestrians, cyclists,
other vehicles, and service personnel, as well as legislators (Fig. 3-23). All of these groups
impose their demands or requirements on the vehicle. Some requirement categories, such
as statutory laws, also are termed prerequisites.

During this phase, which is also termed opinion mining, a differentiation between requirements
and solutions provides a number of benefi ts. Users normally have a tendency to express their
requirements by stating or suggesting solutions. If a user offers suggestions for solutions, these

AUTOMOTIVE SOFTWARE ENGINEERING

-150-

should be scrutinized in such a way that the suggested solution may be used to formulate the
underlying user requirement. Failing accurate mining, the technical implementation may be
specifi ed at an unsuitably early time, which would confi ne the space available for solutions.

Example: User formulation of a requirement concerning the fuel gauge

A user expresses the following suggested solution:

The fuel level should be indicated in liters instead of on a scale indicating
readings of “¼ – ½ – ¾ – 1.”

The underlying user requirement might be as follows:

The indication of the road range of the vehicle should be more accurate,
that is, stating miles or kilometers.

User requirements may be mined in a variety of ways. First to come to mind are the tried-and-
true interviews and workshops, followed by deductive derivation from existing systems and
requests for change. There also is the potential inherent in user feedback from the fi eld. Bear
in mind that user requirements may arise from a variety of backgrounds, be they of a technical,
organizational, or economic nature.

User requirements often are categorized on the basis of varying criteria, such as source, priority,
urgency, stability, testability, acceptance, and so forth.

A closer look at developments during the past decade reveals that the number of user require-
ments increased with each successive vehicle generation. It is safe to say that this trend was
not nourished by the increasing number of vehicle functions alone. Sizeable contributions also
came from the increase in the number of vehicle variants and rising customer expectations, with
vehicle customizing and scalability having been major factors (Fig. 3-24) [9].

Fig. 3-23. Identifying user groups for a given vehicle.

Pedestrians,
Cyclists,
Other Vehicles, etc.

Service Personnel

Support Processes for Electronic Systems and Software Engineering

-151-

Aside from the expectations of the customer group of a given vehicle, the design and develop-
ment of electronic systems must consider a great number of additional prerequisites, such as
technical specifi cations and statutory constraints.

As a case in point, Fig. 3-25 outlines the requirement classes that must be observed in most cases
and that must be considered when designing electronic systems.

The various requirements imposed on electronic systems exhibit numerous interdependencies
and reciprocal effects. It also may be possible for requirements to be mutually contradictory. If
that is the case, the resulting goal-specifi c confl icts must be resolved before a technical imple-
mentation becomes possible.

The accepted user requirements become the basis for all subsequent development steps.

In the development of any system, the system requirements are formulated in the language of
the participating engineering disciplines. For this reason, differentiation is required between the
user requirements and those requirements that are imposed on a system from the development
standpoint. Chapter 4 of this book introduces another differentiation between the logical and
technical system architectures. The same chapter also provides a discussion of the analysis and
specifi cation procedures required for the mapping of user requirements onto a technical system

Fig. 3-24. Increase in the number of vehicle-specifi c user requirements. (Ref. [9])

Station Wagons
Motor Sports

Time

AUTOMOTIVE SOFTWARE ENGINEERING

-152-

architecture. Accordingly, to facilitate the planning and tracking of requirements implementa-
tion, requirements management must support, in addition to a view of the user requirements, a
view of the logical and technical system architecture (Fig. 3-26).

Fig. 3-25. Various requirement classes for electronic systems.

User Interface
Requirements

Functionality
Requirements

Open-Loop /
Closed-Loop Control

Requirements

Cost, Effort, &
Time to Market
Requirements

Quality
Requirements

Scalability
and Variant

Requirements
Installation Space,
Weight, & Current
Draw Requirements

Safety
Requirements

Reliability
Requirements

Real-Time
Requirements

Fig. 3-26. User requirements, logical and technical system architecture. (Ref. [12])

Support Processes for Electronic Systems and Software Engineering

-153-

3.6.2 Tracking User Requirements

The challenges of handling the system variants, scalability, and differing life cycles of the
deployed components, as well as the reuse of components in a variety of vehicles, all result in
prerequisites that must already be taken into account at the system design stage. At the same
time, this often results in lateral interrelations among different vehicle projects. These rela-
tions must be considered in project planning to the same extent as the numerous interrelations
between automobile manufacturers and suppliers, not to mention the simultaneous processing
of design-related tasks, or simultaneous engineering.

Therefore, note that the single most important function of requirements management, in addi-
tion to the mining, recording, and interpretation of user requirements, consists of the tracking
of requirements implementation.

For all entities contributing to development, this is the only common basis for making a deter-
mination about which requirements are being implemented with which program and/or data
version, and which are not. This is a particularly important requirement in the integration and
quality assurance of intermediate versions. As a prerequisite for the tracking of requirements,
the interrelations between user requirements and the logical and technical system architecture
must be managed. To this end, all system components must be connected to the respective
requirements, as depicted in Fig. 3-27.

Fig. 3-27. Tracking requirements. (Ref. [12])

AUTOMOTIVE SOFTWARE ENGINEERING

-154-

3.7 Quality Assurance

Quality assurance encompasses all measures ensuring that the product meets the specifi ed require-
ments. It is quite true that quality can be “built into” a product, provided that quality assurance
guidelines and appropriate quality testing procedures have been established.

Quality assurance guidelines also may be termed preventive measures. With regard to software
products, this includes some or all of the following measures:

• Deployment of appropriately trained, capable personnel who possess the necessary experi-
ence and skills

• Provision of a suitable development process with defi ned testing procedures

• Availability of guidelines, measures, and standards to support the process

• Provision of a suitable tool environment to support the process

• Automation of both manual and fault-prone working steps

Quality testing procedures serve the purpose of fault detection. Therefore, quality testing should
be conducted after as many steps in the development process as possible. Because a variety of
quality testing methods are integrated in the V-Model, these will be discussed in more detail in
conjunction with the core process in Chapter 4 of this book.

In the case of software products, a general differentiation is made between two types of faults:

• Specifi cation faults
• Implementation faults

Research has shown that specifi cation faults are predominant in most projects. For this reason,
the V-Model differentiates between verifi cation and validation.

3.7.1 Integration and Testing Procedures

After the user requirements for a given project have been explicitly defi ned, it is possible to test
the product vis-à-vis its user requirements. The V-Model distinguishes four different test steps
(see Fig. 1-15 in Chapter 1):

• The component test carries out testing against the component specifi cation.

• The integration test carries out system testing against the specifi cation of the technical
system architecture.

• The system test carries out system testing against the specifi cation of the logical system
architecture.

• The acceptance test carries out system testing against the user requirements.

Support Processes for Electronic Systems and Software Engineering

-155-

The component test, integration test, and system test comprise verifi cation measures. The
acceptance test is one of several validation measures.

Testing—without putting too fi ne a point on it—is a method of verifying the presence of faults.
Because they focus on fault identifi cation, tests contribute to the sustained attainment of prod-
uct quality. For this reason alone, tests should be conducted at all system levels at the earliest
possible juncture. In this context, however, note that the failure of a test to identify any faults
whatsoever does not necessarily indicate an unequivocal absence of faults. Thus, tests must
be planned in conjunction with additional quality assurance measures, such as reviews, with a
view to forming an investigative entity.

The tests to be conducted may be described by means of application or testing cases in point
that may be defi ned as early as in the design phase. This also means that the user requirements
implicitly defi ne the acceptance tests. The application cases for the system test are defi ned as part
of the specifi cation for the logical system architecture, the sample cases for the integration test
become part and parcel of the specifi cation for the technical system architecture, and so forth.

3.7.2 Software Quality Assurance Methods

The methods used in software quality assurance are closely related to the integration procedures.
Especially in view of the increasing safety relevance of many software-based vehicle functions,
the importance of software quality assurance is steadily increasing. There is a simple way to
formulate the demand for safety: All components required for a given vehicle function, with
all associated systems, must meet the technical safety requirements.

In electronics development, a high degree of system safety therefore cannot be attained simply by
looking at the hardware involved. The parallel deployment of software quality testing methods
is an absolute must.

For reasons emanating from the discussion throughout the preceding sections, the verifi cation
of software reliability and safety is steadily gaining in importance. It has become virtually
impossible to guarantee a fault-free implementation, spanning the range from the analysis of
user requirements to the completed program. Therefore, the only safe road to the creation
of reliable software consists of the diligent application of software quality assurance methods
and of uncompromising organizational measures, such as requirements management and con-
fi guration management. The combination of these and the deployment of software engineering
methods will make the development process manageable.

An overview of possible software quality assurance methods as they relate to verifi cation and
validation is shown in Fig. 3-28 [70]. Some of these methods are discussed in more detail in
Chapter 5 of this book.

AUTOMOTIVE SOFTWARE ENGINEERING

-156-

Fig. 3-28. Overview of software quality assurance methods. (Ref. [70])

Walk-Through, Fagan Inspection,
Code Inspection, Peer Review, Etc.

Static Analysis, Formal Proof,
Control and Data Flow, Etc.

Black Box Test
Functional Performance,
Stress Testing, Limit Value, Etc.

White Box Test
Structure, Path, Branch, Condition,
Coverage, Etc.

Rapid Prototyping, Etc.

Cause/Effect Diagram (Plus
Misc. Dedicated Tests, Etc.)

-157-

CHAPTER FOUR

CORE PROCESS FOR

ELECTRONIC SYSTEMS AND

SOFTWARE ENGINEERING

In contrast to the practice of component development, which is the analysis and design of indi-
vidual components, systems engineering concerns itself with the analysis and design of the system
as a whole. The discussion in this chapter takes its orientation from the following defi nition of
systems engineering, which closely follows the defi nitions in [12] and [71].

The defi nitions state that systems engineering is the dedicated application of scientifi c and
technical resources for the purposes of:

• Transforming an operational requirement into the description of a system confi guration,
while considering, to the extent possible, all operational requirements in accordance with
the benchmarks of the necessary effectiveness.

• Integrating all technical parameters, and ensuring the compatibility of all physical, functional,
and technical interfaces in a manner optimizing, to the highest degree possible, the entire
system defi nition and the system design.

• Achieving the integration of contributions from all participating engineering disciplines in
a comprehensive development approach.

Thus, systems engineering is an interdisciplinary approach. It encompasses measures and
methods employed by systems engineering practitioners and researchers for the sole purpose
of facilitating the successful implementation of dedicated systems. In systems engineering,
the development process aims at accomplishing an early defi nition of requirements and neces-
sary functionalities, plus the documentation of requirements. Also included are the design and
subsequent verifi cation and validation of the system. Covering a cradle-to-grave life cycle of
the system, the process encompasses every relevant aspect, such as development, performance
features, costs, project schedule, testing, manufacture, operation, and servicing, as well as train-
ing and, fi nally, system disposal.

Systems engineering provides a structured development—or engineering—process, consider-
ing all phases of the product life cycle, spanning the arc from initial concept to production,
down to operation and servicing. In its observations, systems engineering must consider both
technical and organizational aspects. For example, the development of electronic systems for

AUTOMOTIVE SOFTWARE ENGINEERING

-158-

onboard automotive application requires the integration of engineering disciplines introduced
in Chapter 2 of this book.

By contrast, software development comprises—as does the development of hardware, setpoint
generators, sensors, and actuators—a separate engineering discipline integrated in systems
engineering.

The unambiguous defi nition of the interfaces—of both the specifi cation and integration type—
between systems engineering and software engineering represents an indispensable prerequisite
for a consistent development process. This so-called core process steps into the limelight in the
present chapter. The following sections take their orientation from the overview and terminol-
ogy shown in Fig. 4-1.

4.1 Requirements and Prerequisites

4.1.1 Shared System and Component Responsibilities

In vehicle development, the responsibility for given components often is shared by several
partners (e.g., component suppliers). Needless to say, if suppliers happen to be engaged in a

Fig. 4-1. Overview of the systems and software engineering process.

Core Process for Electronic Systems and Software Engineering

-159-

mutually competitive situation, this will affect the ways and means of cooperation. Therefore,
the vehicle manufacturer normally takes charge of the overall systems responsibility, whereas
the responsibility for subsystems often rests with the system suppliers (Fig. 4-2).

Fig. 4-2. Distribution of responsibilities for components, subsystems, and systems.

Thus, it is safe to say that, as a rule, the functions relating to vehicle systems specifi cation, inte-
gration, and quality assurance are shared by several partners, each assuming one of the three
roles of vehicle manufacturer, system supplier, or component supplier.

4.1.2 Coordination of Systems Engineering and Software Engineering

As depicted in Fig. 4-1, the objective of the early and late process steps is the observation of the
system aspects related to vehicle functions. Here, the focus is on the interaction of the various
components forming a system that facilitates the implementation of vehicle functions. Regarded
individually, the system components may be implemented in a technically diverse manner, that
is, based on mechanical, hydraulic, electrical, or even electronic principles. However, only the
concerted interaction of the components of a system fulfi lls the user’s expectations of a given
vehicle function.

The ECUs onboard the vehicle interact with a variety of different components. Therefore, the
basic design issue for vehicle functions is the replication of a logical system architecture in
the form of a technical system consisting of ECUs, setpoint generators, sensors, and actuators.
To this end, the interfaces connecting the systems and their components must be defi ned and
subfunctions assigned.

This book limits the discussion of component development or subsystem development to those
components and subsystems that are based on software implementation. This process necessitates
the consideration of an abundance of reciprocal effects that cross the boundaries between the
development of systems and software. Thus, the mastery of software development can be achieved

AUTOMOTIVE SOFTWARE ENGINEERING

-160-

solely with the aid of a systematic development methodology, which often is called software
engineering. Actually, software engineering is not a new invention. For a long time, experienced
software developers in all application areas have been using certain principles—mostly more or
less intuitively and without subjecting these axioms to any kind of formal defi nition.

The decisive prerequisite for a consistent process is the detailed defi nition of the interfaces
between systems engineering and its software counterpart. For this reason, the following sec-
tions pay particular attention to the specifi cation and integration interfaces between systems and
software engineering.

In Sections 4.5 through 4.10, the software, in its role as a component or subsystem, takes cen-
ter stage. The discussion examines in greater detail those subfunctions that are carried out by
microcontrollers onboard ECUs and whose description is software based. Because software
opens the door to the random linking—both logical and arithmetical—of input signals for the
purpose of calculating the output variables of a given function, the contribution by software
functions to the entire functionality of a vehicle is steadily increasing. But there is a downside,
which manifests itself in the rising complexity of the attendant software. The safe and predict-
able mastery of this complexity represents a challenge that necessitates the use of appropriate
software engineering methods, such as the practice of extending the declaration and standardiza-
tion of interfaces also to the software.

As the discussion has shown, software engineering shines its spotlight on mapping the logical
system architecture onto a concretely defi ned software system, that is, onto the entire complement
of programs and data being processed in a distributed, processor-controlled system onboard the
vehicle. To this end, software engineering also can draw signifi cant benefi ts from employing
the general methods inherent in the support processes described in Chapter 3.

The following sections discuss the special prerequisites for the specifi cation, design, imple-
mentation, testing, and integration of software for ECUs in series-produced vehicles. Particular
attention is given to a clear delineation between the specifi cation of software functions at the
physical level, on one hand, and the design and implementation of programs and data for a
specifi c microcontroller.

Stated differently, a separation of program version and data version can cause an enormous
simplifi cation of variant management in development, production, and service (e.g., through
the implementation of physical variants in the form of data variants). This point is receiving
appropriate consideration, too.

The V-Model was developed for embedded systems. Thus, it regards the software as a compo-
nent of a system of information technology, gives equal weight to both software and hardware
development, and integrates quality assurance testing in the system implementation.

For this reason, the V-Model is the preferred choice for systems that are characterized by high
demands in terms of reliability and safety in conjunction with the prescription of appropriate
testing steps, and for systems whose components are subject to distributed development.

In the presence of so much light, there is bound to be some shadow. A disadvantage is seen in
the absence of feedback mechanisms with the early development phases, causing faults and/or

Core Process for Electronic Systems and Software Engineering

-161-

changes occurring early on the timeline to be recognized or considered in a less than timely fash-
ion. In this way, new requirements and change requests may be met and/or implemented only at
the cost of great expenditures. In fact, they have a tendency to introduce unsavory consequences,
ranging from high project risks to threatening the entire project. As a practical consequence, the
V-Model is cycled through repeatedly in a given course of vehicle development. Various variants
of possible endless loops are depicted by the fl ow of test results shown in Fig. 4-1.

In many cases, a fi rst step is to develop a prototype that, despite its limited functionality, can
be used for proving in a real-world environment at the beginning of the timeline. This aids
the identifi cation of defi cits at an early stage. The limited prototype then is used to develop
an improved prototype for validation in another iteration loop. This evolutionary prototyping
cycle is repeated until all requirements or quality targets have been met. Alternatively, at least
a software version with limited functionality can be shipped, even in the presence of looming
time and cost constraints. This incremental and iterative approach allows for the timely reduc-
tion of development risks in software engineering. Other terms used to describe this iterative
method are prototype model or spiral model.

The same model also is used in automotive systems engineering, and it is used in the initial
development of components that are then tested in experimental vehicles. As a next step, vehicle
prototypes are constructed and fi eld tested, to be succeeded by pilot series and series production
vehicles. As the number of iterations increases, the development risk and per-iteration expense
diminishes. The prototypes developed for the respective integration versions also are termed
samples. Depending of the progress of a project, a differentiation is frequently made between A-,
B-, and C-samples. The series-produced version also is known as the D-sample.

In the development of software functions, a similar approach is supported by simulation and
rapid prototyping tools; these are discussed in more detail in Section 5.3 of Chapter 5.

4.1.3 Model-Based Software Development

Software models facilitate the formulation of algorithms devoid of interpretation leeway. This
is accomplished with the deployment of terminology and graphical notations that provide more
clarity and distinction than plain-text descriptions or program code.

Because of these obvious advantages, model-based software development on the basis of graphical
notations has gained widespread acceptance in the automobile industry in recent years. Soft-
ware models describe a variety of views of a software system. The description of the software
architecture of microcontrollers derives the greatest benefi ts from the context or interface view,
the layer view, and the view of attainable operating states. The following sections present the
essential terminology and notations used in these model views.

4.2 Basic Defi nitions and Notations

Before starting, there is the need to discuss one small matter of terminology. Now is the time
to clarify the basic terms and notations used by the V-Model [15] for the purpose of process
visualization.

AUTOMOTIVE SOFTWARE ENGINEERING

-162-

4.2.1 Processes, Process Steps, and Artifacts

A process, as contemplated by a process model, represents a systematic and repetitive series of
steps that follow each other in a logical sequence. A process may be said to:

• Serve the fulfi llment of a requirement of an internal (in-house) or external customer

• Be initiated by a customer

• Deliver, to this customer, a performance in the form of a product or service, which is then
paid for by that same customer (customer/vendor relationship)

Aprocess step comprises a separate and complete individual sequence of activities whose result is
an artifact. Subdividing a process step would not produce a useful artifact. An artifact represents
an intermediate result that is passed on for use by other process steps. Examples of artifacts of
electronic vehicle systems may be the specifi cation or implementation of a software component.
Other artifacts may be hardware components, setpoint generators, sensors, or actuators.

The different process steps are linked by interfaces that serve the purpose of exchanging arti-
facts. In the visualization used by the V-Model [15], process steps and artifacts are depicted as
shown in Fig. 4-3.

Fig. 4-3. Visualization of V-Model (Ref. [15]) based processes using LOV diagrams. (Ref. [23])

In the defi nition of process steps and artifacts, various prerequisites must be considered:

• Participants or responsibilities, or who produces/performs what?
• Competence and qualifi cation, or who can contribute what?
• Precondition and result, or what is needed, and what is delivered?

Core Process for Electronic Systems and Software Engineering

-163-

4.2.2 Methods and Tools

For each individual process step or for a series thereof, a procedural approach—a so-called
method—must be declared. Following the defi nition in [72], a method is a formalized, justifi ed,
and regularly scheduled procedural approach applied toward the attainment of defi ned targets,
normally within the strictures of formulated principles.

Example: Simulation and rapid prototyping for a new vehicle function

The term rapid prototyping describes process steps pursuing the objective of achieving
the rapid validation of a given specifi cation through the application of predefi ned methods
early on the timeline. In the case of software functions, these methods may be supported
by rapid prototyping tools (see Fig. 1-20 in Chapter 1). In this context, typical process
steps are those effecting the specifi cation (i.e., through modeling) and simulation, as well
as in-vehicle prototype integration and testing (Fig. 4-4).

Fig. 4-4. Simulation and rapid prototyping steps in the development process.

Integration
and In-Vehicle

Test

The artifact resulting from this methodical approach is a specifi cation that takes the form of a
model and satisfi es the demands imposed on a given function, in a manner that is both highly
complete and devoid of contradiction. For example, the specifi cation may take the form
of an executable model offering analytical and/or experimental validation. For this reason,
this approach is ideal for feasibility analyses of new functions. In addition to reducing the
development risk for series developments, the use of this method provides the additional
benefi t of facilitating concurrent development and proving of software and hardware.

Regarding in-vehicle prototype integration and testing, several steps can be distinguished,
such as the startup of the experimental system or test vehicle, and the actual performance
of experiments (Fig. 4-5). Any steps that fail to produce artifacts suitable for evaluation by
subsequent process steps are called methodical steps.

So-called tools contribute to the automated support of methods [72]. Tools can support the
methodical processing of process steps, thus contributing to an increase in productivity. This

AUTOMOTIVE SOFTWARE ENGINEERING

-164-

is particularly useful in the automation of those methodical steps that require great accuracy or
frequent repetition, or those necessitating verifi cation.

4.3 Analysis of User Requirements and Specifi cation of Logical System
Architecture

As foreshadowed in Section 3.6 in Chapter 3, the replication of user requirements in the form of
a concrete technical system architecture avails itself of the intermediate step of logical system
architecture [12]. This differentiation has proven particularly useful in conjunction with complex
systems and development projects of extended duration.

The term user requirements analysis describes the structuring process for both requirements
and constraints during the early phase of system development, as perceived by a system user.
The objective is to formulate the specifi cation for a logical system architecture. This process
defi nes the logical components and subsystems of a system, with their functions, requirements,
and interfaces. Concurrent with this process, use cases forming the basis for the subsequent
system and acceptance test are defi ned.

If required, this step may be cycled through repeatedly until a logical system architecture satisfy-
ing all user requirements has been assembled, and until the system and acceptance tests produce
positive results (Fig. 4-6).

The logical system architecture describes an abstract solution, but it avoids specifying a concrete
technical system architecture. In other words, the kind of performance the system will deliver
is decided, but the specifi c manner of its implementation is not. The resulting creation may be
described as an abstract logical model of the system and its functions. This model comprises
the link between the user requirements and the design of the technical system architecture [12]
that is the object of the succeeding step. The defi nition of the logical system architecture
comprises a creative arranging and drafting process that is based on the accepted user require-
ments. In contrast to the user requirements, the requirements in the logical system architecture
are expressed in the indigenous language of the various engineering disciplines contributing to
the development process. Graphical notations, such as block diagrams and state machines, are
suited to a model-based visualization.

Fig. 4-5. Methodical steps for integration and testing onboard the vehicle.

Integration and Testing Onboard the Vehicle

Core Process for Electronic Systems and Software Engineering

-165-

Logical system requirements may be formulated based on two different perspectives:

• Requirements that describe the properties the system is to possess
• Requirements that describe the properties the system may not possess

Another criterion is the differentiation between functional and nonfunctional system require-
ments.

The functional system requirements describe the standard and nonstandard system functions.
The standard system functions manifest themselves in the course of normal system operations,
whereas the nonstandard system functions defi ne the system behavior that occurs as a conse-
quence of faults, malfunctions, and failures.

The term nonfunctional requirements describes all additional demands imposed on the system;
these also are called constraints. They form a category that includes, for example, variant and
scalability requirements, as well as legal constraints imposed by legislation, such as reliability
and safety requirements. The same category also embraces a multitude of requirements for-
mulated by production and service. There are other nonfunctional requirements as diverse as
those specifying operation in rough conditions, the voltage available in the onboard electrical
network, limitation of installation space, and cost barriers. In electronic systems, these may
have a direct infl uence on only the hardware, but their indirect infl uence on the software should
not be overlooked. One example of a hardware requirement that also affects the software is the
maximum allowable resources requirement, that is, memory and runtime requirements. In the
development of automobiles, this category of logical system and software requirements particu-
larly exhibits pronounced differences from its counterparts in other industries.

A widely used approach for this process step is the stepwise decomposition of system functions,
with a view to determining not only the system components but also their interfaces and functions.
The outcome of this process step is a logically structured, formal architectural model containing

Fig. 4-6. Analysis of user requirements and specifi cation of logical system architecture.

AUTOMOTIVE SOFTWARE ENGINEERING

-166-

all of the functions to cover the various user requirements. The logical system architecture is
also referred to as function network. If the logical system architecture refers to only a specifi c
system version or variant, it is safe to assume that it covers only certain segments of the user
requirements.

Example: Accepted user requirements and logical system architecture for the instrument

cluster

Figure 4-7 shows some of the user requirements to be fulfi lled by an instrument cluster
in a vehicle. This fi ctitious instrument cluster is used as a basis for the discussion of the
individual steps of the core process throughout this chapter.

Fig. 4-7. Examples of user requirements for the instrument cluster.

Figure 4-8 shows the replication of user requirements in the form of a logical system
architecture. The hierarchical structure of a block diagram was based on the consideration
of design standards. One prerequisite, for example, is the stipulation that the type of visu-
alization used shall provide the option of digital displays or pointer instruments. For this
reason, provisions are already made in the logical system architecture for the processing
of information to be displayed by a display or pointer instrument (e.g., through a fi lter or
attenuation function).

If no provision is made for a delineation between user requirements and logical system archi-
tecture, it becomes more diffi cult to determine the user’s erstwhile expectations as the project
advances. What is more, it becomes downright impossible to divine which user requirements
were accepted and which were not.

As a consequence, a differentiation between the user requirements and the logical system
architecture—the latter being a product of technical prerequisites and constraints imposed by
implementation—is no longer feasible at a later point in time.

The objective of this development step is to arrive at the defi nition for a logical system archi-
tecture that is at once unambiguous, noncontradictory, and as complete as possible. The effect

Core Process for Electronic Systems and Software Engineering

-167-

of this process step is the informal transition—although in many cases based on industry jargon
and colloquialisms, incomplete, and unstructured—from the described user requirements to the
fi rst functional and structured models.

In this fi rst crucial step, several structuring axioms, such as manageability, separability, and
comprehensibility, provide essential guidance. The logical models created in this manner defi ne
both functions and function interfaces.

4.4 Analysis of Logical System Architecture and Specifi cation of
Technical System Architecture

On the basis of the logical system architecture, the specifi cation of the technical system archi-
tecture establishes concrete implementation decisions.

After the logical system requirements have been assigned to technical components and sub-
systems, some basic analyses then can be performed. These may center around open-loop
and closed-loop control tasks, or take the form of distributed and networked systems analyses,
or reliability and safety analyses (Fig. 4-9). The main objective is the evaluation of various
technical implementation alternatives, all of which are based on a standardized logical system
architecture. Needless to say, any changes made to the implementation decisions would make
it necessary to repeat this step.

The technical components and subsystems are defi ned for all system levels in a step-by-step
progression. For example, with the implementation decisions completed at the upper system
levels, an assignment to the hardware and software requirements can be defi ned for the elec-
tronics (Fig. 4-10).

Fig. 4-8. Logical system architecture of an instrument cluster.

AUTOMOTIVE SOFTWARE ENGINEERING

-168-

The technical system architecture must consider all constraints of a technical and economic nature,
as well as those concerned with organizational structure and manufacturing technology.

The following are some typical constraints:

• Standards and design patterns
• Interdependencies among various systems and components
• Results of feasibility studies
• Production and service requirements
• Modifi ability and testability requirements
• Expenditure and risk estimates

For all of these reasons, the expertise of the participating engineering disciplines is a precondi-
tion for the specifi cation of the technical system architecture. More often than not, this process
also entails the resolution of goal-specifi c confl icts.

Fig. 4-9. Analysis of logical system architecture and specifi cation
of technical system architecture.

Open- & Closed-
Loop Control

Analysis

Analysis of
Real-Time
Systems

Open- & Closed-
Loop Control
Specification

Specification
of Real-Time

Systems

Core Process for Electronic Systems and Software Engineering

-169-

Fig. 4-10. Specifi cation of technical system architecture.

Setpoint
Generator

Example: Constraints and confl icts of objectives in the specifi cation of the technical system

architecture

 • Reuse, or building-block use, of technical components in various vehicle series

 The multiple use of engines and transmissions in different vehicle production series is
dictated by cost considerations. Because this fact also infl uences the architecture of
electronics, this often is the reason for the use of standardized engine and transmission
ECUs that differ only in terms of program and/or data version.

 • Different vehicle variants within a vehicle series

 The purchaser of an automobile can choose between an automatic or manual transmission. In
many cases, this option alone causes a separation between engine and transmission ECU.

 • Optional extras versus standard equipment

 Because the rain sensor, parking pilot, or electric seat adjustment are offered as optional
extras, they require implementation by means of standalone ECUs. By contrast, several
functions belonging to the standard equipment of the vehicle can be implemented in a
single ECU.

Next Page

AUTOMOTIVE SOFTWARE ENGINEERING

-170-

 • Country-specifi c equipment variants

 Differences in the standard equipment (e.g., between models for warm countries and
those destined for cold countries, or between European and North American versions)
infl uence the technical system architecture.

 • Component-oriented reuse

 Often, the goal is to facilitate the use of components across the boundaries of brand and
manufacturer. If this is the case, the component-oriented reuse takes precedence over
any functional dissection. Figure 4-11 depicts the mandatory reuse of ECU 1. It cov-
ers the functions f1, f2, and f3. However, function f4 can be freely assigned to another
ECU—in this example, ECU 3.

Example: Designing the technical system architecture for the instrument cluster

If the design procedure is started at the topmost hierarchical level, then the instrument cluster
fi rst must be defi ned as a component within the network of ECUs onboard the vehicle.

The engine RPM and coolant temperature are provided by the engine ECU via the CAN
bus. The road speed of the vehicle is received from the ABS system, again via the CAN
bus. Information addressing the driver shall be displayed partly in the instrument cluster and
partly in a separate, centralized operating and display system, the so-called man/machine
interface (MMI). In addition, there shall be an audible indication of warnings and fault
messages to be signaled via the audio system of the vehicle. Video and audio signals are
transferred via the MOST system. In consequence, the instrument cluster is designed to be
a CAN bus station as well as a node on the MOST ring topology (Fig. 4-12).

Because of their sensory functions, the fuel level sensors are assigned to the instrument
cluster. The same is true of the actuators (i.e., the pointer instruments and displays). All of
the preceding results in the defi nition of the hardware architecture, as shown in Fig. 4-13.

Fig. 4-11. Component-oriented reuse versus functional decomposition.

Previous Page

Core Process for Electronic Systems and Software Engineering

-171-

Fig. 4-12. Technical system architecture for the ECU network of the vehicle.

Fig. 4-13. Technical system architecture defi ning the instrument cluster hardware.

4.4.1 Analysis and Specifi cation of Open-Loop/Closed-Loop
Control Systems

The logical system architecture depicted in Fig. 4-14 forms the basis of any and all methods
dedicated to the analysis of open-loop and closed-loop control systems.

AUTOMOTIVE SOFTWARE ENGINEERING

-172-

When specifying the technical system architecture for open-loop and closed-loop control systems,
the specifi c implementation of setpoint generators, sensors, actuators, and the network of ECUs
must be defi ned. This requires the replication of the logical system architecture in the form of
a concrete technical system architecture, as shown in Fig. 4-15.

Fig. 4-14. Logical system architecture in open-loop/closed-loop control systems.

Open-/Closed-
Loop Control,

Monitoring

Setpoint
Generators

Fig. 4-15. Technical system architecture in open-loop/closed-loop control systems.

Generators

Open-/Closed-
Loop Control,

Monitoring

Core Process for Electronic Systems and Software Engineering

-173-

4.4.2 Analysis and Specifi cation of Real-Time Systems

The process of analyzing and specifying control systems also includes the task of defi ning the
sampling rates for the various control functions.

The sampling rate forms the basis for the defi nition of real-time requirements for the software
functions to be executed by a microcontroller onboard the respective ECU. In cases where the
implementation includes a distributed and networked system, the sampling rates also provide
the real-time requirements for the data transmission among ECUs by means of the communica-
tion system.

Appropriate methods analyzing the schedulability in the presence of existing real-time require-
ments are shown in Section 5.2.2 of Chapter 5, using the real-time operating system in a micro-
controller as a case in point. The results of this analysis become the basis for the assessment
of technical implementation alternatives and for possible corrective modifi cations made to the
confi guration of the real-time operating system. In principle, the approach thus demonstrated
also may be expanded to include the analysis and specifi cation of the real-time characteristics
of the communication system.

4.4.3 Analysis and Specifi cation of Distributed and Networked Systems

The assignment of logical software functions to a network of microcontrollers comprises a devel-
opment step requiring the consideration of multiple requirements, such as real-time, safety, and
reliability requirements (Fig. 4-16). Additional factors to be taken into account when distribut-
ing software functions to the various microcontrollers exist in the form of certain prerequisites,
such as limitations of installation space or the required computing power or communications
capacity. Therefore, the assessment of various implementation alternatives plays an important
role during the analytical phase.

After the software functions have been assigned to the microcontrollers, the next step consists of
assigning the signals to messages. As mentioned, at the logical level of the system architecture,
the developer’s interest focuses on the signals to be exchanged among the software functions.
Now, at the level of technical system architecture, the messages to be exchanged among the
microcontrollers must be formed (Fig. 4-17).

4.4.4 Analysis and Specifi cation of Reliable and Safe Systems

For many vehicle functions, the verifi cation of the required reliability and safety is a mandatory
requirement. For this reason, the reliability and safety analysis must be conducted at an early
stage of the development process. Figure 4-18 shows a diagram of a typical approach to the
reliability and safety analysis [70].

AUTOMOTIVE SOFTWARE ENGINEERING

-174-

Fig. 4-16. Assignment of software functions to microcontrollers.

3.1

Fig. 4-17. Assignment of signals to messages.

State, Control, &
Test Information

Payload Data

Core Process for Electronic Systems and Software Engineering

-175-

4.5 Analysis of Software Requirements and Specifi cation of Software
Architecture

With the technical system architecture fully defi ned, the next step tackles the implementation
of components and subsystems. On the basis of the software requirements (Fig. 4-10), the soft-
ware design carries out an analysis of the same and establishes the specifi cation for the soft ware
architecture (Fig. 4-19). For example, this step encompasses the specifi cation of the soft-
ware system boundaries, the software components and their interfaces, and the defi nition of
software layers and operating states. Again, this procedure is carried out across all software
system levels in a step-by-step progression.

Fig. 4-18. Reliability and safety analysis. (Ref. [70])

Risk, Failure
Type, & Failure
Rate Analysis

Identification
of Relevant
Components

& Subsystems

Reliability &
Safety-Relevant

Components
& Subsystems

System-Specific
Reliability
& Safety

Requirements

Definition of
Requirements for

Technical Components
and Subsystems

Hardware-Specific
Reliability
& Safety

Requirements

Software-Specific
Reliability
& Safety

Requirements

AUTOMOTIVE SOFTWARE ENGINEERING

-176-

4.5.1 Specifi cation of Software Components and Associated Interfaces

As foreshadowed in Section 2.3.3 in Chapter 2, programming must differentiate between two
types of information, both of which require transmission by means of interfaces, and both of
which infl uence program execution. These information fragments are termed as follows:

• Data information
• Control information

Accordingly, the software interfaces are differentiated as follows:

• Data interfaces
• Control interfaces

The fl ow of related pieces of data and control information occurring as a consequence of process-
ing activities within a software system is termed data fl ow and control fl ow, respectively.

An example of control information would be an interrupt to a microprocessor that is triggered
by a CAN bus module upon receipt of a CAN message. However, the contents of the CAN
message, such as the value of a transmitted signal, may be qualifi ed as data information.

This differentiation applies to both the input and output interfaces of a microcontroller and to
the interfaces of the internal components of a software system.

An additional differentiation between onboard and offboard interfaces may be made in the
context of designing the software architecture for microcontrollers used in ECUs (see Fig. 1-3
in Chapter 1).

Fig. 4-19. Analysis of software requirements and specifi cation of software architecture.

Core Process for Electronic Systems and Software Engineering

-177-

4.5.1.1 Specifi cation of Onboard Interfaces

As a fi rst step, the boundaries of the software system must be accurately defi ned. This task
requires the participation of all project participants. The objective is to decide which items are
part of the software system, which items belong to the periphery or environment, and which
items belong to the context of the software system. Only then will it be possible to defi ne the
input and output interfaces. The same approach may be used to defi ne the onboard interfaces of
the ECU, that is, the interfaces to the setpoint generators, sensors, and actuators, as well as the
interfaces for onboard communications with other electronic systems onboard the vehicle.

Example: Context and interface model for instrument cluster software

Figure 4-20 presents the context and interface model for the onboard interfaces of the soft-
ware driving the instrument cluster.

Fig. 4-20. Context and interface model of the instrument cluster software.

4.5.1.2 Specifi cation of Offboard Interfaces

Another group of interfaces that may be subject to accurate defi nition is the group used for off-
board communications. Accordingly, the software architecture for an ECU destined for instal-
lation in series-produced vehicles—the so-called production ECU—must support, in addition
to the full complement of functions for onboard operation, all ECU interfaces required for the

AUTOMOTIVE SOFTWARE ENGINEERING

-178-

purpose of offboard communications in the development and production phases, or in service
applications in repair facilities.

It stands to reason that not all development interfaces also are required for production and/or
service. As a consequence, development avails itself of the use of several ECUs that are often
referred to as development ECUs, or prototype, sample, or calibration ECUs. In practical terms,
the named ECUs differ from the production ECU mainly with regard to the offboard interface
that was modifi ed to accommodate the respective development application, and whose deploy-
ment may introduce the need for adaptive hardware and software modifi cations.

The communications between a tool and a microcontroller onboard an ECU are then handled
by a number of different interfaces. Functions such as measuring, calibration, diagnostics, and
Flash programming are covered by standard ASAM-MCD procedures [17]. For a detailed dis-
cussion of these functions, reference is made to the relevant specialized literature (i.e., ASAM
specifi cations). When designing the software architecture, the software components required
for offboard communications also must be considered. Figure 4-21 provides an overview of
frequently used tools that provide interfaces to the ECU.

Each of the listed tools requires a description of the offboard interface. This information is sup-
plied primarily in the form of a so-called description fi le. On one hand, this fi le must describe
the hardware and software aspects of the offboard interface; on the other hand, it must furnish

Fig. 4-21. Overview of typical offboard interfaces of an ECU.

Core Process for Electronic Systems and Software Engineering

-179-

information enabling tool access to the ECU data, such as the memory addresses of signals and
parameter values.

4.5.2 Specifi cation of Software Layers

A frequently used structural organization for the interrelations among software components con-
sists of the assignment of software components to different layers. The result is a layer model.
Software layers facilitate easy mutual access of the software components within a given layer.
However, the rules governing access across different layers are somewhat more strict.

The layers are arranged in accordance with their abstraction level. There is no hindrance to
access from layers with a higher abstraction level to those with a lower level. By contrast, access
from lower layers to those with higher abstraction levels normally is severely restricted, if not
entirely prohibited. Software structures permit access from a higher layer to all layers with lower
abstraction levels; this is called a strict-order layer model. However, if the access is restricted
to the next lower layer in each case, this is termed a linear-order layer model [72].

One example of a linear-order layer model is the seven-layer OSI Reference Model accord-
ing to OSI/ISO (see Fig. 2-50 in Chapter 2), which also serves as the guiding structure for the
OSEK-COM communications model. A layered architecture of this kind also is introduced
frequently for other I/O interfaces in the platform software and within the application software.
The introduction of abstraction levels can contribute greatly to the ease with which software
components may be created, maintained, and reused.

Example: Software architecture of the instrument cluster

Taking into account applicable standards and design patterns, the design for the software
architecture serving the instrument cluster is shown in Fig. 4-22.

Throughout the following sections, this hybrid layer and context model becomes the example
on which the discussion of the software architecture is based.

4.5.3 Specifi cation of Operating States

In both production and service, the parameterization of software variants as well as software
updates are carried out mostly in a special operating state of the software. Due to safety consid-
erations, the control and monitoring functions may be severely restricted or entirely prohibited
for the duration of this state.

Thus, the software architecture for the microcontrollers onboard the ECU must be designed to
support a variety of operating states. In addition to the standard operation, during which the
control and monitoring functions—the so-called driving program—are executed, there often
is a necessity for several other operating states in which the execution of the driving program
is strictly prohibited. This is required, for example, for actuator diagnostics (see Fig. 2-64 in
Chapter 2); it also is a requirement for software parameterization and updates, as mentioned.

AUTOMOTIVE SOFTWARE ENGINEERING

-180-

Even the “limp-home” operating state (see Section 2.6.4.4 in Chapter 2), which would facilitate
a system operation with limited capabilities following the failure of safety-relevant components,
may be perceived as a separate operating state.

In addition to defi ning the operating states, defi nitions also must be found for the permissible
transitions between theses states, with the preconditions for such transitions. Therefore, so-
called state machines are ideally equipped to support the specifi cation of operating states and
transitions.

Example: Operating states of the software driving the instrument cluster

For the instrument cluster, the following software operating states shown in Fig. 4-23 are
required:

 • The full display functionality is provided in the operating state labeled Terminal 15 or
Ignition ON.

 • In the operating state labeled Software Update, only Flash programming for production
and service purposes via the offboard diagnostic interface is supported.

Fig. 4-22. Software architecture of the instrument cluster.

Flash Loader

OSEK-COM
Interaction Layer

ISO Diagn. Protocol
OSEK-NM

Network
Management

MOST
Network
Services

Pointer
Driver

LED
Driver

Display
Driver

I/O
Driver

ISO Network Layer

CAN Bus Driver MOST Driver

Core Process for Electronic Systems and Software Engineering

-181-

 • The operating state labeled Software Parameterization is designated for the setting of
software parameters for production and service purposes via the offboard diagnostic
interface. Examples would be switching the distance and speed displays from kilometers
to miles, or the switchover between different language variants.

 • The actual diagnostic function, such as the functions for sensor and actor diagnostics
(see Fig. 2-64 in Chapter 2), with the downloading or fl ushing of fault memory contents,
is available only in the Diagnostics operating state.

 • In the operating state labeled Terminal R, turning the ignition key to the Radio ON
setting on the ignition lock causes a number of monitoring functions to be performed.
The transition to the Terminal 15 operating state occurs only after all of these functions
have run their course.

 • Subsequent to shutting off the engine, the system assumes the Post-Shutoff operating
state. This is the point, for example, at which the total mileage of the vehicle is stored
in a manner that is both permanent and tamper-proof. In addition, time-intensive moni-
toring functions of the instrument cluster are carried at this juncture.

4.6 Specifi cation of Software Components

In the specifi cation of the software architecture, all of the software components, with their require-
ments and interfaces, were defi ned. The discussion now turns its spotlight on the specifi cation
of software components. Here, a differentiation may be made among a specifi cation of the data
model, the behavioral model, and the real-time model of a software component (Fig. 4-24).

Fig. 4-23. Operating states and transitions for the instrument cluster.

Next Page

AUTOMOTIVE SOFTWARE ENGINEERING

-182-

4.6.1 Specifi cation of Data Model

Part of the specifi cation of a software component is concerned with the defi nition of the data to
be processed by that software component, that is, the data model specifi cation. This is accom-
plished by fi rst defi ning an abstract form of data—in effect, an abstraction of the real-world
implementation of that data—so that the intended mode of processing the data can be abstracted
in the form of a physical context.

Many applications in the vehicle require a variety of data structures. The following structures
are used frequently:

• Scalar quantities
• Vectors, or one-dimensional arrays
• Matrices, or two-dimensional arrays (Fig. 4-25)

Interrelations also may exist among data fragments. The results are assembled data structures.
For example, data structures for characteristic curves and characteristic maps are widely used
(Fig. 4-26). In the case of the abstract specifi cation of a characteristic curve or map, only

Fig. 4-25. Simple data structures.

One-Dimensional Array Two-Dimensional Array

Real-Time Model

Fig. 4-24. Specifi cation of a software component.

Previous Page

Core Process for Electronic Systems and Software Engineering

-183-

the correlation between input and output variables is of interest; design and implementation
require, for example, the specifi c tabular storage schematic and the method of interpolation.
Various storage schematics and interpolation methods are discussed in detail in Section 5.4.1.5
of Chapter 5.

4.6.2 Specifi cation of Behavioral Model

The discussion so far has introduced various methods for the specifi cation of the static structure
of software components. This section addresses the dynamic structure of software components,
that is, the specifi cation of their behavior or processing steps.

In this context, a differentiation is made between the specifi cation of data fl ow and that of
control fl ow.

4.6.2.1 Specifi cation of Data Flow

Data fl ow diagrams provide two essential types of information. On one hand, they describe
the paths of data information between software components. On the other hand, they show the
processing fl ow of the data within software components.

There are several means of visualization and different symbols for data fl ow diagrams. For
many vehicle functions, the control-specifi c modeling method on the basis of block diagrams
and state machines is the most suitable. Therefore, this method also is used for the following
examples.

Fig. 4-26. Data structures of increased complexity.

AUTOMOTIVE SOFTWARE ENGINEERING

-184-

Inputs, outputs, and data, as well as arithmetic and Boolean operations of a software component,
are represented by blocks. Instances of data fl ow are shown as arrows.

Example: Data fl ow for a Boolean and an arithmetic instruction

Figure 4-27 shows the Boolean instruction

Y X X X= ()1 2 3 &

where

“&” represents a conjunction or logical AND operation, and

“||” represents a disjunction or logical OR operation,

and the arithmetic instruction

c a b= +

as the data fl ow in a block diagram of the ASCET tool [73].

Fig. 4-27. Data fl ow representing Boolean and arithmetic
instructions in ASCET. (Ref. [73])

Arithmetic data fl ows are drawn as arrows with solid lines; Boolean data fl ows are drawn
as arrows with broken lines.

Although data fl ow diagrams are easily drawn and readily understood, they fail to provide a
complete defi nition of the behavior of a software component.

For example, Fig. 4-27 does not indicate whether the Boolean or the arithmetic instruction is the
fi rst to be executed. It should be stated that, in this simple example, the result produced by the
software component does not change by virtue of a change in the order of execution. However,

Core Process for Electronic Systems and Software Engineering

-185-

if the results Y and c were to depend on one another in such a way that the value of c would
enter into the calculation of Y, then a change on the order of execution also would change the
behavior of the software component. The order of execution is determined by the control fl ow
of a software component.

4.6.2.2 Specifi cation of Control Flow

The purpose of control fl ow is to control the execution of instructions. The processing of
instructions in a software component can be manipulated through the application of the control
structures shown in the following list:

• Sequence. Defi nes the order of processing.
• Branching. Defi nes branches in the program sequence.
• Repetition or iteration. Specifi es processing loops.
• Call. Summons the support of services residing in other software components.

Control fl ow structures of this kind are found in any of the high-level programming languages
and lend themselves to graphical visualization. Well-known notations for the representation of
control fl ow are structograms according to Nassi-Shneiderman—also termed Nassi-Shneiderman
diagrams (Fig. 4-28) [72].

Fig. 4-28. A Nassi-Shneiderman diagram: graphical representation
of control fl ow constructs. (Ref. [72])

True False

However, note that for many software functions, the isolated depiction of the control fl ow is as
insuffi cient as a dedicated diagram of the data fl ow. A visualization combining the benefi ts of
both methods is needed.

Example: Control fl ow for a Boolean and an arithmetic instruction

Figure 4-29 shows that the sequencing information missing in the previous example has
been entered in the block diagram. This control fl ow construct determines that the arithmetic
instruction

c a b= +

AUTOMOTIVE SOFTWARE ENGINEERING

-186-

is assigned the sequencing information /1/ of Process 1, and that it is executed prior to the
Boolean instruction

Y X X X= ()1 2 3 &

based on the sequencing information /2/ of Process 1.

4.6.3 Specifi cation of Real-Time Model

To complete the specifi cation of a software component, its real-time model must be defi ned in
addition to the data and behavioral models discussed in the preceding sections. This means that the
instructions driving a software component must be assigned to specifi c processes. The processes,
in turn, must be assigned to tasks. The tasks are subject to defi ned real-time requirements.

Example: Defi ning real-time requirements

In the introductory example in Fig. 4-29, both instructions are already assigned to Process 1.
To complete the specifi cation of real-time behavior, Process 1 still must be assigned to a
task. This assignment is shown in Fig. 4-30. Process 1 is assigned to Task A, as are Pro-
cesses 2 and 3.

Fig. 4-29. Control fl ow determining the order of execution in ASCET. (Ref. [73])

Fig. 4-30. Assignment of instructions to processes and tasks.

Core Process for Electronic Systems and Software Engineering

-187-

Reactive control and monitoring functions can be designed based on different execution models.
The most common execution models are the state-dependent and state-independent reactive
execution models.

4.6.3.1 State-Dependent Reactive Execution Model

Reactive software functions can be based on a general execution model, such as that presented
in Fig. 4-31.

Fig. 4-31. State-dependent reactive execution model for software functions.

The software function differentiates between an initialization calculation that is carried out once
after the system startup, and a so-called reactive calculation that is repeated, or iterated. The
initialization portion, here Process aInit, is activated by the initialization task at instant tInit. The
repeated portion, here Process aP, is activated by a cyclical Task A in time interval dTA. This
interval may be fi xed or variable. The fi rst execution of Process aP uses state information sup-
plied by initialization Process aInit. All subsequent executions utilize the state information of the
respective previous execution of Process aP. This information may consist of the results of the
preceding calculation, or it may supply the length of time interval dTA relative to the previous
execution. Software functions exhibiting these characteristics also are termed state-dependent
reactive systems [74].

As the discussion has shown, the software function must be divided into, at minimum, the two
processes labeled Process aInit and Process aP. It also is quite common for software processes
to be divided into more than two processes, which then are activated by different tasks. For
example, the repeated iterative calculations of a given function may be divided for distribu-
tion to several processes and then activated by tasks with different real-time requirements in a
quasi-parallel fashion.

AUTOMOTIVE SOFTWARE ENGINEERING

-188-

4.6.3.2 State-Independent Reactive Execution Model

In some situations, it is both permissible and benefi cial to assume that, after initialization has
occurred, a process shall be executed only if a certain event occurs, without any relevance
of prior history. If this is the case, a different execution model, such as the one depicted in
Fig. 4-32, can be used. In this example, the division of the software function into two pro-
cesses labeled Process bInit and Process bE again is required. However, Process bE is activated
only by the occurrence of Event E of Task B. This Event E may consist of the actuation of a
switch—controlling the software function—by the vehicle operator.

Also, the Process bE can be executed repeatedly. However, in contrast to the preceding example,
the execution of this Process bE does not use any kind of state information of the previous
execution of Process bE. Software functions exhibiting these characteristics also are termed
state-independent reactive systems [74].

Hybrid forms of these two execution models commonly are used.

When modeling the interaction between the processes assigned to different tasks, real-time sys-
tems require the consideration of the mechanisms of the real-time operating system discussed in
Section 2.4.6 of Chapter 2. Therefore, it would not be unusual for the real-time model to exert
infl uence on the data model.

4.7 Design and Implementation of Software Components

During the design phase, all details of the specifi c implementation for the data, behavior, and
real-time model of a software component must be defi ned (Fig. 4-33). With respect to the data,
an additional differentiation now must be made between variables and fi xed parameter values.

Fig. 4-32. State-independent reactive execution model for software functions.

Core Process for Electronic Systems and Software Engineering

-189-

Fig. 4-33. Design and implementation of software components.

Real-Time Model

4.7.1 Consideration of Requested Nonfunctional Product Properties

When designing and implementing software components for production ECUs, consideration
must be given, in addition to the specifi ed software functions, to a number of further prerequisites
that arise from the requested nonfunctional product properties. These include, for example, the
separation of program version and data version. Another example would be cost barriers that
frequently result in a limitation of available hardware resources.

4.7.1.1 Differentiation Between Program Version and Data Version

The separation of program version and data version is frequently used to facilitate the handling
of software variants not only during development, but also in production and service.

Whereas other industries and application areas tend to develop program and data versions
concurrently, the differentiation between program and data versions of ECUs in the automobile
industry has produced benefi ts due to a number of reasons. Here, the data version encompasses
all data that are not changed by the program, such as the parameter values of open-loop and
closed-loop control functions.

In this way, a standardized program version can be adapted to a variety of applications (i.e., dif-
ferent vehicle variants) by applying different data versions. This produces cost and time benefi ts
in development, such as in quality assurance, which is required only once for each program
version.

Other considerations make this approach advisable:

• The actual instances—or points in time—at which the program version and data version are
released may vary to a greater or lesser degree. For example, it often becomes necessary to

AUTOMOTIVE SOFTWARE ENGINEERING

-190-

modify the data version—in the course of running calibrations of software functions on a
specifi c vehicle—occasionally very late on the timeline and independently of the program
version.

• The creation of the program version and data version frequently occurs in vastly different
development environments and is handled by different team members—at times even across
corporate borders.

• The separation of the program version and data version makes good sense not only in
development. It also provides tangible benefi ts with regard to the variant management in
production and service.

4.7.1.2 Limitation of Hardware Resources

Design and implementation of software components frequently requires the consideration of
optimization measures imposed by the limited availability of hardware resources. One of the
root causes may be seen in the cost barriers that result in limited hardware resources in conjunc-
tion with high-volume production.

Example: Cost barriers for ECUs

By way of simplifi cation, it could be stated that the cost of an ECU is the sum of develop-
ment and manufacturing costs, divided by the total number n of units produced:

Total cost per ECU
development costs + manufacturing costs

ª (()
n

This has the effect that the fi nal cost of an ECU is signifi cantly infl uenced by the piece
count-proportionate manufacturing costs (Fig. 4-34).

Fig. 4-34. Cost per ECU relative to the number of units produced.

Number n of
ECUs produced

Core Process for Electronic Systems and Software Engineering

-191-

In this context, the cost structures for hardware and software are quite different. If it is
assumed that the cost for duplication of the software is close to negligible, the production
costs are infl uenced mainly by the hardware costs, which are proportional to the number
of units produced.

In many cases, high piece counts constitute the reason for the occasional insistent pres-
sure to reduce the corresponding hardware manufacturing costs. Therefore, budget-priced
microcontrollers supporting only integer arithmetic and featuring very limited computing
power and memory capacity often are used. The inevitable consequence is a limitation of
hardware resources.

In such cases, to handle the highest possible number of functions on a single microcontroller,
software developers are called upon to spare no optimization effort with a view to putting
the available hardware resources to most effective use. Depending on the prerequisites for
the respective application, one of the objectives of software development is to reduce the
RAM requirement, ROM requirement, or program runtime. A rule of thumb applicable to
many of the microcontrollers in current use states that the RAM requirement demands much
greater consideration than the ROM requirement because the area on the chip occupied by
RAM is ten times that of ROM. The cost of RAM, so the rule, therefore is also ten times
higher than that of ROM.

In all the relevant calculations, the corresponding rise in the development and quality
assurance expenditures, as well as the increase of quality risks as a consequence of limited
resources in the development phase, must not be overlooked.

Therefore, in practical application, the approach of combining the optimization of the piece count-
proportionate manufacturing costs with a platform strategy for hardware and software components
has proven benefi cial. For example, standardized software components can be adapted to meet
the requirements of a given application by means of various confi guration parameters.

This discussion has touched on the many interdependencies and confl icts of objectives that exist
among the various project targets, because there are quality, cost, and scheduling or deadline
confl icts. Care also should be taken that an optimization measure is not overcompensated—or
even negated—by the additional efforts and expenditures it creates.

Several of the numerous optimization measures deployed in practical application are discussed
in the context of examples in Section 5.4.1 of Chapter 5. Also note that many optimization
measures cause repercussions on the specifi cation of the software architecture, as well as soft-
ware components.

4.7.2 Design and Implementation of Data Model

When designing and implementing the data model of a software component, a differentiation
must be made between variables and those parameter values that cannot be changed by the
program. For each software component, design decisions must be made for all data concerning
their internal representation on the processor, and regarding data storage in the memory segment

AUTOMOTIVE SOFTWARE ENGINEERING

-192-

of the microcontroller. Thus, variables must be deposited in a read/write memory such as RAM,
whereas parameters and their settings can be stored in read-only memory, such as ROM.

Example: Function replicating the physical specifi cation in the implementation

Figure 4-35 shows the representation of the engine temperature signal at both the level of
physical specifi cation and the level of concrete implementation.

In the case of measuring and calibration tools, for example, this transformation must be
made in the direction from implementation to physical representation. The reason is that
the implementation variables in measuring and calibration tools should be displayed as
ECU external measurement signals in the specifi ed physical units. To satisfy this display
requirement, the measuring and calibration tools require all relevant data information.
This information is stored in the description fi le. As the abbreviation MCD indicates, the
ASAM-MCD 2 standard [17] defi nes description formats for the functional components of
measuring, calibration, and diagnostics.

4.7.3 Design and Implementation of Behavioral Model

The design of the behavioral model must consider, in addition to the specifi cation, the infl u-
ence of the processor internal representation and calculation. An important consideration is the
accuracy of arithmetic statements in the context of number processing. The accuracy of a result
calculated by digital processors is limited by different types of errors. Differentiations are made
among the following [75]:

• Errors in the input data of the calculation
• Rounding errors
• Approximation errors

Fig. 4-35. Physical specifi cation of engine temperature transformed to implementation.

Physical
Signal “phys”

Implementation
as Variable
“impl” in RAM

Plain-Text Designation:

Physical Unit:

Conversion Formula:

Physical Representation
Implemented Representation

In-code Designation:

Word Length:

Memory Segment:

–

Engine Temperature

Internal RAM

Core Process for Electronic Systems and Software Engineering

-193-

Fig. 4-36. Integration method according to Euler.

Errors in the input data of a calculation are diffi cult to prevent if the input data consist of measur-
ing variables with limited accuracy or resolution. This is almost always the case with sensors
and microcontrollers of the type used in vehicles. Errors of this type also are termed quantizing
errors (see Section 2.2.2 in Chapter 2).

Rounding errors occur in situations where calculations use a fi nite number of digit positions,
which indeed is the case with the deployed microcontrollers. For example, rounding errors in
fi xed-point arithmetic are unavoidable (e.g., in divisions or with the necessary scaling of results
due to the limited number of digit positions).

Approximation errors depend on the methods of calculation. Even with the use of methods
that are free of rounding errors, many methods of calculation do not yield the problem solution
actually sought. That is, instead of the solution of a problem P, they deliver only the solution to
a simpler problem P*, which approximates the actual problem P. It often is possible to produce
the approximating problem P* through the discretization of the original problem P. For example,
differentials are approximated through difference quotients, or integrals through fi nite sums.
Approximation errors are unavoidable in the context of fi xed-point and fl oating-point arithmetic.

Example: Integration method according to Euler

One example is the integration method according to Euler shown in Fig. 4-36. It often
is used in ECUs (e.g., for the purpose of implementing the integral-action component of
the PI controller depicted in Fig. 2-2 of Chapter 2). Here, the integral of the function f t()
is calculated approximately through the area F t*() of the gray rectangles.

The calculation of the determined integrals of function f t()

F t f t dtn

t

tn

() = ()Ú
0

AUTOMOTIVE SOFTWARE ENGINEERING

-194-

is approximated through the sum

F t t t f tn i i i
i

n
* () = -() ◊ ()+

=

-

Â 1
0

1

The distance t ti i+ -()1 is called step size dTi. Depending on whether a task has been
activated with an equidistant or variable activation rate, the fi rst approximation of step
size dTi is constant or variable. F ti* +()1 can be incrementally calculated through the use
of the equation

F t F t dT f ti i i i* *+() = () + ◊ ()1

In the design and implementation of software components, the rounding errors deserve particu-
lar attention, in addition to the approximation errors and errors in the input data. Section 5.4.2
in Chapter 5 provides a detailed discussion of the in-processor numeric representation and the
rounding errors that may occur in the processing of numerical values.

4.7.4 Design and Implementation of Real-Time Model

The task of designing and implementing the real-time model presupposes in-depth understanding
of the hardware and software interrupt system of the microcontroller. If a real-time operating
system is used, its confi guration must be defi ned. The major confi guration settings for real-time
operating systems according to OSEK are described in Section 2.4 of Chapter 2.

4.8 Software Component Testing

Figure 3-28 in Chapter 3 provides an overview of several methods of software quality assur-
ance. On the basis of the test cases defi ned during the specifi cation and design phase, software
components may be subjected to several static tests (Fig. 4-37).

4.9 Integration of Software Components

The assembly of software components, which may have been developed by a variety of part-
ners, into a whole program and data version for a microcontroller is termed integration. This
process requires that a program version and data version in a format suitable for acceptance
by the microprocessor must be generated and documented. For the associated tools, which are
connected later in production and service to the microcontroller of an ECU through offboard
interfaces, appropriate description fi les must be generated, too (Fig. 4-38).

Thus, a software version for a production ECU normally encompasses the following:

• Program versions and data versions for all microcontrollers of the ECU

Core Process for Electronic Systems and Software Engineering

-195-

Fig. 4-37. Software component testing.

Real-Time Model

• Documentation

• Description fi les for production and service tools (e.g., diagnostic, software parameteriza-
tion, and Flash programming tools)

Development ECUs may require additional description fi les for the development tools, such as
the following:

• Description fi les for measurement and calibration tools

Fig. 4-38. Integration of software components.

AUTOMOTIVE SOFTWARE ENGINEERING

-196-

• Description fi les of onboard communications for network development tools

• Description fi les of the so-called bypass interface, in the event that rapid prototyping tools
are used. Rapid prototyping tools are discussed in detail in Section 5.3.8 of Chapter 5.

4.9.1 Generating Program Version and Data Version

Figure 4-39 shows the process steps required to generate a program version and data version.

Fig. 4-39. Generating a program version and data version.

Any command that is executable by a microprocessor—a so-called machine instruction—is issued
in the form of a numeric code in binary notation. This numeric code—also termed machine
code—is analyzed by the control logic of the microprocessor (see Fig. 2-14 in Chapter 2), and
causes, for example, the activation of the arithmetic logic unit. Thus, the executable program
must be available in binary form (e.g., as a binary fi le in which the program is stored in machine
code). However, because instructions in binary code tend to be cumbersome, confusing, and
therefore error prone to a programmer, there are easily remembered abbreviations—so-called
mnemonics—that can be used for each machine instruction. To generate the program for the
microprocessor, the mnemonics are converted into machine code by a translation utility—the
so-called assembler. Therefore, the source program is fi rst written in an editor (e.g., on a
PC) and then is translated into machine code. Even today, simpler applications that are either
very hardware specifi c or require critical timing are still programmed, in whole or in part, in
processor-specifi c assembler code.

Programs of higher complexity require the use of one of a dozen high-level languages, such
as the C programming language [76]. Otherwise, extensive programs would no longer lend
themselves to structured management, error-free writing, and acceptable maintenance effort.

Core Process for Electronic Systems and Software Engineering

-197-

Because the high-level languages are largely processor independent, they require the use of a
translation utility—the so-called compiler—that translates the so-called source code, written in
high-level language, into the processor-specifi c assembler code. This involves the replication
of each high-level instruction in the form of a sequence of machine instructions. To this end,
the following classes of machine instructions are needed:

• Data processing instructions: Arithmetic, logical, and conversion instructions

• Control commands: Branch and relational instructions

• Input/output commands: Instructions causing data to be read/copied and output, respec-
tively

• Memory instructions: Memory read/write instructions

The high-level language source code can be implemented in the form of modules or components,
in a manner that is largely independent of the microprocessor. A processor-specifi c compiler
translates the source code components into assembler code components suited to the respective
microprocessor.

To ensure the interaction of different program components existing in machine code, these com-
ponents must be integrated—or “tied together”—to form a program version and data version.
This is a job for the linker. It determines the symbolic memory addresses of all components and
replaces them with real access addresses in machine code components. The linker also writes
the address information into a separate fi le.

In many cases, the compiler, assembler, and linker are bundled, together with other tools, into a
compiler tool set. For a detailed discussion of related topics, reference is made to the relevant
specialized literature [77, 78].

4.9.2 Generating Description Files

The maintenance of data consistency between the program version and data version, and the
description fi les for the offboard tools, comprises a requirement that is as basic as it is crucial.
For this reason, the assembly of the software-specifi c part of the description fi les comprises a
part of the software integration phase.

Figure 4-40 depicts a typical approach to generating a description fi le for measuring, calibration,
and diagnostic tools according to the ASAM-MCD 2 standard.

Because the specifi cation of a software component is used not only as the basis for design and
implementation but also for the creation of a description fi le, the consistency among the program
version, data version, and description fi le is virtually guaranteed.

As an alternative, the specifi cation data required for the description fi le could be stored during
implementation, that is, in the form of comments in the source code. This second path also is
included in Fig. 4-40.

AUTOMOTIVE SOFTWARE ENGINEERING

-198-

The description fi le generation to the ASAM-MCD 2 standard utilizes the specifi cation and
design information for all data; thus, it requires no additional input. Both methods extract the
necessary address information from the fi le that was generated by the linker.

4.9.3 Generating Documentation

The documentation of the software-implemented vehicle functions is required for a number of
reasons:

• The documentation represents an artifact that is needed for all support processes during the
actual software development. Other factors, such as the distinctive and often cross-corporate
work sharing, the extensive product life cycles, and concurrent software maintenance phase,
emphasize the need for detailed documentation.

• All of the subsequent development steps—such as system integration, testing, and calibra-
tion—are in need of documentation.

• One type of documentation is required for vehicle production and for distribution across a
global network of service facilities.

• Another complement documentation is required for presentation to legislative authorities,
that is, as a component of the application for the type approval certifi cate of a vehicle as a
prerequisite for road registration.

To no one’s surprise, the different user groups’ expectations (Fig. 4-41) of the documentation are
widely divergent. Simply for reasons of bulk and range of coverage alone, and because of the
required differentiations to accommodate different levels of understanding of technical basics

Fig. 4-40. Generating description fi les for measuring, calibration, and diagnostic tools.

ASAM-MCD 2
File

Next Page

Core Process for Electronic Systems and Software Engineering

-199-

Fig. 4-41. User groups of documentation describing software functions.

and details, let alone different language versions and change cycles, calling for a standardized
documentation that would be of equal usefulness to all of these user groups would be decidedly
unrealistic.

However, one aspect is standardized. It is the function-oriented view of the vehicle, and it allows
for a documentation structure that orients itself in terms of functionalities. Thus, the model-based
specifi cation can be used as a basis for the documentation of software functions.

The software documentation represents merely one part of the documentation of functions,
which, given a suitable intermediate format, can be incorporated in the assembly of the specially
tailored documentation for the different user groups.

As a result of efforts to standardize a suitable intermediate format within the framework of the
MSR-MEDOC project [79], the MSR-Report format was introduced. It can be used to structure
a documentation process, such as that outlined in Fig. 4-42, with the integration of supporting
input from the development tools.

4.10 Software Integration Testing

The process of linking software components to form a software version usually is accompanied
by a series of tests and verifi cations (Fig. 4-43). These may be conducted manually prior to
the translation step or may also consist of automated routines run by suitable tools, such as the
compiler tool set. Also included are checks confi rming compliance with interface specifi cations or
naming conventions for variables, as well as the use of standardized memory mapping. Because

Previous Page

AUTOMOTIVE SOFTWARE ENGINEERING

-200-

the program is not actually executed during testing, all of the test procedures comprise static
comparisons with implementation guidelines.

4.11 Integration of System Components

Subsequent to the interworked and parallel development of the system components, they undergo
several component tests. The components are then integrated into the intended system, which,
in turn, is subjected to integration tests, system tests, and acceptance tests. These steps are
performed in stages across all system levels of the vehicle, that is, from individual components

Fig. 4-42. Generating documentation using an intermediate format.

Fig. 4-43. Software integration testing.

Core Process for Electronic Systems and Software Engineering

-201-

Fig. 4-44. Integration of system components.

to subsystems, and from there to the overall vehicle system (see Fig. 3-4 in Chapter 3). Thus,
the notions of integrating and testing are virtually inseparable.

With regard to software, this means that it fi rst must be integrated with the hardware (e.g., the
microcontroller, ECU, or experimental system).

The next step, ensuring that the interaction of the overall system with the plant can be tested, will
be the integration of the various ECUs or experimental systems, as well as setpoint generators,
sensors, and actuators. All other integration levels belong to the group of so-called primary
integration levels, such as the vehicle subsystem level or the actual vehicle level (Fig. 4-44).

4.11.1 Integration of Software and Hardware

The execution of the program, and thus the application of dynamic testing methods, becomes
possible only after the integration of software and hardware has been completed. To facilitate
the performance of these dynamic tests at an early stage, a variety of methods are used. One
example would be rapid prototyping in conjunction with experimental systems. Figure 4-45
provides an overview of the methods applied to software and hardware integration.

4.11.1.1 Download

The process of downloading the program code to the microcontroller and its subsequent startup
is supported by downloading and debugging tools. As a part of this procedure, a small loading
and monitoring program in the fi rmware—the boot loader—program is executed on the micro-
processor. It deposits the binary fi le, which is commonly transferred through a serial download

AUTOMOTIVE SOFTWARE ENGINEERING

-202-

interface, in the microcontroller RAM or Flash memory. In response to a request issued by the
downloading tool, the boot loader also is capable of providing it with return data.

4.11.1.2 Flash Programming

The Flash memory is programmed by means of data from a connected Flash programming tool
and internal programming routines in the microcontroller. This technology makes it possible,
for example, to update the software in an ECU while installed in the vehicle. In this procedure,
great care must be taken to prevent the inadvertent deletion of the memory area containing
the actual Flash programming routines. A detailed discussion of Flash programming of ECUs
appears in Section 5.6 of Chapter 5 and Section 6.3 of Chapter 6.

4.11.2 Integration of ECUs, Setpoint Generators, Sensors, and Actuators

One of the consequences of the interworked and cross-corporate development of compo-
nents—such as ECUs, setpoint generators, sensors, and actuators—consists of a number of
special requirements calling for suitable integration and testing tools for the electronic systems
onboard the vehicle:

• In many cases, one of the test routines depicted in Fig. 4-1 also represents the vehicle
manufacturer’s approval test for the component or subsystem provided by the supplier.

• In the course of development, those prototype vehicles that do exist are available only in
very limited numbers. In many cases, the companies supplying the components do not have
the benefi t of access to a complete or current environment for the component to be supplied.
To add even more of a challenge, this environment changes with each component (Fig. 4-46).

Fig. 4-45. Software and hardware integration.

Core Process for Electronic Systems and Software Engineering

-203-

The cited limitations with respect to the testing environment may tend to reduce the number
of feasible testing procedures on the part of the supplier.

• The component integration serves as a synchronization point for all contributory component
developments. The integration, system, and acceptance test cannot be performed until and
unless all components are available. Because of the resulting ripple effect, the late comple-
tion and shipment of a single component will delay the integration of the entire system and
thereby the performance of all subsequent testing procedures (Fig. 4-47).

4.12 System Integration Test

In accommodating the special prerequisites discussed in the preceding section, integration and
testing tools for vehicle systems reduce both the existing interdependencies and the develop-
ment risk. Tests can be conducted with the automated support of appropriate tools. Figure 4-48
shows the artifacts forming the basis of integration testing.

Available components, subsystems, and components of the system environment are integrated
as physical components existing in the real world. Those components, subsystems, and compo-
nents of the system environment that are nonexistent are replicated by means of modeling and
simulation (i.e., as virtual components).

The testing environment for a physical component is connected to a virtual integration platform,
which simulates the components appearing with grey shading in Fig. 4-49. In this context, any

Fig. 4-46. Differences in component, subsystem, and system environments.

AUTOMOTIVE SOFTWARE ENGINEERING

-204-

combination is conceivable. For example, system components or those belonging to the system
periphery may be of the virtual type. With their use as stand-ins, the existing requirements for
testing the system as a complete entity can be met:

Fig. 4-47. Interdependencies of the component test and the system test.

Fig. 4-48. System integration testing.

Core Process for Electronic Systems and Software Engineering

-205-

Fig. 4-49. Test object and testing environment.

Physical Virtual

• The virtual testing environment is available to all development partners. One of the testing
steps shown in Fig. 4-1 may be freely selected to serve as the approval test. The approval
test may be performed on the supplier’s or vehicle manufacturer’s premises through the use
of the same virtual testing environment.

• Each of the partners has access to the same full complement of virtual components. He or
she may then confi gure testing environments to accommodate the unique requirements of
his or her situation (Figs. 4-49(a) and (b)).

• Because the system test also allows for the initial replacement of nonexistent physical com-
ponents with virtual stand-ins, the risk of a delay in integration as a consequence of the late
completion of individual components can be lessened (Figs. 4-49(c) and (d)). A system
combined of both real and virtual components also is conceivable.

• The initially completely virtual environment is replaced by real components in a step-by-
step fashion. This gradual replacement occurs at all system levels.

Example: Virtual network environment for the instrument cluster

Figure 4-50 depicts the components of a virtual network environment for the instrument
cluster. A testing environment of this type also is known as a residual bus simulation. The
function models—introduced in former sections—can be used as a basis for the replication
of nonexistent system components.

AUTOMOTIVE SOFTWARE ENGINEERING

-206-

Integration and testing procedures of this kind provide additional benefi ts:

• Many testing procedures, which, in the absence of a testing environment, would need to be
performed in the vehicle, can now be moved to the laboratory or test bench.

• Compared with driving tests, this practice—in addition to making test cases and application
cases possible in the fi rst place—defi nitely improves their reproducibility. Also, the added
benefi t of test automation should be noted.

• Extreme situations may be tested without the risk of danger to test drivers and/or prototype
vehicles.

In this way, a consistent testing process that commences with virtual steps, and progresses from
simulation through intermediate stages in the laboratory and on the test stand to the actual vehicle,
has become a reality (Fig. 4-51).

Fig. 4-51. Consistent integration and testing process.

In-Vehicle

Physical

Virtual

Fig. 4-50. Virtual network environment for the instrument cluster.

Core Process for Electronic Systems and Software Engineering

-207-

All of the scenarios depicted in Fig. 4-51 replace real components with virtual ones. At the
system level of the ECUs, the components ECU (software and hardware), setpoint generators,
sensors, and actuators, as well as the system environment, can be discerned.

In conjunction with hardware, the term virtual hardware is used as follows: If the target system
is replaced by a development platform, such as a PC or an experimental system, this execution
platform is termed virtual hardware platform. In similar circumstances, this defi nition also
applies to sensors and actuators.

In the presence of real-world software and hardware, it will be possible to execute the program.
However, many test procedures will be possible only after integration with sensors, actua-
tors, and the system environment. Integration and testing tools are discussed in Section 5.5 of
Chapter 5.

After the successful conclusion of these test procedures, the program version and data version
can be released for subsequent steps. However, the data version may still be modifi ed in the
course of calibration procedures during the late phases of development, whereas the program
version remains unchanged and is released for the following process steps.

4.13 Calibration

In many cases, the fi ne-tuning of software functions implemented by means of a single ECU or
an entire ECU network thereof—that is, the custom tweaking of the parameter settings that infl u-
ence the software functions on a specifi c vehicle—can be performed only at a late juncture. This
step often is possible only immediately in-vehicle, and with all electronic systems running.

For this reason, it must be possible to modify the data version of many ECUs, even into the very
late phases of development. This step is termed calibration (Fig. 4-52).

Fig. 4-52. Calibration.

AUTOMOTIVE SOFTWARE ENGINEERING

-208-

Fig. 4-53. System and acceptance testing.

Calibration is accomplished in the late phases of development through the use of calibration
systems. Calibration systems must be capable of modifying the data versions that were unal-
terably deposited at their fi nal destinations in read-only memory, such as ROM, EEPROM, or
Flash memory. For this reason, a calibration system consists of an ECU equipped with a suit-
able offboard interface to a measuring and calibration tool. A detailed discussion of the various
calibration methods appears in Section 5.6 of Chapter 5. The calibration phase concludes with
the release of the data versions for the subsequent steps, as shown in Fig. 4-1.

4.14 System and Acceptance Test

A model is always short of detail and thus is always incomplete. It reduces the modeled com-
ponents to specifi c aspects at the expense of neglecting others. For this reason, the model-based
simulation of nonexistent components is fraught with uncertainties. Specifi c situations and sce-
narios are taken up, while others are overlooked. Thus, a simulation answers only the questions
that were actually asked. As a consequence, results are always burdened with the residual risk
arising from the imprecision of simulation models and from situations escaping consideration.

By contrast, test procedures conducted in the real-world operating environment of the sys-
tem—this being the vehicle for vehicle systems—provide answers to questions that were not
asked in advance. The in-vehicle system test eliminates the risks of ignoring specifi c perceptions
due to the shortcomings of modeling. This makes in-vehicle testing indispensable. In the fi nal
analysis, the validation of the electronic systems onboard the vehicle can be achieved only by
means of an acceptance test that is conducted from the user’s perspective in his or her native
operating environment (i.e., the vehicle) (Fig. 4-53).

Core Process for Electronic Systems and Software Engineering

-209-

Fig. 4-54. Interfaces requiring verifi cation during system
and acceptance test of the instrument cluster.

This approach imposes special requirements on both development methodology and tools, such
as the support of vehicle-compatible access to the ECUs and ECU networks onboard the vehicle,
mobile measurement technology suited to deployment in rough environmental conditions, and
vehicle-compatible operating and visualization elements.

As a fi nal step, the release and approval of the entire system must take place in the vehicle.
This also includes a system and acceptance test of the electronic systems, with all offboard
interfaces and tools needed in production and service. Figure 4-54 provides an overview of
those components and interfaces that must be tested as part of the system and acceptance test
for the instrument cluster.

-211-

CHAPTER FIVE

METHODS AND TOOLS

FOR DEVELOPMENT

Taking its orientation from selected process steps fi rst introduced in Chapter 4, the present chapter
introduces the methods and tools used in the start-to-fi nish engineering of software-implemented
vehicle functions. Two types of process steps are examined. On one hand, these are the steps
known to be essential in the development of application software functions for ECUs and, on
the other hand, the process steps supporting the requirements and prerequisites characteristic
of vehicle development.

Section 5.1 provides an initial overview of the various requirements and available options for
the implementation of the offboard interfaces between development tools and ECUs. Various
methods and tools are discussed throughout the following sections, with some methods sup-
porting several process steps.

The development of systems and software for applications that impose high demands in terms of
safety and reliability—that is, of the type often found in vehicles—requires that quality control
measures for systems and software be deployed in every development phase. This chapter gives
special consideration to this requirement.

Section 5.2 examines the methods available for logical system architecture analysis and technical
system architecture specifi cation:

• Analysis and specifi cation of open-loop and closed-loop control systems
• Analysis of schedulability and specifi cation of real-time systems
• Analysis and specifi cation of communications in distributed and networked systems
• Reliability and safety analyses, and specifi cation of reliability and safety concepts

To effect the specifi cation of software functions and the validation of the resulting specifi cation,
model-based methods can be employed. In addition to providing an unambiguous and precise
formulation of requirements, these facilitate the early validation of a given software function.
To this end, Section 5.3 discusses suitable methods, such as the following:

• Formal specifi cation and modeling
• Simulation and rapid prototyping

Section 5.4 focuses on methods and tools that support the design and implementation of software
functions. Because this involves mapping a specifi cation to specifi c algorithms, attention also

AUTOMOTIVE SOFTWARE ENGINEERING

-212-

must be given to the required nonfunctional product properties. These include, for example,
the following:

• Optimization measures during software development with respect to required hardware
resources.

• Utilization of limited subsets of programming languages to accommodate stringent reliability
and safety requirements. A case in point is the MISRA-C Guidelines [80].

• Reduction of quality risks through the standardization and reuse of software components.

Section 5.5 discusses selected methods of software function integration and testing. These
include the following:

• Testing in parallel with development, such as a component test, integration test, or system
test conducted at various system levels

• Integration, system, and acceptance testing in the laboratory, on test benches, and in the
vehicle

Section 5.6 examines suitable methods and tools for the task of calibrating software functions,
which requires the following:

• Interface between the microcontroller and tools for so-called online calibration

• Vehicle-compatible measuring and calibration procedures for software functions

The practical signifi cance of the methods and procedures presented is illustrated by examples
taken from the powertrain, chassis, and body application areas.

5.1 Offboard Interface Between Electronic Control Units and Tools

The deployment of numerous tools throughout the various phases of development requires the
availability of an offboard interface to the microcontroller of the respective ECU. This interface
serves several purposes:

• Program download and debugging tools
• Software update tools for Flash programming
• Development and testing tools for ECU network interfaces
• Rapid prototyping tools
• Measuring and calibration tools for development ECUs
• Parameterization tools for production ECUs
• Offboard diagnostic tools

The interfaces between a given tool and the respective ECUs must be supported by hardware
and software components on both ends. Some examples of the varying requirements imposed
on these offboard interfaces in the various phases of development are listed as follows:

• Deployment in the laboratory, and in-vehicle in harsh environments

Methods and Tools for Development

-213-

• Tool access to the microcontroller, with or without interruption of program execution by
the microcontroller

• Varying demands on interface transmission speed

• Application only during development, or also in production and service

• Tool access to the ECU, with or without physical removal from the vehicle

The development phase for any electronic vehicle system concludes with the production approval
and subsequent service release. For the development of ECUs, this means that the acceptance
test performed at the end of development must use the same offboard interfaces and tools that
will be used in the course of production and as a part of service procedures.

There is a basic difference between many of the items making up the requirements for the offboard
interface formulated for in-vehicle operation and those formulated for laboratory conditions.
For example, in-vehicle applications are subject to higher demands in terms of temperature
range, shock and vibration, power source stability, and electromagnetic compatibility (EMC).
Also, the location of the installed ECU onboard the vehicle results in restrictions regarding the
installation space for the offboard interface, with the additional consequence of a larger spatial
distance between the ECU and the respective tool.

For this reason, a variety of interface technologies is used in the course of development. Fig-
ure 5-1 shows an overview of those microcontroller components that bear on the design of an
offboard interface. These are the microprocessor, the internal and external ROM and/or Flash
memory and RAM, the internal and—as the case may be—external bus of the microcontroller,
and the various serial interfaces of the microcontroller.

Section 5.6 discusses the special requirements and the design of offboard interfaces used to
calibrate software functions. Further, detailed information about the offboard interfaces for
deployment in production and service appears in Chapter 6.

5.2 Analysis of Logical System Architecture and Specifi cation of Techni-
cal System Architecture

The initial development step is that of defi ning the logical system architecture, that is, the func-
tion network, the function interfaces in the form of signals, and the communications among the
functions for the entire vehicle or for a vehicle subsystem.

The next step consists of replicating—or mapping—these abstract logical functions in the form
of a specifi c technical system architecture. Support in this step comes from the analysis and
specifi cation methods of the various engineering disciplines participating in the development
process. On one hand, this aids the early assessment of technical feasibility, while on the other
hand providing for contrasting, comparing, and evaluating different implementation alternatives.
The next few sections introduce several analysis and specifi cation methods that infl uence the
implementation of software functions.

AUTOMOTIVE SOFTWARE ENGINEERING

-214-

5.2.1 Analysis and Specifi cation of Open-Loop and Closed-Loop
Control Systems

A closer look at the nature of many vehicle functions reveals that they represent open-loop or
closed-loop control functions. Because the implementation of all types of control functions is
increasingly handled by software, the analysis and design methods indigenous to control technol-
ogy, which may be supported by tools using numerical simulation methods, exert a signifi cant
infl uence on the development of many software functions.

This section does not intend to cover the details of the numerous analysis and design methods.
For a detailed discussion of these, reference is made to the relevant specialized literature [34, 35].
Instead, the focus of this section highlights those criteria that must be considered early in the
analysis and design of control functions onboard vehicles, provided the said functions are intended
for implementation on the basis of software and electronic systems.

The quest for solving control tasks is independent of the construction-related aspects of the respec-
tive plant. Instead, the static and dynamic behavior of the plant is of primary importance. For
this reason, the fi rst step of control technology-specifi c analysis methods consists of examining
the plant. When the system boundaries for the plant have been established, the input and output
parameters (I/O parameters), as well as the components of the plant, are defi ned. Identifi cation
methods are then used to establish physical model equations depicting the static and dynamic

Fig. 5-1. Microcontroller interfaces.

Methods and Tools for Development

-215-

interrelations among the components. The resulting model view of the plant becomes the foun-
dation for any and all subsequent design procedures.

In the course of this procedure, all components of an electronic system that contribute to the
solution of a given control function—such as setpoint generators, sensors, actuators, and
ECUs—initially are assigned to the control system to be designed. During the early phase, this
practice simplifi es the system view of the components, interfaces, and interrelations shown in
Fig. 5-2. The specifi c technical structure of the control system being designed is defi ned only
in the course of designing the technical system architecture.

Fig. 5-2. View of logical system architecture in the open-loop
and closed-loop control analysis phase.

Open-/Closed-
Loop Control,

Monitoring

Model of controller in open-/closed-loop control analysis phase

Setpoint
Generators

For example, when using this approach of contemplating a gasoline engine as being synonymous
with a plant, the manipulated variables Y—such as fuel injection volume, ignition point, and
throttle valve position—are readily identifi ed. Frequently, as a consequence of the numerous
reciprocal effects existing among the various components, the internal structure of the plant can
be rather complex. Figure 5-3 shows a comparatively simple example of a plant. It consists
of seven components that are labeled Plant 1 through Plant 7. This is the basis for the design
of the logical control system architecture. Figure 5-3 provides for seven controllers (labeled
Controller 1 through Controller 7).

The initial steps are followed by the stepwise design of the control system strategy for the
individual control components. The fi nal step consists of the design of the technical system
architecture. This involves the required setpoint generators, sensors, and actuators, and the
design of the ECUs and their software functions. Figure 5-4 illustrates this step on the example
of Controller 3.

AUTOMOTIVE SOFTWARE ENGINEERING

-216-

Fig. 5-3. Logical system architecture of an open-loop and closed-loop control system.

Fig. 5-4. Design of the technical system architecture for Controller 3.

Setpoint
Generator

Methods and Tools for Development

-217-

The methods applied to the specifi cation of software functions are discussed in Section 5.3.

In the context of this design step, note that the transfer function of the components making up
an electronic system may not simply be deemed “ideal” in many in-vehicle applications. Due to
cost considerations, setpoint generators, sensors, actuators, and hardware modules often provide
limited resolution and dynamics. In addition, the time and value-discrete function of the micro-
controllers must be taken into account. All of these make it imperative to consider the following
properties of the deployed setpoint generators, sensors, and actuators—plus microcontroller A/D
and D/A converters—early in the design phase of a control system:

• Effects caused by the value-discrete operation (e.g., due to limited resolution)
• Nonlinearities (e.g., caused by limitations)
• Delay or dead times caused by limited dynamics

In many cases, the implementation of software functions is adversely infl uenced by the limited
hardware resources of the deployed microcontrollers. Accordingly, the following items should
be kept in mind:

• Errors caused by rounding or the handling of underfl ows or overfl ows (e.g., when using
integer arithmetic)

• Approximation errors (e.g., caused by the limited accuracy of algorithms)

• Effects caused by the time-discrete operation of microcontrollers

The time constants of the plant determine the necessary sampling rate dT of the control system,
and thus the sampling rate dTn for a given software function fn.

Figure 5-5 shows the external view of a software function in this development phase.

Fig. 5-5. External view of software function fn.

Sampling Rate

Input Signals Output Signals

The control components shown in Fig. 5-3 also may be jointly implemented in a single ECU, as
shown in Fig. 5-6. The seven control components (Controller 1 through Controller 7) are to be
implemented with the use of setpoint generators, sensors, actuators, A/D and D/A converters,
and the software functions f1 through f7.

AUTOMOTIVE SOFTWARE ENGINEERING

-218-

As shown in Fig. 2-60 of Chapter 2, this approach also can be used in the specifi cation of moni-
toring and diagnostic functions.

The result provides, for all software functions fn, a specifi cation of the control and monitoring
strategy, I/O signals, and the necessary sampling rate dTn. The procedures described in the
following sections are based on the information thus obtained.

5.2.2 Analysis and Specifi cation of Real-Time Systems

In the event that several software functions using different sampling rates must be implemented
either by a single ECU or an entire ECU network, the software functions are activated by a
variety of tasks that are subject to different real-time requirements.

For many in-vehicle applications, compliance with the real-time requirement of a given task is
extremely important. Therefore, it stands to reason that analysis and specifi cation of real-time
systems must be carried out with the conscientious observance of the repercussions resulting
from the arbitration and scheduling strategy of both the operating system and the communica-
tion system.

Specifi c methods facilitating a schedulability analysis make it possible to assess and evaluate
compliance with the real-time requirements defi ned in Fig. 2-18 of Chapter 2 in a timely manner,
that is, long before the real-time system enters actual operation.

Fig. 5-6. Design of the technical system architecture of an open-loop
and closed-loop control system.

Setpoint
Generator

Function

Methods and Tools for Development

-219-

In this context, a differentiation may be made between the analysis of processor scheduling
for a variety of tasks and the analysis of bus arbitration between the nodes of a communication
system. The methods applied to both task settings are quite similar. The present section dis-
cusses a possible approach that avails itself of processor scheduling. In practical application,
however, these analytical procedures are complemented by suitable design, verifi cation, and
monitoring principles.

The result is a specifi cation of the real-time system, for which all software functions may have
been divided into processes, and these processes assigned to tasks.

Without limitation of universal applicability, it is fi rst assumed that the standardized defi nition
of real-time requirements for each task of the real-time system is based on the following:

• The constant or variable interval between two activations of a given task, labeled activation
rate in Fig. 5-7, and

• A time barrier established relative to the activation point, up to which the execution of a
task shall be completed. This time barrier is termed the relative deadline.

Fig. 5-7. Defi nition of real-time requirements for schedulability analysis—
Example: Task A.

Execution Time Execution Time

Response Time

Relative Deadline

Response Time

Relative Deadline

Activation Rate

A violation of the real-time requirement for a given task is deemed to exist in the event that the
execution of that task is not concluded within the specifi ed time limit, that is, if

 Response time > Relative deadline (5.1)

Rather than being a constant variable, the response time is infl uenced by various factors. Fig-
ure 5-8 shows a typical distribution of the response time for a given task. The critical determinant
for the violation of the real-time requirement is the largest response time value, known as the
worst-case response time (or WCRT, for short).

AUTOMOTIVE SOFTWARE ENGINEERING

-220-

In some cases, proof of compliance with the real-time requirements at a degree approximating
certainty cannot be obtained by means of testing in limiting conditions and with simultaneous
response time measuring. As the number of tasks increases, and with the rising complexity of
real-time requirements and scheduling strategies, obtaining such proof through testing often is
virtually impossible. Even after “successful” testing, it may be possible in critical situations that
the execution of a task is concluded only after the deadline has passed. Because, in such critical
cases, the greatest response time value obtained and measured in prior testing is not identical to
the largest value, the result is a violation of the real-time requirement.

Therefore, a combination of three corrective measures is employed in practical application:

• Schedulability analysis for the assessment of implementation alternatives

• Measurements after implementation to verify the results of the schedulability analysis

• Online deadline monitoring by the real-time operating system, and application-specifi c
response to deadline violations

5.2.2.1 Schedulability Analysis

The purpose of the schedulability analysis is to use all known parameters to provide a before-
the-fact estimate of the compliance with real-time requirements.

Thus, the requirement for a real-time system is

 Worst-case response time (WCRT) < Relative deadline (5.2)

This requires that the WCRT be determined or estimated.

Fig. 5-8. Probability distribution of response time for Task A.

Relative
Deadline

Response Time of Task A

Best-Case
Response Time

Greatest
Value
Observed

Worst-Case
Response Time

Methods and Tools for Development

-221-

In the simple case depicted in Fig. 5-7, the response time is determined by the interval between
the activation point and the start of task execution on one hand, and by the task execution time
on the other hand.

The commonly encountered case is more complex because the task execution may be interrupted
by the execution of one or more tasks of higher priority, with the added obstacle that those tasks
may be time or event-activated. The WCRT is further infl uenced by the resulting dead times
and the execution time required by the operating system for the task transition.

It normally takes two steps to determine or estimate the WCRT of a given task:

1. The fi rst step involves a determination or estimation of the maximum execution time required
for each task (termed worst-case execution time, or WCET). In addition, the execution times
required by the operating system must be determined or estimated.

2. Taking into account the real-time requirements and scheduling strategy, the second step
facilitates an estimation of whether or not the condition (Eq. 5.2) for all activations of the
respective tasks can be fulfi lled.

Example: Schedulability analysis

A manager’s daily schedule shall be examined for schedulability. The manager sleeps 8 hours
in a 24-hour period. He eats for 30 minutes in 8-hour intervals. Each time 1.5 hours have
elapsed, he drinks for 15 minutes, and he talks on the telephone for 30 minutes during each
2-hour interval.

As a condition, it is permissible to delay the meal by a maximum of 30 minutes and drinking
by 30 minutes, but telephoning by only 15 minutes. The required sleep interval shall be
concluded with a 24-hour period. This results in the following deadlines: Sleep = 24 hours,
Eat = 1 hour, Drink = 45 minutes, and Phone = 45 minutes.

Assuming the application of a preemptive scheduling strategy in accordance with the basic
task state model as per OSEK-OS (see Fig. 2-20 in Chapter 2), the intent is to examine
whether the manager is able to handle appointments in addition to the ones that are known.
As matters stand, the manager must perform a total of four tasks:

 • Task A: Sleep
 • Task B: Eat
 • Task C: Drink
 • Task D: Phone

The assigned priorities are Phone, followed by Eat, Drink, and Sleep. Table 5-1 summarizes
the entire daily schedule, with priorities and activation, deadline, and execution times.

The schedulability may be examined with the aid of the following execution scenario (Fig. 5-9):

 • Task D—Phone, having the highest priority, is executed in 2-hour intervals, without
violating the real-time requirement.

AUTOMOTIVE SOFTWARE ENGINEERING

-222-

 • Task B—Eat is activated simultaneously with Task D at 0600, 1400, and 2200 hours.
However, because of its low priority ranking, it is executed with a 30-minute delay.
Execution is fi nished just before the deadline.

 • Task C—Drink is activated in 90-minute intervals. However, because of its low prior-
ity ranking, the execution may be interrupted or delayed by Task B or Task D. In four
of the cases, violation of the 45-minute deadline is barely avoided. The worst-case
scenario manifests itself at 0600 hours. Here, the response time is 75 minutes, which
results in a deadline violation. Task C is again activated as early as 15 minutes after
the completion of task execution.

 • Task A—Sleep has the lowest priority and is started only after a delay of 75 minutes.
As expected, the task is frequently interrupted. More than 15 hours elapse between the
task activation point and the end of execution.

The critical situation with Task C at 0600 hours, and the borderline situations of the real-time
requirements of Task B, may be diffused through the introduction of a variety of measures.
Figure 5-10 depicts a scenario in which Task B is not activated at the same time as Task D,

TABLE 5-1
MANAGER'S TASK LIST

Activation
Time Deadline

Execution
Time Priority

Task A Every 24 h 24 h 8 h 1

Task B Every 8 h 60 min 30 min 3

Task C Every 1.5 h 45 min 15 min 2

Task D Every 2 h 45 min 30 min 4

Fig. 5-9. Schedulability diagram prior to optimization.

Methods and Tools for Development

-223-

but instead with a one-hour offset—that is, at 0700, 1500, and 2300 hours. This ensures the
safe fulfi llment of the real-time requirements for Task B at all times. The critical situation of
Task C at 0600 hours is alleviated in the same way. However, it is true that there continue to
be fi ve cases where a deadline violation is barely avoided. Additional measures to remedy
critical situations would be extending the Task C deadline to, say, 60 minutes. Another pos-
sible action would be raising the priority, if that is possible. And, as may be expected, the
newly introduced measures do not affect Task A with its lowest priority ranking.

It also is now possible to answer the original question, namely, that of scheduling additional
appointments in the form of Task E. As Fig. 5-10 shows, the schedule density now permits
additional daily tasks to be scheduled between 1400 and 2200 hours. To achieve a more
balanced schedule for our busy manager, the Sleep task might be split into two tasks named
NightSleep and AfternoonNap. It also is possible to estimate the effect of unforeseen inter-
ruptions of higher priority, such as a customer’s phone call to the manager.

Although the situation surrounding the fi ctitious manager in our example was deliberately
abstracted, it does serve the purpose of elucidating the errors of interpretation that may occur in
conjunction with real-time systems specifi cation, as well as the effect of optimization measures.

In addition to providing schedulability details for each of the tasks at hand, this analysis also
facilitates closer scrutiny of schedule density information, that is, overload and underload situ-
ations. These, in turn, may be used to improve the specifi cation of real-time requirements. As
a result, the total system load is more evenly distributed. In certain circumstances, a smoother
load situation may even reduce the complement of required hardware resources, such as proces-
sor clock rate.

It would be misleading to entertain the assumption that tasks of lower priority may be interrupted
at any point by tasks having higher priority. In fact, practical applications frequently exhibit
limitations. With respect to our example, this means that the Sleep task can be interrupted only
every two hours.

Fig. 5-10. Schedulability diagram subsequent to optimization.

AUTOMOTIVE SOFTWARE ENGINEERING

-224-

Also, it would not be realistic to assume that the switch from one task to another occurs entirely
without delay. Here, too, limitations crop up in real-world applications which—in our exam-
ple—would require the insertion of a delay or wake-up phase into the task transition between
Sleep and Phone.

When transposing this procedural approach to a practical in-vehicle application, additional con-
sideration must be given to the execution times required by the real-time system. These may
be substantial, depending on numerous parameters, and especially on the selected scheduling
strategy.

Another issue is the estimation of the worst-case execution time (WCET) required for a given
task. More often than not, it also depends on a variety of parameters.

All of the methods undertaking the calculation or estimation of the execution times (e.g., based
on the compiler-generated instructions) tend to be time-intensive and costly. These are fea-
sible only when tailored to specifi c situations. This subject matter is the object of multifaceted
research activities.

In this context, it should be basic practice to strictly limit the employment of any program con-
structs, such as repeat loops or wait states, whose processing may take an arbitrary length of time.
For this reason, iterative algorithms should be implemented in a manner ensuring the calculation
of only one or a fi nite number of iteration steps per task activation [57]. If this is not possible,
a worst-case estimation of the execution time of iterative algorithms cannot be performed.

5.2.2.2 Verifying Schedulability by Means of Measurements

The verifi cation of real-time behavior can be accomplished on the basis of measurements of
activation times and execution times in the real-world system, and by plotting an arbitration
diagram. In this way, fl agrant design fl aws can be identifi ed and iterative steps taken toward
improving the parameter settings of the real-time system.

The foregoing notwithstanding, remember that, as shown in Fig. 5-8, the measured or observed
execution times provide only a ballpark fi gure of the maximum execution time and response
time.

Furthermore, in most cases, it is not even possible to ensure that a given system was actually
in the critical load phase while being measured. This situation is typical of event-controlled
systems that are subject to variable task activation times and events, such as interrupts.

5.2.2.3 Monitoring and Handling Deadline Violations in the Operating System

For a given task, the risk of deadline violations can be reduced by changing various attributes,
such as the priority or the deadline, or by setting an activation delay. Exception handling can be
used to defi ne behavior in overload situations. These include so-called debouncing measures,
such as defi ning a maximum number of repeat activations for a task or specifying a minimum
time period between two activations of a given task.

Methods and Tools for Development

-225-

To identify exception situations of this kind at the earliest possible point during the development
phase, the exception conditions often are made decidedly tighter during development than later
in series production.

However, even in series production, and even in the presence of a software version that has been
approved for production, it may not be possible in all cases to dispense with online deadline
monitoring by the real-time operating system, especially for tasks that are subject to hard real-time
requirements. The same is true of the application-specifi c handling of deadline violations.

Appropriate implementations may utilize function-specifi c error hooks, which are called by the
real-time operating system in response to an identifi cation of deadline violations. In such cases,
these software monitoring functions augment the hardware-implemented monitoring measures
(e.g., program execution monitoring by means of a watchdog module).

5.2.3 Analysis and Specifi cation of Distributed and Networked Systems

The acquisition of input parameters for ECU software functions may be accomplished by sensors
that are directly assigned to the ECU. An alternative would be the utilization of signals produced
by sensors assigned to other ECUs. These signals would be transmitted via the onboard com-
munications network of the vehicle, and their use might be described as indirect. Similar options
exist with respect to actuators. In addition, all of the signals and states internally calculated by
the ECUs may be transmitted through the communications network.

Although this results in appreciable degrees of freedom with respect to the design of functions,
it also tends to create new design problems, that is, those of the most effi cient distribution of
software functions over a network of ECUs and/or microcontrollers, and of the abstraction of
sensors and actuators. For this reason, this section focuses on the analysis of various distribution
and networking alternatives. Figure 5-11 shows some of the degrees of freedom provided by
virtue of the fl exible direct or indirect implementation of logical communications links between
electronic system components. The graphical visualization differentiates between sensors and
intelligent sensors, and between actuators and intelligent actuators.

Another factor of far-reaching consequence is the infl uence of the communications system, such
as the value discretization of signals during message transmission or the transmission times
(response characteristics) of the communications system. These should be considered as early
as possible in the design of a distributed and networked system.

Methods facilitating the analysis of distributed and networked systems provide a means of
evaluating the referenced infl uencing factors. They also require the observation of numer-
ous requirements and constraints, such as installation space, real-time, safety, and reliability
requirements.

As an introductory example, it shall be assumed that the software functions of the control system
depicted in Fig. 5-6 need to be distributed to different microcontrollers. As a fi rst step, those
requirements that already exist for the software shall be identifi ed. These consist of the input
and output signals, and of the sampling rate dT. These requirements are summarized in table
form in Fig. 5-12.

AUTOMOTIVE SOFTWARE ENGINEERING

-226-

Fig. 5-11. Analysis of logical system architecture of distributed and networked systems.

Intelligent
Sensor 3

Intelligent
Sensor 4

Setpoint Generators
& Sensors

Direct Logical
Communication Reference
Indirect Logical
Communication Reference

Intelligent
Actuator 4

Intelligent
Actuator 5

Fig. 5-12. Table of software functions with sampling rate and signals.

Methods and Tools for Development

-227-

To assign these software functions to various microcontrollers, a new column is added to this
table, as shown in Fig. 5-13. The information in this column indicates the specifi c locations in
which the functions shall be implemented. Function f1 is calculated on microcontroller µC1.1,
function f2 on microcontroller µC2.1, and function f3 on microcontroller µC1.2. In this distribu-
tion, the prerequisites of the existing hardware architecture must be considered. This may cause
the distribution of functions to be restricted by the pre-existing assignment of sensors and actuators
to specifi c microcontrollers. For example, this may result in the direct assignment of a sensor
signal preprocessing function to the microcontroller that also handles the respective sensor.

Fig. 5-13. Assignment of software functions to microcontrollers.

As the discussion continues, two cases in point must be differentiated:

1. In the event that signals occur not only repeatedly but also on different microprocessors in
the table shown in Fig. 5-13, these must be communicated over the network. In this way,
the set of all signals to be transmitted by the communications system is obtained. In the
simplifi ed example in Fig. 5-13, this applies only to signal S1, which must be transmitted
from microcontroller µC2.1 to microcontroller µC1.1.

AUTOMOTIVE SOFTWARE ENGINEERING

-228-

2. However, if signals occur repeatedly on a given microcontroller in the table shown in Fig. 5-13,
addressing different functions for which different sampling rates have been specifi ed, these
must be communicated across task boundaries. In this way, the set of all signals that must
be transmitted by via inter-task communications is obtained.

The former case raises the immediate question of the timing requirements (e.g., the transmit rate,
at which the signal transmission through the network is to be accomplished). In our example,
in which function f2 calculates the signal S1 at a sampling rate of 20 ms, it would make little
sense to transmit the signal S1 at a faster rate. This would hold true even if—as depicted in
Fig. 5-13—the receiving function f1 were to be calculated at the faster sampling rate of 10 ms.
In this case, the resulting specifi cation will call for the transmission of signal S1 at the sampling
rate of 20 ms.

By contrast, if the receiving function f1 were to be calculated at a slower sampling rate, the burden
on the communications system would be lightened by transmitting the signal at the sampling rate
of the receiving function. Thus, it has been demonstrated that a differentiation must be made in
each case between the sampling rate of the signal transmission, the required transmission time,
and the sampling rate dT for the calculation of transmitting and receiving functions.

A second defi nition concerns the signal resolution and value range during transmission. Here,
too, the resolution expected by the receiver of a message must be considered.

These defi nitions at the signal level suffi ce as a basis for estimating the communications load
and evaluating distribution alternatives.

The next step consists of defi ning the communications system. This also requires that the mes-
sages to be transmitted by the communications system be formed. In other words, it must be
defi ned which message will be used to transmit a given signal.

For reasons of effi ciency, it will be natural to attempt the bundling of various signals that a
microcontroller must send with identical time requirements and to the same group of receivers,
for transmission with one message or the least possible number of messages.

To this end, it is useful to rearrange the rows and columns of the table in Fig. 5-13 and to expand
it into a communications matrix. This will place the microcontroller sending the signals in the
left-hand column. The signals are arranged in ascending order of sampling rates for signal
transmission (transmit rate) and by signal receivers.

The formation of messages produces the communications matrix shown in Fig. 5-14. Signal S1
is transmitted via message N3. Figure 5-14 shows several additional signals and messages that
may be derived from additional functions that have not been discussed at this point.

A sizeable contingent of additional aspects must be considered when analyzing the network
onboard a real-life vehicle. First, the true number of signals, messages, senders, and receivers
is considerably larger than that discussed in this section. The situation is further complicated
by the fact that the signals transmitted by a given sender are normally processed by several
receivers at various sampling rates. Also, note that the leeway with respect to the distribution
of functions is normally restricted by numerous additional prerequisites.

Methods and Tools for Development

-229-

The massive obstacles embodied in the concerted effect of the aforementioned drawbacks lend
even greater signifi cance to the early analysis of the requirements, the evaluation of the imple-
mentation alternatives, and the iterative improvement of the network design.

After the communications system, messages, and network topology have been defi ned, the
information contained in the communications matrix can be enhanced to a point where the
deployment of simulation will facilitate initial statements regarding the bus load or expected
communications latencies.

The result obtained in this manner comprises a specifi cation of the distributed and networked
system, in which all of the software functions are assigned to a microcontroller, and where the
communications matrix is fully defi ned.

5.2.4 Analysis and Specifi cation of Reliable and Safe Systems

Reliability and safety requirements for vehicle functions arise as a consequence of the interplay
between customer desires and the consideration of technical, legal, and fi nancial prerequisites.

Fig. 5-14. Communications matrix.

AUTOMOTIVE SOFTWARE ENGINEERING

-230-

For example, reliability requirements are imposed in the form of short repair times or long
service intervals. By contrast, safety requirements defi ne the safe operating characteristics of
the vehicle in the event of component malfunction or failure. From the beginning, the reliability
and safety requirements for vehicle functions also defi ne requirements concerning technical
implementation and verifi cation requirements.

For this reason, systematic methods facilitating a reliability and safety analysis have a growing
infl uence on software development (e.g., on the implementation of monitoring, diagnostic, and
safety concepts). In the case of complex electronic systems, the activities safeguarding reliability
and safety must be planned early, with subsequent integration into the entire project plan.

Reliability and safety analyses encompass failure rate and failure mode analyses, plus the exami-
nation and evaluation of specifi c means of improving reliability and safety. The group of failure
mode analyses also includes the so-called failure mode and effects analysis (FMEA) [61] and
the fault tree analysis (FTA) [53, 54].

5.2.4.1 Failure Rate Analysis and Calculation of Reliability Function

The systematic scrutiny of the failure rate of an observation unit facilitates a prediction of its
reliability on the basis of calculation. This forecast is an essential prerequisite in the early
identifi cation of weak points and the evaluation of alternative solutions. It also aids in the
quantitative acquisition of the interdependencies of reliability, safety, and availability. In addi-
tion, investigations of this type are necessary when assistance in the formulation of reliability
requirements for components is warranted.

Remember that, because of deliberate neglect and simplifi cations, as well as the poor reliability
of input data, the calculated and predicted reliability may be used as a mere estimation of the
true reliability, which can be determined only with the aid of reliability testing and fi eld trials.
However, for the purpose of comparative investigations during the analysis phase, absolute accu-
racy is not a major concern. As a result, the calculation of the predicted reliability is especially
useful in the context of evaluating implementation alternatives.

For the purpose of this section, the observation unit always comprises a technical system or
system component. Normally, however, a more general view may set wider margins and even
include the vehicle operator.

The failure rate analysis encompasses the following steps:

• Defi ning the boundaries and components of the technical system, required functions, and
the requirement profi le

• Establishing the reliability block diagram

• Determining the load conditions for each component

• Determining the reliability function or failure rate for each component

Methods and Tools for Development

-231-

• Calculating the reliability function for the entire system

• Remedial actions to eliminate weak points

The failure rate analysis comprises a multistage procedure. It is performed in a top-down pro-
gression from the system level through the various subsystem levels to the component level of
the technical system architecture. In the event that changes are made to the technical system
architecture, the failure rate analysis must be repeated.

Defi ning system boundaries, required functions, and requirement profi le

Indispensable prerequisites for the theoretical considerations needed for the reliability forecast
are detailed knowledge and in-depth skills with respect to the system, its functions, and the
specifi c options providing for improvements in reliability and safety.

The required system skills also include familiarity with the system architecture and its opera-
tional principles, the working and load conditions of all system components, and the reciprocal
effects among components, possibly in the form of signal fl ows and the inputs and outputs of
all components.

The improvement options include the limitation or reduction of static or dynamic component
operating loads, interface loads, the deployment of components of higher suitability, the sim-
plifi cation of system or component design, the pretreatment of critical components, and the
introduction of redundancy.

A required function specifi es the system task. Because the defi nitions of system boundaries and
required functions also are used to defi ne failure, they form the starting point for any reliability
and safety analysis.

In addition, because the environmental conditions for all of the system components defi ne com-
ponent reliability, these likewise must be defi ned. For example, the temperature range exerts
a signifi cant infl uence on the failure rate of hardware components. In the vehicle, the required
temperature range, operation in humidity, dust, and corrosive atmosphere, or shock and vibration
loads or fl uctuations of operating voltage all belong under the same umbrella term. In cases
where the required functions and environmental conditions also are time dependent, a require-
ment profi le must be established. One example of requirement profi les prescribed by statutory
law is the driving cycles used in the verifi cation of compliance with exhaust emission directives.
In such cases, the term representative requirement profi les is used.

Establishing the reliability block diagram

The reliability block diagram answers the questions of which components of a given system
must always function in order to fulfi ll the required function, and which components would not
severely impede the function in the event of their failure because they are available in redundancy.
The reliability block diagram is established by observing the components of the technical system
architecture. These components are then arranged in a block diagram and are interconnected
in such a fashion that the components required for the fulfi llment of functions are switched in
series, and redundant components are connected in parallel.

AUTOMOTIVE SOFTWARE ENGINEERING

-232-

Example: Establishing the reliability block diagram for an electromechanical braking

system

As a fi rst step in establishing the fi ctitious brake-by-wire system shown in Fig. 5-15, the
system boundary is defi ned. The system consists of the components brake pedal unit (C1),
ECU (C2), the wheel brake units (C5, C7, C9 , and C11), and the electrical connections (C3,,
C4, C6, C8, and C10).

Fig. 5-15. System view of a brake-by-wire system.

Left Front
: Right Front

Left Rear
Right Rear

Instead of providing the customary hydraulic line connections among the brake master
cylinder, the brake pedal, and the wheel brakes, electromechanical braking systems employ
electrical connections. Brake actuation causes the operator command issued by brake pedal
unit C1, and processed onboard ECU C2, to be conveyed “by wire” to wheel brake units C5,
C7, C9, and C11, with the electrical energy required for braking. This process has one major
objective: In conventional braking systems, the “information and energy conveyance”
function between the brake pedal unit and wheel brakes is performed by mechanical and
hydraulic means. The brake-by-wire implementation by means of electrical and electronic
components C2, C3, C4, C6, C8, and C10 must under no circumstances introduce an additional
safety hazard but provide a certain safety gain. Therefore, the absolute safety of transmitted
braking instructions constitutes a mandatory requirement. Similarly, the required operational
safety also must be guaranteed in the case of component failures.

The “braking” function shall be investigated. To this end, the overall reliability of the
system must be determined. It shall be assumed that the failure rates λ1 through λ11 of
components C1 through C11 are known.

Methods and Tools for Development

-233-

For its remainder, this example will be greatly simplifi ed. Its intended function is to illustrate
the basic approach to the reliability analysis. For this reason, this examination focuses on
the transmission of information, whereas the aspects of energy supply and transmission, as
well as prerequisites related to driving dynamics (e.g., the distribution of braking forces to
the front and rear axles, which must naturally be considered in the context of the reliability
analysis) shall be disregarded.

In this simplifi ed view, the fulfi llment of the “braking” function makes the functioning of
the components brake pedal unit C1 and ECU C2, plus the connections C3 between the brake
pedal unit C1 and ECU C2, a mandatory requirement.

The function of the wheel brake units, and the connections between the ECU and wheel brake
units, are protected by redundancy. As a consequence of the strongly simplifi ed assumption
that the secondary braking effect for the vehicle can be accomplished with only one wheel
brake unit, the components C4 and C5 are required, whereas components C6 and C7, C8,
and C9, and/or C10 and C11 are available as redundant units. This type of arrangement is
known as one-of-four redundance.

Based on the foregoing, the reliability diagram for the “braking” function will appear as
shown in Fig. 5-16.

Fig. 5-16. Reliability block diagram for the “braking” function
of a brake-by-wire system.

Calculating the reliability function for the system

Subsequent to specifying the load conditions and defi ning the reliability functions R ti () for all
of the components Ci, the system reliability function R tS () can be calculated in consideration
of the basis rules for reliability block diagrams [54] shown in Fig. 5-17.

For the example in Fig. 5-16, the system reliability function RS can be calculated. Based
on the assumptions R4 = R6 = R8 = R10 and R5 = R7 = R9 = R11, RS is derived as follows:

AUTOMOTIVE SOFTWARE ENGINEERING

-234-

R R R R R RS = - -()È
ÎÍ

˘
˚̇1 2 3 4 5

4
1 1 (5.3)

As this simplifi ed example demonstrates, the system reliability for a given function is increased
by the presence of redundant components in the reliability block diagram, as compared with
component reliability. By contrast, the system reliability of the components connected in series
is reduced vis-à-vis component reliability. Therefore, it stands to reason that it will be necessary
to demand a high degree of reliability of the serial components already in the reliability block
diagram or to introduce a technical system architecture that provides for redundant structures
also in this situation.

5.2.4.2 System Safety and Reliability Analysis

With regard to the safety analysis, it is of little importance whether or not an observation unit
actually does fulfi ll the functions being demanded of it, as long as this does not introduce an
unacceptable high-risk factor. Any actions taken with a view to increasing safety are termed
protective measures and are aimed at reducing the risk level.

The reliability and safety analyses comprise iterative and contiguous processes of several steps,
as depicted in Fig. 4-18 of Chapter 4 [70]. They infl uence hardware and software requirements,

Fig. 5-17. Basic rules for calculating the system reliability function. (Ref. [54]).

-lit

at one-of-four redundancy

one-of-two redundancy

k-of-n redundancy

Methods and Tools for Development

-235-

as well as the software development process for electronic systems. Furthermore, the safety
analysis of a system often is carried out by applying methods for failure mode analysis. The
failure mode analysis produces a risk assessment for all functions within a system.

The permissible limit risk is normally implicitly prescribed by safety technology stipulations,
such as laws, standards, or directives. The risk level obtained for the functions of the system and
the permissible limit risk then become the basis for deriving safety requirements for the system
(e.g., in accordance with standards such as IEC 61508 [19]). In many cases, such standards exert
signifi cant infl uence on system and software design in electronics development.

For the so-called safety-relevant functions of the system, which are defi ned and isolated by the
failure mode analysis, special protective measures must be introduced. These may be imple-
mented in both hardware and software. The verifi cation of safety is a prerequisite for the approval
for road registration of vehicles. Therefore, appropriate verifi cation and validation procedures
must be planned as early as in the analysis phase.

Example: Monitoring concept for an electronic throttle control system (ETC)

In Chapter 2, the requirement class for an ETC system was determined (see Fig. 2-59). A
possible hazard was assumed to be inadvertent acceleration, with a resulting accident. To
the engine ECU, this means that all control functions fn leading to an inadvertent increase
in engine torque are to be considered safety relevant. Therefore, a concept for monitoring
these functions is needed.

For the purpose of this example, the monitoring concept that has been in use in engine ECUs
for several years [81] has been slightly modifi ed. It will be investigated with respect to
safety and reliability. Under the auspices of the “E-Gas” Working Committee of the Ger-
man Association of the Automotive Industry (VDA), this basic concept developed by Robert
Bosch GmbH is currently subject to advanced development as a standardized monitoring
concept for gasoline and diesel engine ECUs (see Fig. 2-62 in Chapter 2).

Figure 5-18 shows the monitoring concept for safety-relevant control functions fn.

The safety-relevant control functions fn are subject to constant monitoring by the monitoring
functions fÜn. Although the monitoring functions fÜn utilize the same input variables as the
control functions fn, they work with different data and algorithms.

In addition to checking RAM, ROM, and microprocessor functions, the microcontroller
monitoring functions also verify whether or not the control functions fn and monitoring
functions fÜn are actually running. This necessitates the deployment of a second micropro-
cessor, a so-called monitoring computer, in the engine ECU. The dedicated microcontroller
monitoring functions are distributed to the function computer and monitoring computer.
Both computers conduct a question-and-answer routine in a mutual monitoring process.

A defi ned safe state is the power shutoff to the electromechanical throttle valve. The throttle
valve is constructed in such a way that it automatically assumes the idle position in the event
of being de-energized. Therefore, the transition to the safe state can be initiated in the ECU

AUTOMOTIVE SOFTWARE ENGINEERING

-236-

by powering down the output modules driving the throttle valve. In this way, the engine
can continue to be operated in the limp-home operating mode.

Thus, it has been demonstrated that not only the monitoring functions fÜn but also the dedi-
cated microcontroller monitoring functions on the function and monitoring computer can
disable the throttle valve output modules of the ECU.

In the event that a fault is detected, an entry is written into the fault memory in addition to
the safety response previously discussed. In most cases, an appropriate message is output
to the vehicle operator (e.g., by means of an indicator in the instrument cluster).

To assess the reliability of this monitoring concept, three types of functions must fi rst be
differentiated:

 • The control functions fn
 • The monitoring functions fÜn
 • The microcontroller monitoring functions

When this is done, the reliability block diagrams for these different functions can easily be
determined (Fig. 5-19).

To determine system reliability, all three of these functions will be challenged at the same
time. Accordingly, the system reliability results from an in-series connection of these block

Fig. 5-18. Monitoring concept for safety-relevant functions of an engine ECU. (Ref. [81])

Open-Loop & Closed-Loop
Control Functions fn

Methods and Tools for Development

-237-

diagrams. What is more, the components C7 and C8, which do not appear in the block
diagrams of the individual functions, also must be connected in series.

The system reliability RS Reliability is a product of the multiplication of the reliability of the
three functions Rx; x = A,B,C shown in Fig. 5-19 by the reliability of components C7 and C8.
Because Rx < 1, it is in any case lesser than the respective reliability of the functions Rx.
When calculating system reliability, the rules for calculating with repeated elements in reli-
ability block diagrams must be observed [54].

By contrast, assessing safety merely requires the reliable detection of a failure and the reliable
transition to a safe state. The reliability RS Safety of this safety response is specifi ed by the
reliability of the monitoring functions fÜn or by the microcontroller monitoring functions.
For this reason, it is higher than the reliability of the functions Rx. In addition, the reliability
of components C7 and C8 does not enter into the calculation of RS Safety.

As this example demonstrates, measures aimed at increasing safety can reduce system reli-
ability. It also is evident that measures aimed at increasing reliability can cause the safety
of a system to be reduced.

Although the reliability and safety analyses focus only on hardware components, they exert great
infl uence on software development. In a distributed and networked system, for example, they
infl uence the assignment of software functions to microcontrollers; in software development, they
dictate the necessary quality assurance measures. For a detailed discussion of related subjects,
reference is made to suggested reading and advanced literature [57, 59, 82, 83].

5.3 Specifi cation of Software Functions and Validation of Specifi cation

After the interfaces and sampling rates for the software functions, with their assignment to a
microcontroller, have been accomplished, the next question addresses the manner in which the
data and the behavior of software functions, such as the linking of input signals with algorithms

Fig. 5-19. Reliability block diagrams for engine management functions.

Next Page

AUTOMOTIVE SOFTWARE ENGINEERING

-238-

for the calculation of output signals, may be specifi ed. Topics centered on this subject are the
main focus of the following sections.

Several methods may be employed in the specifi cation of software functions. Figure 5-20 shows
one classifi cation. A differentiation must fi rst be made between formal and informal specifi cation
methods. The former consist of strict mathematical methods used in the formulation of algo-
rithms (i.e., methods permitting the unambiguous formulation of algorithms without leeway for
interpretation). By contrast, informal methods are not subject to such strictures. For example, a
formal method would be the expression of algorithms in a high-level language, whereas express-
ing an algorithm in colloquial language is deemed an informal method.

Fig. 5-20. Outline of specifi cation methods for software functions.

Model-Based

As discussed in Section 4.6.2 of Chapter 4, simple examples may be used to demonstrate that
interpretative leeway inherent in the informal description of algorithms may result in differing
implementations. These, in turn, produce different results or output signals despite identical
input signals. For this reason, the following discussion is restricted to the investigation of
formal specifi cation methods, in which a differentiation is made between high-level language
and model-based specifi cation methods. Examples of specifi cation methods that are frequently
used to describe software functions in vehicle development are block diagrams, decision tables,
or state machines.

Previous Page

Methods and Tools for Development

-239-

A third differentiation criterion is the abstraction level of the specifi cation. Because in most
cases vehicle functions are implemented by means of a technical system comprising a number
of components of varying technical implementation, the specifi cation requires a standardized
abstraction level. Taking a cue from the modeling and design methods for control systems, the
fi rst step consists of the useful specifi cation of software functions at the physical level. A detailed
discussion of several methods facilitating the model-based specifi cation of software functions
appears in the following sections. This discussion initially ignores many implementation details
that are defi ned in a subsequent design and implementation phase. These are discussed in greater
detail in Section 5.4.

The consistent development of software functions—spanning the range between specifi ca-
tion, design, and implementation—can be ensured only if software-specifi c requirements and
prerequisites are already considered early in the process of specifying the software functions.
This is refl ected in the following sections, for example, which already take into account the
software architecture, the defi nition of real-time characteristics, or the specifi c differentiation
between data fl ow and control fl ow.

The formal specifi cation of software functions offers additional development benefi ts. For
example, the completed specifi cation can be executed early on the timeline in a simulated envi-
ronment, and it becomes a tangible experience in the vehicle with the aid of rapid prototyping
systems, thus facilitating timely validation of the specifi cation. In this context, a graphical model
offers easier comprehension than a high-level language description. A model also may serve as
a basis for common understanding among the various engineering disciplines participating in
the development of software functions.

The differentiation between the physical level and the implementation level also aims at the
abstraction of numerous implementation details, some of which are hardware dependent. This
provides the option of using the specifi ed software functions in a variety of vehicle projects, for
example, by porting the software functions to microcontrollers using a different word length.

5.3.1 Specifi cation of Software Architecture and Software Components

Starting with the established logical software function model with its defi ned real-time require-
ments and I/O signals, the manner in which the architecture of a given software function is visual-
ized must be determined. The starting point is the software architecture for the microcontrollers
onboard ECUs, as shown in Fig. 1-22 of Chapter 1. To handle comprehensive software functions,
a suitable modularization and hierarchy concept is an indispensable necessity. Therefore, the
consistent use of the component view and interface view also is needed at the software level.
The defi nition of the interfaces for all software components used in the specifi cation of a given
software function likewise is a pivotal prerequisite for the distributed development of a software
system of this type. An example of the fulfi llment of this requirement, with the added benefi t
of reusability of the specifi ed software components, is object-based modeling.

AUTOMOTIVE SOFTWARE ENGINEERING

-240-

5.3.1.1 Object-Based Software Architecture Modeling

In view of the foregoing, the major terms related to object-based software models shall be intro-
duced. A software system is divided into so-called objects, that is, software components that are
at once clearly structured, independent of each other, and self-contained within themselves. The
objects interact with the purpose of performing a specifi c task. Objects encompass the software
structure and its behavior [72].

The term structure indicates that objects may contain attributes in which the object data is stored.
In other words, attributes are the internal storage areas within objects. The term structure also
denotes that objects may contain other objects. This type of entity relation between objects is
termed aggregation. Therefore, the structure describes the static properties of an object.

By contrast, the term behavior describes the dynamic properties of an object. Interfaces are
required for objects to access other objects. The interfaces of an object are defi ned by its so-called
public methods. Methods are capable of adopting input data from outside an object. They also
can modify object attributes or provide object output data. To modify any of the attributes of a
given object, a method of that object must be called. This ensures object modularity, fl exibility,
and reusability. For this reason, objects are suitable for deployment in a variety of environments
without side effects.

A class is the abstraction of a collection of similar objects. It identifi es the common attributes
and methods provided by each object. Objects represent copies, or instances, of a class. It may
be said that a class is the specifi cation for an object instantiation guideline.

Example: Calculating wheel revolutions per minute (rpm) and vehicle speed for an anti-

lock braking system (ABS)

The graphical visualization of object-based software models makes widespread use of the
notations of the Unifi ed Modeling Language™ (UML) [84]. Figure 5-21 shows the “Wheel”
class with the “Speed n” attribute, with the methods for initialization “init_n(),” computa-
tion “compute_n(),” and output “out_n()” of the wheel rotational speed, in the notation of
a UML class diagram. A software component of this type might be deployed in an antilock
braking system (ABS).

For the purpose of calculating the vehicle speed, a “Vehicle” class is defi ned. The “Vehicle”
class must represent the four wheels of the vehicle. The result is a 1:4 aggregation between
the “Vehicle” and “Wheel” classes.

The “Vehicle” class also must represent the engine of the vehicle. To this end, the “Engine”
class is specifi ed. For the “Engine” class, the “Speed n” attribute for engine speed, with
the methods for initialization as “init_n(),” computation as “compute_n(),” and output as
“out_n()” of the engine speed are defi ned.

Figure 5-22 shows the class model for the “Vehicle” class in UML notation. For the “Vehicle”
class, the attributes “Velocity v” and “Gear g,” with the methods for computation of vehicle
velocity and selected gear—“compute_v()” and “compute_g()”—are defi ned. These calcu-
lations utilize the methods of the “Wheel” and “Engine” classes.

Methods and Tools for Development

-241-

Software models of this type are used as a basis for the visualization of contexts within software
functions. In this way, for example, a software function f1 can be hierarchically assembled from
software components. This is accomplished by instantiating the classes. Thus, the instantia-
tion of the “Vehicle” class creates the object named “Vehicle_1.” This object contains four
instances of the “Wheel” class and one instance of the “Engine” class. The objects thus created
are “RF_Wheel,” “LF_Wheel,” “RR_Wheel,” and “LR_Wheel” for the right front, left front,
right rear, and left rear wheels, respectively, plus the object “Engine_1” for the engine.

Fig. 5-21. “Wheel” class and methods for calculating wheel rotational speed
(revolutions per minute). (Ref. [84]).

Fig. 5-22. Class diagram for the “Vehicle” class. (Ref. [84]).

AUTOMOTIVE SOFTWARE ENGINEERING

-242-

In the following sections, the representation of the software architecture including objects uses
a graphical visualization similar to that shown in Fig. 5-23. The class designation of a given
object is stated after the object name and is separated by a colon.

Fig. 5-23. Graphical visualization of software architecture with object diagrams.

Left Front
Right Front
Left Rear
Right Rear

5.3.1.2 Module-Based Specifi cation of Interfaces to Real-Time Operating System

The software components at the primary hierarchy level of a software function require the
defi nition of interfaces to the real-time operating system in the form of processes and to the
communications system in the form of messages (see Fig. 2-36 in Chapter 2). Assigning these
processes to tasks facilitates the specifi cation of real-time requirements. By replicating the input
and output signals of the software function in the form of messages, the communications across
the boundaries of tasks or even microcontrollers can be supported.

Interfaces of this type are not required for levels other than the primary level of a software
function. Therefore, the software components at the top level of a software function are termed
modules. In the discussions to follow, modules are depicted graphically as in Figs. 5-23 and
5-24. The processes P1 through Pm are shown as triangles. The messages M1 through Mn are
shown as arrows, with the direction of the arrowhead providing the identifi cation of Receive
and Send messages.

Methods and Tools for Development

-243-

5.3.1.3 Class-Based Specifi cation of Reusable Software Components

At the lower levels, objects are defi ned that can be accessed by means of methods. A given
method can be assigned interfaces in the form of several arguments and a return value. The dif-
ferentiation between modules and objects in conjunction with software components facilitates the
reuse of objects in a variety of contexts through the instantiation of classes. In the discussions
to follow, classes and objects are graphically depicted as shown in Fig. 5-25 [73]. Arguments
are shown as arrows that point at the class or object. Return values are shown as arrows that
point away from the class or object.

Fig. 5-24. Graphical depiction of modules contained in the specifi cation.

Fig. 5-25. Graphical depiction of classes and objects
contained in the specifi cation.

As an alternative to the visualization of the function architecture shown in Fig. 5-23, the follow-
ing discussion also may use the block diagram as shown in Fig. 5-26. In addition to showing
the aggregation and hierarchy relationships, this diagram also provides for the inclusion of the
data fl ows and control fl ows between methods and arguments and/or return values of object
methods. These paths are shown in the form of lines in Fig. 5-26.

Depending on the type of context that must be described, several different modeling techniques
are suited to the specifi cation of the behavior of modules and classes. Block diagrams, decision
tables, and state machines are among the most important techniques.

AUTOMOTIVE SOFTWARE ENGINEERING

-244-

5.3.2 Specifi cation of Data Model

The task of specifying the data model for a software component also begins at the physical level.
In object-based modeling, the data are presented by the attributes of objects and/or modules.

5.3.3 Specifi cation of Behavioral Model Using Block Diagrams

If the data fl ow is featured in the formulation of the behavior of a software component, block
diagrams are suited to graphical visualization. This occurs frequently at the abstract level. For
this reason, numerous interrelations between software components discussed in the preceding
chapters of this book were depicted in the form of block diagrams.

Block diagrams also can be used to provide a clearly structured visualization of complex
algorithms within a software component, allowing for differentiation between arithmetic and
Boolean functions.

5.3.3.1 Specifi cation of Arithmetical Functions

As an example of the specifi cation of arithmetic algorithms, the integration method according
to Euler (see Fig. 4-36 in Chapter 4) shall be continued with the use of block diagrams.

Example: Specifi cation of “Integrator” class

The integration method according to Euler is frequently employed as an approximation
procedure for the calculation of integrals.

Fig. 5-26. Graphical depiction of software architecture with block diagrams. (Ref. [73]).

Left Front
Right Front
Left Rear
Right Rear

Methods and Tools for Development

-245-

The calculation of the defi nite integral of function f t()

F t f t dtn

t

tn

() = ()Ú
0

 (5.4)

is approximated by the sum of

F t t t f tn i i i
i

n
* () = -() ◊ ()+

=

-

Â 1
0

1

 (5.5)

The distance t ti i+ -()1 is termed step size dTi.

F ti
*

+()1 may be calculated incrementally using the equation

F t F t dT f ti i i i
* *

+() = () + ◊ ()1 (5.6)

Because this integration method is deployed repeatedly and with varying context, it shall
be specifi ed as a class in the form of a block diagram. This causes a number of additional
requirements to be imposed on this software component:

 • It shall be possible to weight the integration of an input variable “in” with a constant K,
and the current integration value shall be stored in the variable labeled memory.

 • The integration value memory shall have an upper boundary of MX and a lower bound-
ary of MN.

 • The integration value in, integration constant K, and the boundaries MN and MX are
specifi ed as default arguments for the “compute()” method. In this way, the “compute()”
method calculates the current integration value, using the equation

memory memoryt t K dT in ti i i+() = () + ◊ ◊ ()1 (5.7)

 and subsequently limits the same by means of boundaries MN and MX.

 • The step size dT comprises the interval that has elapsed since the preceding execution
of the “compute()” method; the same value was termed execution rate in Fig. 2-18 of
Chapter 2. The real-time operating system shall calculate and provide the step-size dT
for each task.

 • Using a second method labeled “out(),” it shall be possible to output the current integra-
tion value labeled memory independently of the integration calculation.

 • An “init()” method is required for the initialization of memory with the initialization
value IV, which is transferred in the form of an argument.

AUTOMOTIVE SOFTWARE ENGINEERING

-246-

 • The methods “init()” and/or “compute()” shall be executed, depending on a Boolean
argument I or E, which is in each case transferred to these methods in the form of an
additional argument.

A visualization of this integrator in the form of a block diagram in the ASCET tool [73]
appears in Fig. 5-27. Arithmetical and Boolean data fl ows are depicted by solid and dashed
arrows, respectively, whereas control fl ows are represented by dash-and-dot arrows.

Fig. 5-27. Specifi cation of the “Integrator” class as a block diagram
in the ASCET tool. (Ref. [73]).

1/init

I/init

IV/init

1/

memory

1/compute

E/compute

dT

in/compute

K/compute

IF

MX_/compute

MN_/compute

MN
MX

IF

memory

1/out

return/out

Figure 5-28 shows the external view of this software component. The assignment of argu-
ments to the methods “init(),” “compute(),” and “out()” is depicted in Fig. 5-27.

Fig. 5-28. External view of the “Integrator” class
in the ASCET tool. (Ref. [73]).

MN K MX

E IV I

In Return/OutK

Methods and Tools for Development

-247-

Note that the arithmetic algorithms were defi ned at the physical level. Thus, the preceding
example does not refl ect any defi nitions about the subsequent implementation, such as a defi ni-
tion of the word length or a decision regarding fi xed or fl oating-point arithmetic. For this reason,
a software component specifi ed in this manner may be ported to a variety of microcontrollers.
Another procedure that occurs at the physical level is the limitation of the integration value. It
is performed also in the context of implementation with fl oating-point arithmetic and may not
be confused with possible limitations in the context of the implementation of overfl ow or under-
fl ow treatment in integer arithmetic. However, the sequential order of the individual arithmetic
operations, or control fl ow, has already been defi ned.

5.3.3.2 Specifi cation of Boolean Functions

Aside from the specifi cation of arithmetic operations, block diagrams also can be used in the
defi nition of logical operations, or so-called Boolean operations. In many cases (i.e., when actions
depend on Boolean arguments taking the form of “IF … THEN” relations), a combination of
Boolean operations and arithmetical operations is needed to describe a function.

A Boolean variable can assume only the values of the two elements of set B = {TRUE, FALSE}.
Boolean variables can be linked to Boolean operators to form Boolean arguments. For the Boolean
operators conjunction (logical AND operation), disjunction (logical OR operation), and nega-
tion (logical NOT operation), the following sections make use of the graphical symbols—also
termed switching functions—shown in Fig. 5-29.

Fig. 5-29. Graphical symbols for the switching functions
in the ASCET tool. (Ref. [73]).

Example: Specifi cation of Boolean arguments using block diagrams

The specifi cation of Boolean arguments with the use of symbols representing switching func-
tions is also termed switching network. Figure 5-30 shows a switching network visualizing
two Boolean arguments in the form of a block diagram in the ASCET tool [73].

AUTOMOTIVE SOFTWARE ENGINEERING

-248-

5.3.4 Specifi cation of Behavioral Model Using Decision Tables

As an alternative, any actions whose execution depends on the compliance or noncompliance
with several conditions lend themselves to a compact and clearly structured defi nition by means
of so-called decision tables [72, 73]. The input and/or output variables of a decision table com-
prise Boolean variables X1 through Xn and/or Y1 through Ym, respectively.

Each of the input variables X1 through Xn, also termed conditions, are shown as columns in
the decision table. Thus, each row of input variables in the decision table represents a con-
junction—or logical AND function—of the input variables in the columns. Therefore, a row
comprises a Boolean argument, the so-called rule R, whose truth value determines the output
variables Y1 through Ym, which also are termed actions. These output variables are shown as
additional columns in the decision table.

A maximum of 2n combinations can be formed between n input variables. Therefore, the com-
plete decision table encompasses 2n rows or rules. The output values are assigned to one or
more rules. In the event that one output variable is assigned to several rules, this represents a
disjunction—or logical OR operation—of the respective rules. Figure 5-31 shows the Boolean
arguments taken from Fig. 5-30 in the form of a decision table. Thus, the specifi cations in
Figs. 5-30 and 5-31 are equivalent.

Decision tables can be optimized by the same procedure used for Boolean arguments. Thus,
in Fig. 5-31, only the last three rules R6 through R8 are of relevance, because only these rules
determine whether or not one of the actions Y1 or Y2 will be executed (Fig. 5-32).

Fig. 5-30. Specifi cation of Boolean instructions as a block diagram
in the ASCET tool. (Ref. [73])

1/log

X2/log

X3/log

X1/log

X2/log

X1/log

Y1

2/log

Y2

&

&

&

!

!

=
>1

X1/log

Methods and Tools for Development

-249-

If a given action occurs repeatedly in different rules, the decision table can be further optimized.
Initially, the rules for this action are examined in pairs. Both rules can be combined in an OR
circuit. Therefore, if both rules differ only in a single condition, they can be simplifi ed because
this means that the differing condition is irrelevant. In Fig. 5-32, each of the actions Y1 and Y2
occurs twice. In the case of action Y2, the two rules differ only in condition X3, rendering the
condition irrelevant. It follows that further simplifi cation is possible at this point. Irrelevant
conditions are marked with an asterisk character (“ * ”) in the decision table (Fig. 5-33). How-
ever, action Y1 does not provide for further optimization.

A number of decision tables also may be linked sequentially, as shown in Fig. 5-34.

Fig. 5-31. Specifi cation of Boolean instructions as a decision table.

Fig. 5-32. Optimizing the decision table.

AUTOMOTIVE SOFTWARE ENGINEERING

-250-

Decision tables are ideally suited to the specifi cation of functions in which a number of combined
conditions cause the execution of a number of different actions.

Interrelations of this type are a frequent occurrence in monitoring functions. For a detailed
discussion of decision tables, reference is made to suggested reading and advanced litera-
ture ([72, 73]).

5.3.5 Specifi cation of Behavioral Model Using State Machines

In many software functions, the result depends not only on the inputs but also on an event and
the history up to that point. Interactions of this type are suitable for description by means of
state machines. The state machines discussed in this section take their orientation from the fi nite
state machines according to Moore, Mealy, and Harel [72, 73, 85].

Fig. 5-33. Optimizing the decision table for action Y2.

Fig. 5-34. Sequential linking of decision tables.

Methods and Tools for Development

-251-

State machines may be drawn as state diagrams, where the states are shown as labeled rectangles
with rounded corners. Available transitions are represented by arrows with text labels. The
occurrence of a transition depends on a condition that is assigned to that transition. Depend-
ing on the current state or the performed transition, an action—assigned to a state or a transi-
tion—may be performed.

The conditions and actions may be specifi ed in several ways, that is, either in the form of a
block diagram or decision table, or even as an underlying state machine. As an alternative, the
specifi cation of conditions and actions also may be written in a high-level language.

5.3.5.1 Specifying Flat State Machines

As an example of the specifi cation of software functions by means of state machines, the control
of the low-fuel indicator lamp (see Fig. 2-9 in Chapter 2) shall be continued here.

Example: Specification for controlling low-fuel indicator lamp by means of state

machine

For the specifi cation of the low-fuel indicator lamp control to this end, only the conditions
“Signal value > 8.5V” and/or “Signal value < 8.0 V” and the previous state “Lamp Off” or
“Lamp On” are deemed relevant (Fig. 5-35).

Fig. 5-35. Specifi cation of states, transitions, and conditions.

 • So far, no point in time for the execution of the so-called actions “Switch Lamp On”
and “Switch Lamp Off” has been defi ned. As is the case with conditions, these actions
can be assigned to the transitions, and the applicable term is transition actions. State
machines of this type are known as Mealy state machines. As an alternative, the actions
may be assigned to the states, the applicable term being state actions. State machines
of this type are known as Moore state machines. Mealy and Moore state machines also
can be combined, that is, actions may be assigned to states and transitions. To suit the
purpose of this example, the actions “Switch Lamp On” and “Switch Lamp Off” shall
be assigned to the transitions.

AUTOMOTIVE SOFTWARE ENGINEERING

-252-

 • In addition, the state that the state machine occupies at the start requires defi nition. This
state is termed start state. To monitor the functioning of the low-fuel indicator lamp, the
defi nition will specify that the lamp must be energized for a specifi c time period each
time the engine of the vehicle is started. In this way, the proper functioning of the lamp
is confi rmed independently of the actual fuel level. The fi rst possible state transition
shall occur only after a two-second delay, that is, the lamp shall remain illuminated for
a minimum of two seconds after starting the engine. For this reason, a new state labeled
“Function Check,” with a transition to the start state “Lamp On,” is introduced. As a
result, the action “Switch Lamp On” is executed in the “Function Check” state. The
start state in a state machine is marked with an “(S).”

Figure 5-36 shows the state machine enhanced by means of the preceding procedure.

Fig. 5-36. Assignment of actions and defi nition of start state.

Function Check

The following differentiations can be made when assigning actions to a state:

• Actions executed only upon entry into a state (entry actions)
• Actions executed upon exiting a state (exit actions)
• Actions executed while dwelling in a state (static action)

Figure 5-37 demonstrates that an entry action is the equivalent of a transition action that is
assigned to all transitions leading to a given state. Similarly, the exit action of a state is the
equivalent of a transition action that is assigned to all transitions leading away from a given
state.

If there is only one state transition between each state for each set of input variables, the behavior
of state machines is said to be deterministic.

Nondeterministic situations may arise, for example, if several conditions of different transitions
leading away from a state are true at the same time. Situations of this type may be excluded

Methods and Tools for Development

-253-

Fig. 5-37. Equivalent actions in state machines.

Fig. 5-38. Deterministic state machines through priority assignment.

through the assignment of priorities, that is, by assigning a different priority to a transition lead-
ing away from a state. The priority levels are normally specifi ed with the use of numerals. In
our example, a higher number indicates a higher priority.

In Fig. 5-38, three transitions lead away from state X. If condition C2 were true, the behavior
of the state machine pictured in the left half of the diagram would not be deterministic because
two transitions would be possible. The introduction of a priority, as shown in the right half
of the diagram, defi nes the execution of the transition with priority (3), with the execution of
action A2.

AUTOMOTIVE SOFTWARE ENGINEERING

-254-

A state machine also requires the defi nition of a so-called event at which the conditions of the
transitions leading away from the current state are verifi ed and, if applicable, at which the respec-
tive actions and transitions are executed. In Fig. 5-39, for example, this event, which triggers
the calculations in the state machine, is specifi ed by the “trigger()” method that is assigned to
each transition.

Fig. 5-39. The “trigger()” method for state machine calculation.

Each time the “trigger()” method is called, the following calculations are performed:

• Verifi cation, by descending priority, of conditions for the transitions leading away from the
current state

• If a condition is TRUE

 – Execution of exit action of current state
 – Execution of transition action of transition
 – Execution of entry action of new state
 – Transition to new state

• If none of the conditions is TRUE

 – Execution of static action of current state

This demonstrates that a maximum of one state transition is executed each time the “trigger()”
method is called.

5.3.5.2 Specifying Transitions with Branching Instructions

If conditions such as those taking the form C1 and C2, and/or C1 and C3 occur at transitions
leading away from the same state, this may be more clearly structured with the use of branched
transitions and junction points. Both diagrams in Fig. 5-40 are equivalent.

Methods and Tools for Development

-255-

Fig. 5-40. Equivalent state transition modeling.

5.3.5.3 Specifying Hierarchy State Machines

With a rising number of states and transitions, state diagrams quickly become complex and
confusing. However, clarity can be maintained through the use of hierarchically nested states,
which results in hierarchical state diagrams that differentiate between base states and hierarchy
states:

• For each hierarchy state, a base state is defi ned as a start state. Those transitions that lead
to a hierarchy state cause a transition to this start state.

• As an alternative, a hierarchy state with a memory may be defi ned. Each transition leading
to a hierarchy state marked “H” for “History” causes the last active base state to again be
assumed in this hierarchy state. Thus, the start state defi nes the base state for the fi rst entry
into the hierarchy state.

Transitions also may be defi ned across hierarchical boundaries. Therefore, the priority of transi-
tions leading away from a base state must be unambiguously differentiated from those leading
away from a hierarchy state. The same is true of the sequence in which the actions defi ned for
hierarchy state and base state are executed.

Figure 5-41 shows an example of a hierarchy state machine. States X, Y, and Z are defi ned at
the highest hierarchical level. State X is also the start state. States V and W comprise base
states of hierarchy state Z. Therefore, the transition from state Y to hierarchy state Z leads to a
transition into this start state V, which also is true of the direct transition from state X to state V,
across the hierarchical boundary of state Z.

AUTOMOTIVE SOFTWARE ENGINEERING

-256-

For a detailed discussion, reference is made to suggested reading and advanced literature [73].

5.3.6 Specifi cation of Behavioral Model Using High-Level Languages

In many cases, the use of a high-level language is the preferred manner of defi ning the behavior of
a software component. This applies especially to situations where the formulation of a behavior
lends itself only to a cumbersome or unintelligible data fl ow-oriented or state-based description.
With their numerous loops and branches, search or sorting algorithms serve as a case in point.

Example: Specifi cation of “Integrator” software component in the C programming

language

Figure 5-42 shows the methods used by the “Integrator” software component from Fig. 5-27
in C language notation [76].

5.3.7 Specifi cation of Real-Time Model

In addition to the specifi cation of the data model and behavioral model for a software compo-
nent, specifi cation of the real-time model is required (see Figs. 4-31 and 4-32 in Chapter 4). If
a real-time operating system is used, its confi guration must be defi ned. Aside from the various
operating modes, transitions, and transitional conditions, the specifi cation of the arbitration
strategy, as well as the task process list for each operating mode, must be defi ned.

The specifi cation of real-time requirements can be separated from the behavioral specifi cation
of models and classes by means of the process and message interfaces, as well as the calculation
of the step size dT.

Fig. 5-41. Hierarchy state machine.

Methods and Tools for Development

-257-

Fig. 5-42. Method specifi cation of “Integrator” class in C language [76].

/* Variables */

extern real64 memory;

extern real64 dT;

/* Method compute() */

void compute (real64 in, real64 K, real64 MN, real64 MX, sint8 E)

{

 real64 temp_1;

 if E {

 temp_1 = memory + in * (K * dT);

 if (temp_1 > MX){

 temp_1 = MX;

 }

 if (temp_1 < MN){

 temp_1 = MN;

 }

 memory = temp_1;

 }

}

/* Method out() */

real64 out (void)

{

 return (memory);

}

/* Method init() */

void init (real64 IV, sint8 I)

{

 if I{

 memory = IV;

 }

}

AUTOMOTIVE SOFTWARE ENGINEERING

-258-

The initialization process and cyclical processes for the various operating modes also must be
defi ned.

5.3.8 Validating the Specifi cation Through Simulation and Rapid
Prototyping

The analysis of software requirements and their formal specifi cation (e.g., by means of software
models) frequently are not detailed enough to provide a suffi ciently clear idea of the software
system to be developed or to facilitate an advance estimate of the required development expen-
ditures. For this reason, efforts often are aimed at deploying methods and tools permitting an
animation or simulation of the formally specifi ed software functions. The same efforts extend
to making the referenced functions tangible in the vehicle, thus providing a means of early
validation of a software function.

The computer-based replication and execution of a function is termed simulation. By contrast,
the execution of a software function on a so-called experimental system (i.e., a computer that is
interconnected with the vehicle through interfaces) is termed rapid prototyping.

In the event that the software model is to be used as a basis for simulation and rapid prototyping
processes, model compilers are required. These facilitate the direct or indirect translation of the
specifi cation model into machine code suitable for execution on a simulation or experimental
system. In this process, the design decisions required for the model compiler either are implicitly
defi ned in the model or are initially formulated by the model compiler in a manner ensuring the
most accurate replication of the specifi ed model.

Figure 5-43 shows the organization of a rapid prototyping tool [73]. Initially specifi ed with the
use of a modeling tool, the software function model is in the fi rst step translated in source code
by a model compiler. In a second step, a compiler tool set translates this source code into a
program version and data version for the experimental system. Program and data versions are
then downloaded to the experimental system by means of a download tool or Flash program-
ming tool, rendering them “ready to run.” The subsequent program execution can be controlled,
parameterized, animated, and observed by means of a so-called experimentation tool.

In this case, the software models, in addition to representing the basis for the subsequent design
and implementation, also provide the foundation for simulation and rapid prototyping methods.
The use of an experimental system allows for the validation of software functions that is both
timely and independent of the ECU. As an added benefi t, the experimental system can subse-
quently serve as a reference for ECU verifi cation.

5.3.8.1 Simulation

In many cases, the purpose of the simulation is not merely the replication of the software func-
tion per se; beyond this, the focus is also on the interaction among the software functions with
the hardware, with setpoint generators, sensors, and actuators, and with the plant.

Methods and Tools for Development

-259-

Fig. 5-43. Organization of rapid prototyping tools. (Ref. [73])

This means that modeling also must be carried out for these elements which, from the viewpoint
of software development, are termed environmental components. The result is a virtual vehicle,
driver, and environmental model that is linked to both virtual ECU model and software model.
This model can then be run on a simulation system such as a PC (Fig. 5-44). This approach, also
termed model-in-the-loop simulation, likewise is suited to the development of vehicle functions
that are not software implemented.

The details of modeling practices and the simulation of environmental components would exceed
the scope of this book. For a detailed discussion of these subjects, reference is made to suggested
reading and advanced literature [35].

5.3.8.2 Rapid Prototyping

Because the automobile industry uses the term prototype in a variety of contexts, its use in con-
junction with software development requires a more accurate defi nition and demarcation.

AUTOMOTIVE SOFTWARE ENGINEERING

-260-

In vehicle manufacture, it is generally held that a prototype represents the fi rst sample of a large
series of products (i.e., of a mass-produced commodity). A software prototype is characterized
by the differentiation that the duplication of a software product does not present any technical
issues.

Generally speaking, a prototype is a technical model of a new product. In this context, a dif-
ferentiation can be made between nonfunctional prototypes (e.g., aerodynamic models for wind
tunnel use), functional prototypes (e.g., prototype vehicles or studies), and pre-series prototypes
(e.g., pilot series vehicles).

In the context of the discussion throughout this book, a software prototype is always deemed
a functional prototype that demonstrates software functions—although with varying purpose
and application—in situations of practical deployment. In the same context, the designation
rapid prototyping describes a collection of methods dedicated to the specifi cation and execu-
tion of software functions in the physical vehicle, as shown in Fig. 5-45. A variety of methods
are discussed in the following sections. On one hand, these are methods that use development
ECUs (shaded gray). On the other hand, these are methods designated for use on experimental
systems.

Because of the interfaces to the physical vehicle, the execution of the software functions on the
experimental system must comply with real-time requirements. The experimental systems used
for this purpose are mostly real-time computer systems whose computing power far exceeds that
of the ECUs. This dispenses—at least initially—with the need for software optimization due to

Fig. 5-44. Modeling and simulation of software functions and environmental components.

Open-/Closed-
Loop Control,

Monitoring

Setpoint
Generators

Methods and Tools for Development

-261-

Fig. 5-45. Rapid prototyping of software functions in the physical vehicle.

Open-/Closed-
Loop Control,

Monitoring

Setpoint
Generators

hardware resource limitations. Given this circumstance, the model compiler is able to translate
the model with the assumption of standardized design and implementation decisions. It must
be ensured, however, that the specifi ed behavior is replicated as accurately as possible.

Modular experimental systems can be confi gured to suit specifi c applications (e.g., to accom-
modate the required interfaces for input and output signals). The entire system is designed for
in-vehicle use and is operated via a PC, for example. In this way, the specifi cations of software
functions are available for immediate in-vehicle validation and modifi cation as required. At the
same time, modifi cations made to the program version and data version also may be carried out.

5.3.8.3 Horizontal and Vertical Prototypes

Prototype development differentiates between two procedural objectives:

1. Horizontal prototypes aim at the representation of a broad range of a given software system.
However, they provide only an abstract view and neglect details.

2. Vertical prototypes provide a very detailed representation of a limited area of the software
system.

Using a section of a software system, Fig. 5-46 depicts the procedural objectives of horizontal
and vertical prototypes.

AUTOMOTIVE SOFTWARE ENGINEERING

-262-

Example: Development of a horizontal prototype in the “Bypass” mode

Early on the timeline, a new software function must be in-vehicle tested and validated.
Therefore, for the time being, issues concerning details of the subsequent implementation
in the software system of the production ECU, such as its software architecture, are deemed
irrelevant.

This problem can be solved by developing a horizontal prototype. The software function
is specifi ed by a physical model. Many aspects of prototype implementation are implicitly
predefi ned either by the model itself or the model compiler.

Such an approach can be supported by employing the so-called Bypass mode in function
development. As a prerequisite, an ECU must provide a fully validated basic functional-
ity of the software system, operate all of the sensors and actuators, and support a so-called
bypass interface to an experimental system. The functional concept is developed with the
aid of a rapid prototyping tool and is executed on the experimental system in Bypass mode
(Fig. 5-47).

This approach also is suited to the further development of existing ECU functions. In such
a case, the existing functions are still calculated in the ECU but are modifi ed in such a way
that the input values are transmitted through the bypass interface, and the output values of
the newly developed bypass function are used.

The required modifi cations on the ECU side are termed bypass implementation or bypass
hooks.

In many cases, the calculation of the bypass function is triggered by the ECU through a
control fl ow interface (labeled “Trigger” in Fig. 5-47). The ECU monitors the output values
of the bypass function for plausibility. In this case, both the ECU and experimental system
are running synchronized. As an alternative, unsynchronized communications—without
the trigger—can be implemented.

When working with safety-relevant functions, the ECU is able to respond to incoming
implausible output values with an automatic switchover to the existing internal function
or to substitute values as a fallback level. For example, this is the case when the bypass

Fig. 5-46. Horizontal and vertical prototypes of a software system.

Methods and Tools for Development

-263-

Fig. 5-47. Prototype development using a bypass system.

function supplies illegal output values; it also may occur in the event of a communications
failure between the experimental system and ECU, or if the calculation of the bypass func-
tion requires an excessive amount of time.

The use of such a monitoring concept can ensure that, during fi eld trials and test drives, even
a failure of the experimental system would result in only a limited personal injury hazard
or risk of damage to any of the components of the vehicle. Thus, it is demonstrated that
the function development in Bypass mode also can be deployed in the validation of safety-
relevant functions.

In the context of bypass communications, remember that a software function onboard the
ECU is often divided into several processes, which are calculated in separate tasks. In such
cases, the bypass communications must support the respective sampling rates of the various
tasks. Figure 5-48 shows a typical bypass communications sequence for a given sampling
rate between development ECU and experimental system.

Example: Development of a vertical prototype in “Fullpass” mode

If a new function must be developed from scratch, or if an ECU equipped with a bypass
interface is not available, then the experimental system can be used to develop a vertical
prototype. In this case, the experimental system must support all of the sensor and actuator
interfaces required by the respective function. Also required is the defi nition of the real-time
behavior, adherence to which must be ensured by the experimental system (Fig. 5-49).

AUTOMOTIVE SOFTWARE ENGINEERING

-264-

Fig. 5-49. Prototype development using a fullpass system.

Fig. 5-48. Communications between the ECU and experimental system.

Next Page

Methods and Tools for Development

-265-

Bypass applications are preferred in cases where only a few software functions must be developed,
and where an ECU with validated software functions—such as one used in a previous project—is
available. This ECU then must be modifi ed to enable the support of a bypass interface. Bypass
applications are suited to situations of high complexity, such as cases where extensive sensor
and actuator systems integrated in an ECU can be provided by an experimental system only at
high cost. For example, this would be true of an engine ECU.

If such an ECU is not available and additional sensors and actuators must to be validated given
the presence of sensor and actuator systems of limited complexity, fullpass applications are
often preferred. In such cases, the real-time behavior must be ensured by the fullpass computer
of the experimental system and may require additional monitoring. For this reason, a real-time
operating system is normally running on the fullpass computer.

Because hybrid forms of bypass and fullpass systems offer a high degree of attainable fl exibility,
these often are employed (Fig. 5-50). This facilitates the integration of additional sensors and
actuators. On an experimental system so equipped, new software functions can be tested and
then executed together with the existing software functions of the ECU.

Fig. 5-50. Prototype development using an experimental system.

When compared with a development ECU, an experimental system provides signifi cantly more
computing power. Therefore, many requirements that would need to be considered in the con-
text of implementing a software function on the ECU—such as fi xed-point arithmetic or limited
hardware resources—may be safely ignored. Thus, modifi cations to the software functions
become simpler and quicker. Also, the integration of additional I/O interfaces in experimental

Previous Page

AUTOMOTIVE SOFTWARE ENGINEERING

-266-

systems facilitates the early evaluation of various implementation alternatives (i.e., in the case
of sensors and actuators).

5.3.8.4 Target System Identical Prototypes

In most instances, the development for series production calls for the highest possible degree
of congruence between the behavior of the experimental system and the ECU. Only in such
cases will the experiences gathered with the prototype be similar to the behavior to be expected
by the subsequent implementation in the production ECU. It need not be emphasized that any
deviation between the experimental system and the ECU—as the target system—represents a
development risk.

For example, a high degree of congruence with respect to the real-time behavior of the experi-
mental system and ECU can be achieved by deploying a real-time system—e.g., according to
OSEK—on both platforms. In such a case, the real-time behavior prototype is said to be target
system-identical. Also, explicitly specifi ed design decisions, as in the subsequent implementa-
tion on the ECU, and their consideration in prototype implementation, contribute to reducing
the development risk. Rapid prototyping methods exhibiting this orientation also are known as
target system-identical prototyping.

5.3.8.5 Throw-Away and Evolutionary Prototypes

Another decision criterion determines whether or not a prototype shall be used as a basis for
product development. If the answer is positive, the prototype is said to be evolutionary. If the
answer is negative, the designation throw-away prototype is used. For example, a prototype that
is used exclusively in functional or engineering specifi cations is deemed a throw-away prototype
because its results fail to become part and parcel of the completed product. The automotive
industry makes widespread use of both approaches. The most well-known example of an evo-
lutionary approach to development is the progression of A-, B-, C-, and D-samples for ECU
hardware and software (Figs. 5-51 and 5-52).

With the deployment of experimental systems, the development progress is accompanied by the
switchover to a development ECU. The validated specifi cation provides the basis for design
and implementation accounting for every last detail of the microcontroller.

This transition is becoming increasingly fl uid because the use of code-generating technologies
provides for the generation of source code for experimental systems and/or ECUs from a single
software model. The process also allows for the consideration of many implementation details
already on the experimental system.

5.3.8.6 Reference Prototype for ECU Verifi cation

Target system identical prototyping provides for the use of a software function validated with
the bypass method as a test reference for the verifi cation of the corresponding ECU function that
has been implemented by means of automated code generation. To accomplish this, a software

Methods and Tools for Development

-267-

Fig. 5-51. Evolutionary prototype development using development ECUs.

Fig. 5-52. Evolutionary development using development ECUs.

function is calculated in parallel and in synchronization on both the ECU and experimental
system. The experimental system is used to compare the intermediate and output variables of
a software function calculated in the ECU with the results obtained by the bypass function. To
this end, the bypass communications must be extended, as depicted in Fig. 5-53.

In conjunction with this technique, a high degree of test coverage may be achieved through the
additional deployment of code coverage analysis tools on the experimental system.

AUTOMOTIVE SOFTWARE ENGINEERING

-268-

5.4 Design and Implementation of Software Functions

Before the software functions specifi ed at the physical level can be implemented on a microcon-
troller, design decisions are required. This also involves the consideration of the nonfunctional
product properties for production ECUs, such as the separation of program and data versions,
implementation of program and data variants, support for the required offboard interfaces,
implementation of algorithms in fl oating-point integer arithmetic, or the optimization of required
hardware resources. To a degree, these nonfunctional requirements also have repercussions
on the specifi cation, necessitating an iterative and cooperative approach between specifi cation
and design. One example of this would be the objective to prevent, as early as possible in the
specifi cation, the need for the resource-intensive characteristic curves and maps discussed in
Section 5.4.1.5.

The following sections discuss methods and tools for the design and implementation of software
architecture, and the data model and behavioral model of software functions.

Fig. 5-53. Verifying the ECU function by comparing the bypass function
of an experimental system.

Methods and Tools for Development

-269-

5.4.1 Consideration of Requested Nonfunctional Product Properties

As a major example of nonfunctional product properties, the fi rst item to be examined in detail is
the infl uence exerted on software engineering by cost barriers for electronic in-vehicle systems.
As a consequence, frequent limitations of hardware resource often have a restrictive effect on
available options when mapping physically specifi ed software functions to numerical algorithms.
This section presents examples of a variety of optimization measures aimed at reducing required
hardware resources. The implementation of data variants is discussed in the context of data
model implementation.

5.4.1.1 Runtime Optimization Through Consideration of Varying Access Times
to Different Memory Segments

Often, access times for the various memory segments of a microcontroller (i.e., RAM, ROM,
or Flash memory) are different. The consequence may be an infl uence on the program runtime
that is anything but negligible. When designing the software, a runtime optimized solution may
be obtained by depositing frequently executed program sections, such as interpolation routines
for characteristic curves and maps, in memory segments featuring short access times. In the
case of software components that are deployed on a variety of platforms, this requirement may
be met by means of appropriate confi guration options.

Example: Architecture of ERCOSEK real-time operating system [86]

Through its modular structure, the architecture of the ERCOSEK real-time operating sys-
tem [86] allows for a variety of access times to different memory segments. Figure 5-54
demonstrates the storage of individual components of the operating system in different
memory segments of the microcontroller.

Fig. 5-54. Example of memory confi guration of ERCOSEK real-time operating system.
(Ref. [86])

AUTOMOTIVE SOFTWARE ENGINEERING

-270-

Because the execution of program code from the ROM of microcontrollers is characteristi-
cally faster than that from Flash memory, frequently called routines of the operating system
are bundled in the ERCOSEK Fast Code component and deposited in ROM. Routines
subject to less frequent calls are bundled in the ERCOSEK Standard Code component and
may be deposited in Flash memory. Depending on access frequency, the data structures of
the operating system also may be assigned to the various RAM segments (i.e., internal or
external RAM) with different access times.

5.4.1.2 Runtime Optimization Through Distribution of Software Function to
Several Tasks

Another runtime optimization measure consists of splitting a software function into several
tasks to which different real-time requirements are assigned. The sampling rate needed for the
execution of a subfunction depends on the physical characteristics of the plant. For example,
temperature changes in the ambient atmosphere occur slowly, whereas internal pressure fl uc-
tuations manifest themselves almost instantly. In such cases, any subfunctions depending on
changes in the ambient air temperature may be assigned to a “slow” task; subfunctions depending
on internal pressure readings must be executed by a “faster” task.

Example: Distribution of a software function to several tasks

Figure 5-55 shows the division of a software function into three Subfunctions a, b, and c
that are assigned to Tasks A, B, and C. The tasks have different activation rates. Task A is
activated every 100 ms, Task B every 10 ms, and Task C every 20 ms. Subfunction a cal-
culates an intermediate variable that is communicated via message X to Task B, where it is
subject to further use by Subfunction b. Subfunction c calculates message Y, which is also
used in Subfunction b. Compared with the calculation in the “faster” Task B, this provides
for a reduction of the required runtime, provided the net time savings are not exceeded by
the required “additional” runtime of inter-task communications.

Fig. 5-55. Distribution of software functions to several tasks, and specifi cation
of message-based inter-task communications. (Ref. [86])

Methods and Tools for Development

-271-

It is safe to say that many optimization measures are successful only if overall “resource costs”
are reduced. For example, in many instances, the inevitable consequence of runtime reduction
is an increase in needed memory capacity, and vice versa. This fact should be kept in mind with
respect to all examples and deliberations to follow.

5.4.1.3 Resource Optimization Through Division into Online and Offl ine
Calculations

To optimize runtime, many optimizations are also performed offl ine (i.e., prior to their actual
execution). For this reason, a differentiation between online and offl ine calculations is useful.
One example from the realm of real-time operating systems comprises dynamic online task sched-
uling vis-à-vis static offl ine task scheduling, as discussed in Section 2.4.4.6 of Chapter 2.

Example: Offl ine optimization of unnecessary message copies

Another example consists of the offl ine optimization of unnecessary message copies (see Fig. 2-36
in Chapter 2). The priorities of Tasks A, B, and C are entered in the diagram in Fig. 5-56. If
a preemptive processor scheduling strategy is used, Task B—with its higher Priority 2—can
interrupt Task A with its lower Priority 1 ranking. In turn, Task B may be interrupted by
Task C because of its Priority 3 ranking. Because Task C is capable of changing the value
of message Y, Task B is required to store a local copy of message Y at its starting point;
Task B thus will be working with the unchanged value of message Y during the entire course
of the execution. Because Task A—due to its lower priority—is unable to interrupt Task B,
a change of the value of message X during task execution is not possible, which dispenses
with the necessity for a local copy of message X in Task B. Therefore, when the scheduling
strategy is known, it may be decided offl ine whether or not a message copy is necessary.
In this way, unnecessary message copies can be avoided, with the consequence of savings
in terms of runtime and required memory capacity.

Fig. 5-56. Offl ine optimization of unnecessary message copies. (Ref. [86])

AUTOMOTIVE SOFTWARE ENGINEERING

-272-

5.4.1.4 Resource Optimization Through Division into Onboard and Offboard
Calculations

Additional optimization potential is provided by a division into onboard and offboard calcula-
tions. Those variables and calculations that are not required in the onboard ECU network—and
are used only by offboard tools such as measuring, calibration, and diagnostic tools—can be
swapped from the ECU to these tools. This results in a conservation of ECU resources. Examples
of this consist of the specifi cations of dependent parameters or calculated signals, which are
required only for offboard use.

Example: Dependent parameters [73, 87]

Figure 5-57 shows an example of interdependencies existing among parameters, where
the physical equations are divided into onboard and offboard calculations. To accomplish
this, the parameters d and U, which are dependent on parameter r and constant π and are
calculated in the calibration tool, are introduced to the ECU. This results in a reduction of
the calculations required onboard the ECU and thus a reduction in runtime.

As another benefi t of this arrangement, only parameter r must be adapted in the calibration
tool, while the tool ensures the consistent tracking of the values of dependent parameters d
and U.

Fig. 5-57. Dependent parameters. (Refs. [73, 87])

Methods and Tools for Development

-273-

Example: Calculated signals [87]

Similar optimization options can be exploited through the offboard calculation of signals
based on measured variables, as shown in Fig. 5-58. The signals torque M and RPM n are
present in the ECU, whereas performance P is calculated offboard in the measuring tool.

Fig. 5-58. Calculated signals. (Ref. [87])

5.4.1.5 Resource Optimization for Characteristic Curves and Maps

A large variety of optimization measures are used in the area of data structures. Characteristic
curves and maps (see Fig. 4-26 in Chapter 4) are deployed in large numbers in conjunction with
many functions. A similarly large optimization potential applies to the reduction of memory and
runtime requirements in the context of characteristic curves and maps.

The following examples introduce several practical options in the context of characteristic curves.
All of the measures described may be similarly applied to characteristic maps.

Data structure and interpolation and extrapolation of characteristic curves

In standard practice, characteristic curves are stored in a tabular data structure, as shown in
Fig. 5-59. The fi rst row of the data structure accommodates the entries of the values on the

AUTOMOTIVE SOFTWARE ENGINEERING

-274-

independent axis, or x-axis points, for the input variable in the form of an ascending sequence
of strict monotony. As is the case with the characteristic curves input values, the x-axis points
are mostly labeled “x.” The second row contains the value of the characteristic curve for each
x-axis point. This value is labeled “y,” as is the output value of the characteristic curve.

Additional elements of characteristic curve data structure are auxiliary variables for output value
calculation, such as the number of x-axis points. Aside from tabular visualization, characteristic
curves are frequently plotted on a graphical x–y diagram.

Those input variables that are located outside the x-axis point distribution—which, in Fig. 5-59,
affects the values for x < xmin = x1 or x > xmax = x8—normally are extrapolated. Figure 5-59
depicts a constant extrapolation of the type used in many applications. Input values located
between two x-axis points are interpolated. Figure 5-59 shows the linear interpolation, which
is most frequently used.

The following discussion neglects extrapolation and instead looks at interpolation. The interpola-
tion algorithm used to determine the output value yi for an input value xi identifi es three steps.

Step 1: Searching for x-axis points

Relative to input variable xi, an adjacent x-axis point (i.e., the next-lower or next-higher one) is
determined. In the example in Fig. 5-60, the next-smaller x-axis point xu to xi is x-axis point x3.
Because of the strictly monotonic x-axis point storage, the next-higher x-axis point xo = x4 also
is known.

Fig. 5-59. Data structure and interpolation and extrapolation of characteristic curves.

Two-Dimensional
Graphical Visualization

Methods and Tools for Development

-275-

To perform the x-axis point search, several search algorithms can be used. Some examples are
as follows: “Search starting with the last valid value on the x-axis,” “Search by interval halv-
ing (binary search),” and “Descending search, starting with the greatest value on the x-axis,”
or vice versa (Fig. 5-60).

Selecting a suitable search method depends on x-axis point distribution and application, among
other factors. For example, the runtime in engine ECUs is very short in the presence of high
engine speeds. For this reason, in the case of characteristic curves with RPM input, it would
make good sense to search starting from higher to lower RPM. Thus, with lower RPM, the
longer search time that “comes with the territory” is deemed less critical.

In some application cases, the presence of limited execution times causes the output variable of
the characteristic curve to be stated as being y y xu u= () or y y xo o= (). A more accurate value
is obtained with the use of an interpolation algorithm. In general practice, the interpolation is
linear between two x-axis points, with a clear differentiation between Steps 2 and 3.

Step 2: Calculating slope a

For the linear interpolation, the following differences must be calculated:

dx x xi u= - (in Fig. 5-59: dx x xi= - 3) (5.8)

DX x xo u= - (in Fig. 5-59: DX x x= -4 3) (5.9)

DY y yo u= - (in Fig. 5-59: DY y y= -4 3) (5.10)

The slope a of the characteristic curve is calculated by division

a
DY

DX
= (5.11)

Fig. 5-60. Various x-axis point search methods.

(binary search)

AUTOMOTIVE SOFTWARE ENGINEERING

-276-

Step 3: Calculating characteristic curve value yi through linear interpolation

y y a dxi u= + * (in Fig. 5-59: y y a dxi = +3 * (5.12)

The variable dx can be calculated only online. If DX, DY, and a also are calculated online, this
means that online calculation of three subtractions, one division, one addition, and one multi-
plication will be required for each interpolation.

An alternative is to calculate DX, DY, and a both offl ine and offboard. This option is exploited
for the purpose of optimization. The following methods are widely used.

Storing slope a in an extended characteristic curve data structure

The practice of storing slope a in an extended characteristic curve data structure saves online
computing time during interpolation. As a result, only one subtraction, one addition, and one
multiplication must be calculated online. In time-sensitive applications, the resulting increase
in required memory capacity is tacitly accepted (Fig. 5-61).

Fig. 5-61. Extended data structure with stored slope a
for characteristic curves.

Fixed characteristic curves

The distance between the x-axis points DX x xo u= - is supplied as a constant. Thus, x-axis
point xu can be calculated. A search procedure is not required. The reciprocal value of DX
can be calculated both offl ine and offboard, and stored with the characteristic curve data. The
interpolation no longer requires a division. Online calculation of two subtractions, one addition,
and two multiplications is required.

The x-axis point distribution can be defi ned and stored on the basis of the value of the minimum
x-axis point xmin, the number of x-axis points n, and the x-axis point distance DX. This data
structure is the selection of choice, especially for characteristic curves exhibiting a large number
of x-axis points (Fig. 5-62).

Group characteristic curves

A uniform x-axis point distribution is specifi ed for various characteristic curves having identi-
cal input variables. The x-axis point search and the calculation of differences on the x-axis
are required only once. Each time, the interpolation calculation is carried out for each output
variable yi (Fig. 5-63).

Methods and Tools for Development

-277-

The use of combinations of fi xed and group characteristic curves is also conceivable.

Additional optimization measures consist of adjustment and/or reduction of the x-axis point
count subsequent to calibration. This saves calculating time during x-axis point search and
reduces the required memory capacity. When the calibration is completed, it also is possible to
reduce the physical value range, increase the quantization, or reduce the word length for x-axis
points and values.

The numerous combinations of possible word lengths for the internal representation of x-axis
points and values for characteristic curves in the processor lead to a large number of different
interpolation routines in conjunction with a high demand for memory capacity. Therefore, it
is standard practice to reduce in advance the number of possible combinations by limiting the
permissible data structures for characteristic curves and maps.

5.4.2 Design and Implementation of Algorithms for Fixed-Point and
Floating-Point Arithmetic

This section focuses on the design of algorithms in fi xed-point and fl oating-point arithmetic. The
discussion highlights basic methods used in today’s practical online applications—that is, in the
microcontroller onboard the ECU. Aside from basic arithmetical operations, online applications
mainly include interpolation methods for characteristic curves and maps, numerical differentiation
and integration methods, and numerical fi ltering procedures. For example, a library of graphical

Fig. 5-62. Data structure for fi xed characteristic curves.

Fig. 5-63. Data structure for group characteristic curves.

AUTOMOTIVE SOFTWARE ENGINEERING

-278-

modeling blocks addressing this set of functional features was standardized under the auspices
of the MSR-MEGMA project [79]. However, the scope of this section is limited to several basic
issues that occur in the context of design and implementation of machine-based arithmetic.

5.4.2.1 Representation of Numbers in Digital Processors

All digital processors work with numbers in the binary system, in which the coeffi cients ai of
the binary decomposition are used to represent a number x:

x a a a a an
n

n
n= ± + + + + + +()*

-
* - *

-
* -

-
* -2 2 2 2 21

1
0

0
1

1
2

2 (5.13)

Example: Binary notation of the number x = 9

After decomposition, the number x = 9

9 = 1 * 23 + 0 * 22 + 0 * 21 + 1 * 20

has the binary notation 1001.

To allow for the ready differentiation between decimal and binary notations, binary notations
always appear in boldface printing in the following text.

For the internal representation of a number, digital processors provide only a fi xed fi nite number n
of binary positions. This number is referred to as word length. It is determined by processor
construction and can be expanded to full multiples (e.g., 2n, 3n) of n. Accordingly, micropro-
cessors with a word length of 8 positions are termed 8-bit microprocessors, those with a word
length of 16 bits are called 16-bit microprocessors, and so forth.

There are several ways to use the word length of n positions to represent a number.

• In fi xed-point representation, not only the number n but also the numbers n1 and n2 of the
positions before and after the decimal point are fi xed, where n = n1 + n2. In most cases,
n1 = n, or n1 = 0.

 To this day, the functions of many microprocessors deployed in ECUs are limited to the
fi xed-point representation and processing of numbers.

 Without restrictions on general validity, the following discussion shall assume n1 = n to be true
for fi xed-point notation. Thus, the number n determines the set of numbers represented.

 For example, for n = 8, the numbers 0 through 255 can be represented by binary numbers
0000 0000 through 1111 1111. Accordingly, this notation is referred to as 8-bit unsigned
integer notation, or uint8, for short.

 The representation of negative numbers makes use of a sign encoding bit. This bit is
known as the sign bit. Thus, for n = 8, the numbers –128 through 0 through +127 can be

Methods and Tools for Development

-279-

represented. Accordingly, this notation is referred to as 8-bit signed integer notation, or
sint8, for short.

 Similarly, 16- and 32-bit notations of numbers are termed uint16, sint16, uint32, and sint32.
Table 5-2 lists the available value ranges.

• In fl oating-point representation, the decimal point fl oats in accordance with the value that
a given number assumes. Therefore, information indicating the placement of the decimal
point (i.e., the number of positions after the fi rst digit) must be provided for each number.
This is accomplished with the use of the so-called exponent. This practice exploits the fact
that a real number x can be expressed as the product of

 x = a * 2b (5.14)

 with |a| < 1 and b as an integer.

 The exponent b indicates the position of the decimal point in the mantissa a.

Example: Binary representation of the number x = 9.5

9.5 = 1 * 23 + 0 * 22 + 0 * 21 + 1 * 20 + 1 * 2–1

produces binary notation 1001.1 or 0.10011 * 2100.

As is the case with fi xed-point representation, any digital processors provide, for the fl oat-
ing-point notation of numbers, only a fi xed fi nite number m and/or e of binary positions for
the representation of mantissa a and/or exponent b, where n = m + e.

Whether or not ECUs are equipped with microprocessors capable of supporting fl oating-point
representation and processing of numbers depends on the requirements of the respective
application.

Floating-point representations of a given number are not necessarily unique. In the last
example, the notation 0.010011 * 2101 might have been chosen. For this reason, the

TABLE 5-2
FIXED-POINT NOTATION OF INTEGERS AND AVAILABLE VALUE RANGES

No. of Binary Positions Abbreviation Available Value Range

8-bit unsigned integer uint8 0 ... 255

8-bit signed integer sint8 –128 ... 127

16-bit unsigned integer uint16 0 ... 65 535

16-bit signed integer sint16 – 32 768 ... 32 767

32-bit unsigned integer uint32 0 ... 4 294 967 295

32-bit signed integer sint32 – 2 147 483 648 ... 2 147 483 647

AUTOMOTIVE SOFTWARE ENGINEERING

-280-

fl oating-point notation of any number for which the fi rst digit of mantissa a is unlike 0
(“nonzero”) is termed normalized. In the binary system, |a| 2–1 applies. Thus, all numbers
of mantissa a, excluding the leading zeros, are termed signifi cant digits.

Without restrictions on general validity, the following discussion shall always assume nor-
malized fl oating-point representation and attendant fl oating-point calculation.

The numbers m and e, together with base B = 2 of the notation, determine the set A of
numbers that can be accurately represented in the machine. This set A comprises a subset
of the real numbers A Õ() . The elements of which set A is composed are termed
machine numbers.

For n = 32 and n = 64, fl oating-point representations are defi ned in the IEEE standard. In a
manner similar to fi xed-point numbers, 32-bit and 64-bit fl oating-point numbers are termed
real32 and real64, respectively.

Because the set A of the numbers available for the representation of fi xed-point and fl oating-
point numbers is fi nite, the design and implementation of the behavior of a software component
presents the immediate issue of how to approximate a number x Aœ(), which is not a machine
number itself, with a machine number. This issue manifests itself not only at the time of data
entry in the computer, but also during internal data handling in the processor.

It can be demonstrated by means of simple examples that there are cases where even the result c
of simple basic arithmetical operations with two numbers a and b (i.e., the addition a + b, subtrac-

tion a – b, multiplication a * b, and division a

b
) do not belong to A, although both operands a

and b are machine numbers a b A, Œ().
Therefore, of an approximation for a number x that is not a machine number x Aœ() by a
machine number rd x() with rd x A() Œ , it is demanded that

x rd x x gk- () £ - (5.15)

for all g rd x Ak π () Œ (Fig. 5-64).

It is normal for rd x() to be determined by rounding or by limiting the result within limits of
the so-called overfl ow or underfl ow handling. The following sections use simple examples to
discuss rounding errors, as well as the treatment of overfl ows and underfl ows. The foreground
objective is to obtain the most accurate result possible.

Fig. 5-64. Approximation of x through rd(x).

Methods and Tools for Development

-281-

Rounding errors, overfl ows, and underfl ows occur with all numbers in fi xed-point representation.
To enhance the clarity of presentation, the following examples are based primarily on numbers
in uint8 representation.

5.4.2.2 Rounding Errors in Integer Division

The integer division c
a

b
= results in a rounding problem because it is possible that the exact

result of the operation
a

b
 is not an integer.

Example: Integer division and rounding

Variables a, b, and c shall be represented in uint8 notation.

The division

c
a

b
=

where a, b, c ∈ A = {0, 1, 2, ..., 255} yields the following results:

 Test case 1: a = 100, b = 50 c = 2 Œ A

 Test case 2: a = 19, b = 2 c = 9.5 œ A

 Test case 3: a = 240, b = 161 c = 1.49... œ A

 Test case 4: a = 100, b = 201 c = 0.49... œ A

 Test case 5: a = 100, b = 1 c = 100 Œ A (trivial)

 Test case 6: a = 100, b = 0 Division by 0 is not defi ned

• In test case 1, the result is an integer. It can be represented as a uint8 number. A round-
ing error does not occur.

 • In test case 2, the result is not an integer. Thus, rounding is required.

 This is accomplished by forming, for the representation of c = 9.5 in normal binary
representation

c = (an * 2n + an–1 * 2n–1 + ... + a0 * 20 + a–1 * 2–1 + a–2 * 2–2 + ...)

 Thus, in the present test case,

c = 9.5 = 1 * 23 + 0 * 22 + 0 * 21 + 1 * 20 + 1 * 2-1 or 1001.1

AUTOMOTIVE SOFTWARE ENGINEERING

-282-

 Therefore,

a3 = 1, a2 = 0, a1 = 0, a0 = 1, a–1 = 1

 the rounded value rd c() is formed by

rd c() = an an–1 ... a0 if a–1 = 0 (5.16)

rd c() = an an–1 ... a0 +1 if a–1 = 1 (5.17)

Therefore, in the present test case, the calculation would be rd c() = 10 , or 1010

rounded.

An integer division in many microprocessors produces, instead of a rounding, a simple
truncation of the positions after the decimal point. Amounts are always rounded off.

rd c() = an an–1 ... a0 for all values of a–1 (5.18)

 Therefore, in the present test case, the calculation would be rd c() = 9, or 1001.

• In test case 3, rd c() = 1 is calculated for rounding and truncation of the decimal
places in integer division. In this case, however, the so-called relative rounding error

e =
() -()

=
-() ª -rd c c

c

1 1 49

1 49

1

3

.

.
 (which determines the accuracy of the result) has

already become sizeable.

• In test case 4, rd c() = 0 is calculated. Here, the relative rounding error
0 0 49

0 49
1

-() = -
.

.
is particularly large. It shall become clear that this test case is especially critical for
error propagation (e.g., when further processing the intermediate result in a multiplica-
tion).

• In test case 5, the division by 1 is almost negligible.

• The division by 0, as in test case 6, is not defi ned and must be excluded through excep-
tion handling in the algorithm.

For c > 1, the relative rounding error ε calculates thus:

e = () -
£

rd c c

c

1

3
 (5.19)

Methods and Tools for Development

-283-

For c > 1, the following applies to relative error ε upon truncation:

e = () -
£

rd c c

c

1

2
 (5.20)

Thus, the result for c > 1 is rd c c() = +()1 e with e £ 1

3
 with rounding, or e £ 1

2
 with the

truncation of decimal places. Accordingly, the relative rounding error is slightly smaller than
with the truncation of decimal places. In both cases, the relative error becomes smaller as the
result increases.

5.4.2.3 Overfl ow and Underfl ow in Addition, Subtraction, and Multiplication

If the operands a b A, Œ are available in the form of machine numbers in fi xed-point integer
representation, then the results obtained with the basic operations addition a + b, subtraction
a – b, and multiplication a * b are integer values. A rounding error does not occur. However,
because of the fi nite number n of binary positions, there are always numbers x Aœ that are
not machine numbers.

Example: Addition, subtraction, and multiplication

The variables a, b, and c shall be represented in uint8 notation.

The addition c a b= + with a b c A, , , , , ,Œ = { }0 1 2 255 yields the following results:

Test case 1: a b c A= = Æ = Œ100 100 200,

Test case 2: a b c A= = Æ = œ100 157 257,

The subtraction c a b= - with a b c A, , , , , ,Œ = { }0 1 2 255 yields the following
results:

Test case 3: a b c A= = Æ = Œ100 100 0,

Test case 4: a b c A= = Æ = - œ100 102 2,

In test case 2, the result for c is too great for representation by a uint8 integer. This is
termed overfl ow.

In test case 4, the result for c is too small for representation by a uint8 integer. This is
termed underfl ow.

Similar situations may occur in conjunction with multiplications.

AUTOMOTIVE SOFTWARE ENGINEERING

-284-

The implementation in fl oating-point arithmetic is another area in which errors in the input data
as well as approximation errors have such an effect on the selected calculation modes. How-
ever, when compared with fi xed-point arithmetic, the rounding errors occurring in fl oating-point
integers and fl oating-point arithmetic are smaller by several orders of magnitude.

5.4.2.4 Shift Operations

Because of the binary representation in the processor, multiplications taking the form a * b and

divisions of the form
a

b
 may be handled quite effi ciently by means of shift operations—provided

that the operand b assumes a value from the set 2 2 21 2, , , n{ } .

Example: Shift operations

The number x = 9 is decomposed thus:

9 = 0 * 24 + 1 * 23 + 0 * 22 + 0 * 21 + 1 * 20

and has the binary notation 01001.

The product of 9 * 2 can be represented through a left-shift operation 01001 1. The result
obtained is 10010, or 18.

The division
9

2
 may be similarly calculated through a right-shift operation 01001 1. The

result obtained is 00100, or 4. Thus, right-shift operations also cause the decimal positions

to be truncated.

In the context of signed integers, such as sint8, sint16, or sint32, remember that, in right-shift
operations in certain circumstances, the sign bit itself may become a normal digit in the
numerical representation. Therefore, it should be scrupulously examined whether a normal
division might not be better in this case.

5.4.2.5 Handling Overfl ows and Underfl ows

The actions taken in the event of a value range violation due to overfl ow or underfl ow depend
on the processor. The algorithm may provide different responses. Using the addition example,
some of the frequently used options for overfl ow handling are discussed here.

Example: Overfl ow handling

Variables a, b, and c shall be represented in uint8 notation.

The addition c a b= + with a b c A, , , , , ,Œ = { }0 1 2 255 yields the following
results:

Methods and Tools for Development

-285-

Test case 1: a b c A= = Æ = Œ100 100 200,

Test case 2: a b c A= = Æ = œ100 157 257,

The following optional responses to the overfl ow in test case 2 are possible:

• Overfl ow with or without overfl ow detection

 Overfl ow is permitted. Most microprocessors output c a b= + - =256 1 . A compare
operation c a c b<() <()& & can be used to detect and handle an overfl ow of unsigned
integers in the algorithm.

• Limiting the result

 The overfl ow is recognized in the algorithm, and the result c is limited to the maximum
representable value c = 255.

• Extending the value range of the result

 The result c is represented in a variable with extended value range (e.g., in a uint16 or
sint16 variable). Thus,

c a b= + at a b Au, , , , ,intŒ = { }8 0 1 2 255

 and

 c AuŒ = { }int , , , ,16 0 1 2 65535

 or

 c AsŒ = -{ }int , , , , , ,16 32768 0 1 2 32767

 An overfl ow can no longer occur. In the event that c is represented as a variable of the
sint16 type, an underfl ow can no longer occur in a subtraction also.

• Rescaling the result

 The overfl ow is recognized, and the result c is rescaled to rd c() . To do this, a quan-
tifi cation or resolution q for c at q > 1 is introduced. By rescaling the result c to the
equation c q rd c= ()* , the value range of c can be extended, and overfl ow no longer

occurs. Rescaling with factors q from the set 2 2 21 2, , , n{ } can be realized by

means of shift operations. Thus,

rd c
a b

q
() =

+()

 with a b rd c Au, , , , , ,int() Œ = { }8 0 1 2 255 and q = 2

 c AcŒ = { }0 2 4 510, , , ,

AUTOMOTIVE SOFTWARE ENGINEERING

-286-

 An overfl ow can no longer occur. On the downside, the accuracy of the result rd c() = 256
is reduced. The relative error ε is as follows:

e = () -
£ -rd c c

c

q

c

1
 (5.21)

As in a previous example, the relative error decreases as the size of the result increases.

5.4.2.6 Error Propagation with Algorithms in Fixed-Point Arithmetic

The investigation now focuses its attention on the manner in which errors propagate within a
given algorithm. However, a closer defi nition of the term algorithm shall fi rst be given. The
following discussion deems an algorithm to be a clearly defi ned sequence of a fi nite number
of “simple” operations, which can be used to produce the solution to a problem through the
calculation of specifi c input data.

Example: Defi nition of the term algorithm

The example to be used shall be the expression d a b c= + + .

Although the methods d a b c= +() + and d a b c= + +() are mathematically equivalent,
they may produce divergent results due to numerical reasons in fi xed-point calculation.

Algorithm 1 differentiates the following steps:

 Step 1.1: h1 = +a b

 Step 1.2: d c= +h1

Algorithm 2 differentiates the following steps:

 Step 2.1: h2 = +b c

 Step 2.2: d a= + h2

Note that a, b, c, and d shall be represented in sint8 integer notation. Thus,

a b c d A, , , Œ = - +{ }128 127

Overfl ows and underfl ows are detected and reduced to the values –128 ... +127.

In the test case of a = 101, b = –51, and c = –100, the results are as follows:

Methods and Tools for Development

-287-

 Algorithm 1: h1 = +a b = 101 – 51 = 50

d n c= +1 = 50 – 100 = –50

 Algorithm 2: h2 = +b c = –51 – 100 = –128 (underfl ow limitation)

d a= + h2 = 101 – 128 = –27

The examination of the reasons why different algorithms normally supply divergent results quickly
reveals that the propagation of rounding and limitation errors is an essential factor. Therefore,
some criteria for the evaluation of algorithm accuracy shall be formulated here.

In fi xed-point calculation, an approximation value rd d() is obtained instead of d. For Algo-
rithm 1, rd d1 () can be determined thus:

rd a bh e1 1 11() = +() +(). (5.22)

rd d rd c

a b c

1 1 1 2

1 1

1

1 1

() = () +() +()
+() +() +ÈÎ ˘̊

h e

e

.

. = ++()

= + +() + +
+ +

+() +È
ÎÍ

˘
˚̇

e

e e e

1 2

1 2 1 1 1 21 1

.

. . . a b c
a b

a b c

 (5.23)

Therefore, the relative error ed1 is

e e e ed
rd d d

d

rd d

d

a b

a b c1
1 1

1 2 1 1 1 21 1= () -
= ()

- = +
+ +

+() +. . . (5.24)

As the fi rst approximation, when disregarding higher order terms such as e e1 1 1 2. .* , ed yields
for Algorithm 1

e e ed
a b

a b c1 1 1 1 21ª +
+ +

+ ◊. . (5.25)

Therefore, Algorithm 2 produces

e e ed
b c

a b c2 2 1 2 21ª +
+ +

+ ◊. . (5.26)

The amplifi cation factors
a b

a b c

+()
+ +()

 and 1, and/or
b c

a b c

+()
+ +()

 and 1, indicate how strongly

the rounding errors of the intermediate results affect the relative error ed of the result. The

AUTOMOTIVE SOFTWARE ENGINEERING

-288-

critical factor is
a b

a b c

+()
+ +()

, and/or
b c

a b c

+()
+ +()

. Depending on whether a b+() or b c+()
is smaller, it is more benefi cial because it is “numerically more stable” to calculate the sum
a b c+ + using the formula a b c+() + , and/or a b c+ +() .

In the preceding test case, a + b = 50 and b + c = –151. Because of the limitation, e2 1. is par-

ticularly large, in the preceding test case, e2 1
128 151

151
0 15. .=

- +()
-() ª - . By contrast, e1 1. , e1 2. ,

and e2 2. are 0.

Thus, the result obtained for error ed2
151

50
0 15 0 45=

-()
-()

È

Î
Í
Í

˘

˚
˙
˙

-() = -* . . .

Thus, it is demonstrated that the relative error e2 1. of Step 1 of the calculation enters the result
of Algorithm 2 with an amplifi cation factor of ª 3 , although Step 2 of the calculation is executed
without a relative error. This explains why Algorithm 1, considering the input values of this test
case, is more benefi cial in numerical terms.

Although this method is suited to systematic extension, it will quickly become cumbersome.
While it may be used to estimate the effect of a few rounding errors, with a typical algorithm,
the number of arithmetic operations and thus the number of individual rounding errors are too
large to determine the infl uence of all rounding errors in this manner. Such cases may be bet-
ter served by other techniques, one of them being interval calculation [75], although a detailed
discussion would go beyond the scope of this section. The following examples are limited to
the examination of the relative error ei in the calculation step i of a given algorithm.

Example: Algorithm 3

However, rescaling and not limiting the intermediate result in Algorithm 2 of the preceding
example by a factor of 2 produces the following Algorithm 3:

 Step 3.1: b
b

1 2

51

2
25= = - = - e3 1

50 51

51

1

51. =
- - -()ÈÎ ˘̊

-() = -

 Step 3.2: c
c

1 2

100

2
50= = - = - e3 2 0. =

 Step 3.3: h2 1 1 75= + = -b c e3 3 0. =

 Step 3.4: a
a

1 2

101

2
50= = = e3 4

100 101

101

1

101. =
-[]

() = -

Methods and Tools for Development

-289-

 Step 3.5: d a1 1 2 50 75 25= + = - = -h e3 5 0. =

 Step 3.6: d d= = - = -1 2 25 2 50* * e3 6 0. =

With these input values, the selected rescaling produces a much more accurate result than
Algorithm 2 with a limitation of the intermediate result. Limitations of this type must be
watched closely because they may implicitly occur in algorithms (e.g., through the transfer
of arguments in conjunction with subprogram calls).

5.4.2.7 Physical Interrelation and Fixed-Point Arithmetic

It is a frequent occurrence that two physical signals that occur in the microprocessor as variables
with different scaling must be handled in an arithmetical operation. The following example
discusses the addition of two signals. Operations using more than two operands can be dissected
into several operations with two operands each.

Example: Addition of two signals of different scaling

A simple example is the addition of the two signals a and b. The intent is to implement the
physical relation c a bphys phys phys= + .

In the microprocessor, the signals a, b, and c are available in the form of fi xed-point variables
aimp1 , bimp1 , and cimp1 in uint8 representation.

The interrelation between the physical continuous variables and the implementation variables
in discrete fi xed-point notation is specifi ed by a linear formula and by the lower and upper
limits. Figure 5-65 shows this interrelation for the variable a.

With respect to limits, the value range resulting from the representation at the implementation
level must be observed. In Fig. 5-65, aimp1 uses uint8 representation with the value range

0 1 2 255, , , , { } , or general value range a aimp MIN imp MAX1 1, ,{ } . Accordingly, this

example yields the upper and lower limits for the physically representable value range:

a
a K

K

K

Kphys MIN
MIN a

a

a

a

imp1 =
-()

=
-()0

1

0

1
 (5.27)

a
a K

K

K

Kphys MAX
MAX a

a

a

a

imp1 =
-()

=
-()0

1

0

1

255
(5.28)

This value range must not be confused with the range of physically occurring values with

the limits aphys min and aphys max , to which the value range a aphys impmin max1{ } can

be assigned at the implementation level.

AUTOMOTIVE SOFTWARE ENGINEERING

-290-

Similar interrelations apply to the variables b and c. For the linear range, the following
applies:

a a K a Kimp phys a phys a1 1 0() = +* (5.29)

b b K b Kimp phys b phys b1 1 0() = +* (5.30)

c c K c Kimp phys c phys c1 1 0() = +* (5.31)

Because only fi xed-point values can be represented at the implementation level, each case

requires a rounding that was omitted in the diagram in Fig. 5-65.
1

1K i

 is also termed a

quantization or resolution, and K i0 is known as offset.

The addition of the physical variables at the implementation level can be accomplished with
the following algorithm:

Fig. 5-65. Interrelation between a physical variable and implementation.

Methods and Tools for Development

-291-

 Step 1: Removing offset from aimp1 and bimp1

a a Kimp imp a1 1 1 0_ = - (5.32)

b b Kimp imp b1 1 1 0_ = - (5.33)

 Step 2: Approximating quantization of aimp1 1_ and bimp1 1_

a a
K

Kimp imp
b

a
1 2 1 1

1

1
_ _ *= (5.34)

 Step 3: Addition

c a bimp imp imp1 1 1 2 1 1_ _ _= + (5.35)

 Step 4: Approximating quantization of cimp1

c c
K

Kimp imp
c

b
1 2 1 1

1

1
_ _= * (5.36)

 Step 5: Allowing for offset of cimp1

cimp1 = +c Kimp c1 2 0_ (5.37)

As an alternative, calculations after Step 2 also may be based on the quantization of aimpl .
In this case, bimpl must be approximated to the quantization of aimpl . Step 4 will change
correspondingly. Because of the higher accuracy, it would be standard practice to approxi-
mate to the quantization having the higher resolution.

A third alternative would be to use the quantization of result cimpl after Step 2 for calcula-
tion.

The judicial selection of one of these alternatives assists in keeping the number of requan-
tizations to a minimum.

If the quantizations by K a1 , K b1 , and K c1 are adroitly chosen, the necessary conversions
can be effected with shift operations. Thus, it is recommended to choose the quantiza-

tions in such a way that the relations
K

K
b

a

1

1
,

K

K
c

b

1

1
, and so forth assume values from the set

2 2 21 2, , , n{ } . Provided that identical quantizations are chosen, Step 2 and/or Step 4

can be omitted.

Interval arithmetic applied to barriers aimplmin and aimplmax can be used for prior verifi cation
of whether or not the intermediate results having the value range aimpl MIN and aimpl MAX
of the selected operand representation can be represented with the use of the value range in

AUTOMOTIVE SOFTWARE ENGINEERING

-292-

the selected representation of operand a without requiring overfl ow handling. A correction
of parameter values K i1 and K i0 allows for the specifi cation of intervals, which are more
suitable numerically, thus increasing the accuracy of the calculated results.

Limitations and overfl ow handling can be avoided, provided that the intermediate calcula-
tions are carried out using a representation with a wider value range.

Separating online and offl ine calculations may achieve further optimizations. For example,
the divisions in Eqs. 5.34 and 5.36 can be calculated offl ine. To enhance the clarity of pre-
sentation, optimizations of this type were deliberately omitted from the last example.

5.4.2.8 Physical Model Level and Implementation Level

As the preceding example demonstrates, the differentiation between the physical level and
implementation level for algorithms makes good sense. The reason is that in this way, physical
interrelations and implementation details indigenous to microprocessors, such as the choice
of quantization method, word length, and strategy for integer arithmetic, can be subjected to
separate scrutiny.

At the physical level of a model, a differentiation may be made between continuous-value,
discrete-value, and Boolean variables:

• In most cases, continuous-value variables represent physical signals of continuous value,
such as temperatures, revolutions per minute, or pressures.

• Value-discrete variables represent natural variables, such as the number of cylinders in an
engine or the number of stages (shift levels) in a transmission.

• Boolean variables describe state pairs, such as a switch position to which the state of the
respective pair (On/Off, High/Low, TRUE/FALSE) may be assigned.

If a continuous-value variable is to be implemented in fi xed-point representation, it fi rst must be
discretized. For this reason, this aspect of value discretization often gains central signifi cance
in data modeling.

This means that each physical value Xphys must be assigned exactly one discrete implementa-
tion value

Ximpl of the set X X X Xn1 2 3, , , , { } with X X Ximp impl impl1min max£ £ (5.38)

that is unique and unambiguous.

This transformation is normally described by means of a conversion formula and by the specifi -
cation of minimum and maximum values at the physical model level or implementation level.

Where the design of software components calls for the transformation from physical model level
to implementation level, the measuring of internal ECU variables during subsequent development

Methods and Tools for Development

-293-

phases—including in production and service—necessitates the conversion from implementation
variables to physical units.

5.4.2.9 Notes on Implementation in Fixed-Point Arithmetic

The relative error is the determining quality factor for the result produced by an algorithm. As
shown in the preceding sections, integer divisions, as well as overfl ow and underfl ow handling,
limit the numerical accuracy. From these truths, a number of pointers, rules, and guidelines for
implementation may be derived:

Useful pointers on integer divisions

• Because the relative error in integer divisions is large, every effort should be made to avoid
their utilization.

• Divisions by 0 (zero) are not defi ned and therefore must be handled as an exception. One
option consists of exclusion by way of limitations or queries.

• With unsigned integers, divisions by values from the set 2 2 21 2, , , n{ } can be effectively
performed by means of shift operations.

• If the use of divisions is unavoidable, the division operations should occur as late in the
algorithm as possible. In this way, the relative error enters the result only at a very late
stage.

• The larger the result of the integer division, the smaller the relative error. Therefore, if pos-
sible, the value of the numerator should be considerably larger than that of the denominator.
This may be accomplished by defi ning an offset or through a requantization by means of a
shift operation prior to the actual division. Needless to say, the original offset or quantiza-
tion must again be established in the course of the algorithm.

Example: Calculating the division c =
a

b
phys

phys

phys

The variables aimpl and temp are available in uint16, and the variables bimpl and cimpl are
in uint8 representation.

The physical values are as follows:

aphys = 79

bphys = 5

The exact value of cphys would be
79

5
15 8= . .

AUTOMOTIVE SOFTWARE ENGINEERING

-294-

The conversion formulas are as follows:

a a K a K aimpl phys a phys a phys() = + = +1 0 1 0* * (5.39)

b b K b K bimpl phys b phys b phys() = + = +1 0 1 0* * (5.40)

c c K c K cimpl phys c phys c phys() = + = +1 0 1 0* * (5.41)

The value range is as follows:

aimplmin = 0 and aimplmax = 255

bimplmin = 2 and bimplmax = 10

To calculate c
a

bphys
phys

phys
= , the following algorithm is chosen:

• Step 1: Shift operation by 8 places for aimpl to take advantage of the full 16-bit value
range

a a aimpl impl impl= =8 28*

 Thus, aphys = 79 yields aimpl = =79 2 20 2248* .

• Step 2: Executing the actual integer division

temp
a

b

impl

impl
=

 Thus, bphys = 5 yields temp = =20 224
4 044

5
.

 This is the equivalent of 15 7968 28. * .

 Compared with the integer division
79

5
15= , rescaling the variable temp aids in obtain-

ing signifi cantly higher accuracy.

Methods and Tools for Development

-295-

 • Step 3: Rescaling the result by 8 decimal places

 As the algorithm progresses, the variable temp must be rescaled to the scale of cimpl:

c tempimpl = 8

 This causes a relative error and loss of accuracy. Therefore, this step should be inserted
in the algorithm at the latest possible time. From this point onward, any calculating
steps should use the more accurate intermediate temp variable.

Useful pointers on additions, subtractions, and multiplications

• Overfl ow and underfl ow handling limit the accuracy of additions, subtractions, and multi-
plications.

• Several strategies for overfl ow and underfl ow handling are available. Among them are
rescaling, limitation, or extension of the value range by means of type conversion, or per-
mitting overfl ow or underfl ow with or without detection and response in the algorithm.

• Rescaling the value range reduces the relative accuracy across the entire value range, even
if overfl ow or underfl ow does not occur.

• Limiting the value range causes a drop in relative accuracy only if an overfl ow or underfl ow
occurs.

• Using the conversion relation of physical signal in implementation variables, the offset can
be set in such a way that the calculations at the implementation level occur “in the middle”
of the chosen value range. This also aids the in-processor representation using a shorter
word length. This benefi t is particularly apparent in the case of large data structures, such
as with characteristic curves with offsets and with characteristic maps, and it manifests
itself in the form of lower memory requirements. However, offsets may cause additional
conversion operations when linking different signals. Aside from characteristic curves and
maps and another few exceptions, it is good practice to avoid offsets in conversion formulas
to the extent possible.

• Multiplications and divisions using values from the set 2 2 21 2, , , n{ } can be effectively

performed by means of shift operations. Right-shift operations with signed integers should
be avoided whenever possible. In such cases, the use of the normal division is recom-
mended.

Useful pointers on error propagation

• Even with accurately executed operations such as additions, subtractions, and multiplica-
tions, a relative error in the input variables may quickly become amplifi ed.

• In this context, it also is advisable to pay particular attention to limitations of the kind that
may become implicitly active by virtue of argument transfer in subprogram calls and to
estimate their infl uence on intermediate results.

AUTOMOTIVE SOFTWARE ENGINEERING

-296-

5.4.2.10 Notes on Implementation in Floating-Point Arithmetic

The implementation in fl oating-point arithmetic is another area where it must be remembered that
the machine number set A is fi nite for fl oating-point numbers. The unavoidable consequences
are rounding errors in the arithmetical operations. As is the case with fi xed-point arithmetic,
the associative and distributive laws do not apply here because the exact arithmetical operations
are approximated by fl oating-point operations.

Even given the fact that not all numerical problems are solved by means of fl oating-point arith-
metic, the larger numerical value range does present the advantage of reducing the infl uence of
numerical rounding errors, as well as overfl ows and underfl ows, making them negligible in most
cases. Also, the scaling of physical variables—a frequent source of error in the implementation
in integer arithmetic—is not required.

On the downside, the higher numerical accuracy comes at the cost of greater word length, which
in turn means increased requirements in terms of memory capacity and runtime. For example,
in the presence of a preemptive arbitration strategy, backing up and restoring fl oating-point data
may have a signifi cant infl uence on runtime in real-time systems.

Thus, a solution that combines fi xed-point and fl oating-point arithmetic is used for many appli-
cations. For this reason, an awareness and understanding of general numerical methods will
always be an essential asset in solving problems such as the following [88]:

• Conversion of fi xed-point integers to fl oating-point integers, and vice versa

• Handling “division by zero” conditions

• Propagation of approximation errors that may be generated by fi lter and integration algo-
rithms

• Propagation of rounding errors

Useful pointers on compare and division operations

• Where compare operations of fi xed-point numbers are noncritical, compare operations of
two fl oating-point numbers a and b should be avoided in many cases. Instead, it is recom-
mended to compare the difference d = -a b vis-à-vis a barrier ε, which also requires
consideration of the relative accuracy (e.g., in the form of d e= a * or d e= b *).

• Divisions by 0 (zero) must be excluded by means of conditions and queries.

5.4.2.11 Modeling and Implementation Guidelines

The optimizations for production ECUs depend on the application on one hand, and on the hard-
ware platform on the other. For this reason, close cooperation is necessary between the function
developer responsible for the model-based physical specifi cation and the software engineer in
charge of the design and implementation.

Methods and Tools for Development

-297-

Modeling and implementation guidelines are vital prerequisites for dedicated optimization
measures. The function model must facilitate the explicit specifi cation of all software relevant
information without unnecessarily impeding physical understanding. Examples of modeling
guidelines are the so-called MSR standards [79], whereas the MISRA Guidelines constitute an
example of implementation guidelines [80].

The separation between specifi cation and design facilitates the porting to new hardware platforms
that may become necessary. In a best-case scenario, only the adaptation of the hardware-specifi c
design decisions will be required to accomplish this.

The consistency of specifi cation and design represents a basic problem in function develop-
ment. A variety of data and behavioral modeling tools support these design steps. Tools also
facilitate the defi nition of guidelines in the form of libraries of graphical modeling blocks, scal-
ing recommendations, and naming conventions for variables, as well as formula libraries, data
structures, and interpolation routines for characteristic curves and maps, memory segmentation,
and so forth.

5.4.3 Design and Implementation of Software Architecture

The software architecture, too, must be specifi ed in consideration of the features of the des-
ignated microprocessor and the properties of the ECU, with a view to taking into account all
requirements imposed on the production ECU. Due to the frequent large variety of different
requirements, only a few tentative beginnings of standardized software architecture are discern-
ible at the time of this writing.

5.4.3.1 Platform and Application Software

The differentiation between two software layers, that is, platform and application software, is
widely accepted. Earlier in this chapter, the specifi cation in Section 5.3 defi ned an architecture
for the software functions. In the design phase, the software components thus specifi ed, which
are needed for the implementation of a software function, can be integrated as application
software components in the software architecture introduced in Chapters 1 and 2. Figure 5-66
shows an example of an architecture design in which the software functions are implemented
as modules and communicate by means of messages. The models are depicted with the use of
the graphical representation fi rst introduced in Fig. 5-24.

The following sections discuss methods for the implementation and confi guration of software
components, especially those methods that may be suited to automated support from appropriate
tools. In this manner, it becomes possible to ensure the consistency between specifi cation and
implementation, constituting a crucial contribution to the improvement of software quality.

5.4.3.2 Standardization of Platform Software Components

The standardization of the platform software components provides a host of benefi ts. Stan-
dardization becomes possible because the platform software components do not represent a

AUTOMOTIVE SOFTWARE ENGINEERING

-298-

differentiating competitive factor to vehicle manufacturers. Standardization of platform software
components facilitates the integration of ECUs developed by a variety of vendors in the vehicle.
Also, quality assurance for platform software components can be handled at a central point. For
example, the following platform software components have already been standardized:

• Operating systems, communications, and network management, per OSEK standards [16]

• Diagnostic protocols, per ISO standards [25, 26]

The software components are adapted to a variety of applications with the aid of confi guration
parameters.

Another area in which numerous benefi ts are waiting to be solidifi ed is that of standardized
Flash programming procedures, including the required platform software components and the
necessary security mechanisms preventing unauthorized access.

This standardizes the software components that support, during the production and service phases,
the offboard interface for a number of functions provided by a production ECU:

Fig. 5-66. Software architecture composed of standardized software components.

Flash Loader

OSEK-COM
Interaction Layer OSEK-NM

Network
Management

ISO Diagnostic Protocol

Network Layer ISO

Bus Driver

Methods and Tools for Development

-299-

• Diagnostics
• Software parameterization
• Software update

In the course of development, support for additional interfaces, such as for measuring and calibrat-
ing, or for bypass applications, is frequently called for. Measuring and calibration protocols, such
as the CAN Calibration Protocol (CCP, for short) or the Extended Calibration Protocol (XCP),
are standardized under the auspices of ASAM [17]. The integration of the software components
required for these functions in the software architecture is necessary only during the development
phase. Their presence is no longer required in the production and service phases.

Standardization potential also is evident in the context of application software components. For
example, suitable candidates would be interpolation routines and data structures for characteristic
curves and maps, or the elements of a system library for control technology, of the type specifi ed
under the auspices of the MSR-MEGMA working group [79].

The software modules used for controlling the peripheral modules of the microcontroller are
often collected in a hardware abstraction layer (HAL). Their implementation may be standard-
ized for a given microcontroller or microcontroller family.

5.4.3.3 Confi guration of Standardized Software Components

The use of confi guration parameters facilitates the adaptation of standardized software com-
ponents to a specifi c application. The confi guration step may be automated through the use of
confi guration tools. Cases in point would be a real-time operating system confi guration or that
of platform software components for communications and diagnostics.

Figure 5-67 outlines the automatic generation of the confi guration settings required for the
software components handling communications within the ECU network. To this end, the ECU
communications matrix is stored in a centralized database. Editing utilities facilitate the modifi -
cation of communications parameters in accordance with varying views of the communications
matrix. In this way, confi gurations with a specifi c orientation for signal view, message view,
bus view, node view, or function view become possible. Export interfaces support a variety of
data exchange formats—such as description fi les for development or measuring tools—used to
distribute the communications matrix to the various development partners. Conversely, import
interfaces can be used to merge functional subsets to verify their consistency. A documentation
interface assists in the automated adoption of data to be included in specifi cation and design
documents.

Together, all of these options ensure the consistency among implementation, documentation, and
description formats of the data describing communications within the ECU network. Transfer
errors of the type that may occur in the manual confi guration of software components thus can
be avoided.

Similar requirements exist in the realm of diagnostic data (Fig. 5-68). The administration of
diagnostic data in a centralized database provides a range of benefi ts. The fi rst automated function
comprises the confi guration of software components for diagnostic purposes. For example, it

AUTOMOTIVE SOFTWARE ENGINEERING

-300-

Fig. 5-68. Automated confi guration of diagnostic layer and generation
of a diagnostic description.

Fig. 5-67. Automated confi guration of communications layer.

Next Page

Methods and Tools for Development

-301-

ensures data consistency between the fault memory description for the diagnostic tester (e.g., in
the ASAM-MCD 2D format) and the implementation onboard the ECU. A second task that may
be automated is the integration of diagnostic data from several ECUs into a single data version,
complete with subsequent consistency checking.

5.4.4 Design and Implementation of Data Model

Country and customer-specifi c equipment options confront both production and service with a
multitude of vehicle variants, over which complete command is required at all times. By-products
of vehicle variants are the software versions for the ECUs.

To master the multiple vehicle variants, specifi c procedures reducing the number of ECU types
required by a given vehicle manufacturer for production and service are required. This section
introduces those methods that become available by virtue of forming a data variant for ECU
software.

• For all procedures deployed in production, requirements with regard to the length of time
needed to set up a program or data version for an ECU constitute important prerequisites.
The maximum permitted time is dictated by the production time cycle. The setup procedure
may be inserted before or after the physical installation of the ECU in the vehicle.

• In the case of procedures to be used by vehicle service facilities, the logic of worldwide
logistics clamors for the smallest number of different ECU hardware types. As an inherent
benefi t of software, the global distribution of program and/or data versions is decidedly
more cost effi cient than that of hardware components. An added benefi t is the fact that the
cost-intensive demounting and replacement of ECUs from a vehicle is no longer necessary
if it is considered in the overall concept. For this reason, a concept that facilitates the setup,
modifi cation, or download of program and data versions—dispensing with the need for ECU
replacement or removal and repair—provides a number of advantages.

• In addition, the users of a vehicle (i.e., the operator and other occupants) increasingly wish
to confi gure and store individual personal profi les for a number of software functions. This
may include the settings of seat and steering column or mirror position coordinates, as well
as settings of the heating system, air conditioning system, or favorite radio stations. Personal
profi les such as these may be managed by means of driver ID information that is stored in
the ignition key.

All of these considerations are required in the context of data design and implementation.

Sections 5.4.4.2 and 5.4.4.3 introduce two different methods for data version setup or confi gura-
tion in greater detail:

1. Setting data variants through Flash programming

2. Setting data variants via confi guration parameters

In addition, the combined use of both methods is conceivable.

Previous Page

AUTOMOTIVE SOFTWARE ENGINEERING

-302-

5.4.4.1 Defi nition of Memory Segment

Aside from the type of representation used by the microprocessor, the specifi cation for each piece
of data must identify the memory segment of the microcontroller in which it shall be stored.

Accordingly, it must be decided whether a variable shall be stored in volatile read/write memory
(e.g., in RAM), in nonvolatile read memory (e.g., in ROM, PROM, EPROM, or Flash memory),
or in a nonvolatile read/write memory (e.g., in EEPROM or battery-backed RAM).

5.4.4.2 Setting Data Variants via Flash Programming

The fi rst solution is based on a method that can be used on ECUs equipped with Flash memory.
For this purpose, the entire Flash area containing the program version and the variant-specifi c
data version may be programmed. As an alternative, only a subsection of the Flash memory
(e.g., only the data version) may be programmed at the time the vehicle rolls off the assembly
line. This gave rise to the term end-of-line programming.

The same method also is used increasingly for software updates in service shops, where pro-
gramming utilizes the central diagnostic interface of the vehicle, dispensing with the need to
remove the ECU for reprogramming. The Flash programming procedure used in service shops
is discussed in detail in Section 6.3 of Chapter 6.

To reduce the time required for Flash programming, the program version and data version are
frequently programmed in separate sessions. In a production situation, for example, the variant
independent program version can be programmed already during ECU manufacture, whereas only
the vehicle-specifi c and variant-dependent data version is subject to end-of-line programming.

Using a characteristic curve as a case in point, Fig. 5-69 shows an example of variant manage-
ment through Flash programming.

Fig. 5-69. Data version programming using the example
of a characteristic curve.

Methods and Tools for Development

-303-

5.4.4.3 Setting Data Variants via Confi guration Parameters

The second solution consists of the concurrent deposit of different data variants in the non-
volatile read-only memory onboard the ECU. Only one of these data variants is chosen for the
subsequent end-of-line parameterization. The respective software parameter may be stored in
EEPROM. Because this causes one of several possible confi gurations (as shown in Fig. 3-12
of Chapter 3) to be chosen only as the vehicle is about to leave the assembly line, this method
is referred to as end-of-line confi guration.

As an alternative, the respective confi guration may be chosen upon starting the engine of the
vehicle. In this case, the described procedure deposits the confi guration data for all ECUs onboard
the vehicle in a central ECU. From there (e.g., after switching on the ignition), the data will be
distributed by means of a message to the receivers on the network, which, upon receipt of the
information, select the required confi guration.

This method also is employed for the purpose of software confi guration on vehicles in the fi eld.
Here, too, the central diagnostic interface serves as the connecting point. In addition, this method
enables the vehicle operator to set his or her individual function parameters.

Using a characteristic curve as a case in point, Fig. 5-70 shows an example of confi guration
management by means of software parameters.

5.4.4.4 Generation of Data Structures and Description Files

The centralized management and automated generation of data structures and description fi les for
measuring and calibration data facilitate the automation of another development step (Fig. 5-71).

The measuring and calibration data of a microcontroller are stored in a central database. In this
process, the physical specifi cation, and the design and implementation decisions for all of the data,
as well as the defi nition of the transformation rule (e.g., through the use of conversion formulas)
are managed together. The database records then can be used to generate data structures for a
development environment (e.g., in C language), on one hand (see Fig. 4-35 in Chapter 4). On
the other hand, once the address information has been loaded, all of the information required for
the generation of a description fi le in the ASAM-MCD 2MC format, which is used by measuring,
calibration, and diagnostic tools, is available. In this way, consistency between the description
fi les for measuring and calibration tools and the implementation of data in the microcontroller
onboard the ECU can be ensured.

5.4.5 Design and Implementation of Behavioral Model

The data consistency among specifi cation, documentation, and the complete implementation of
software components can be ensured through the use of code generation tools (Fig. 5-72).

The same model-based specifi cation that is used for simulation or rapid prototyping provides
the basis for automated code generation. This means that the necessary design decisions must
be made for the data specifi ed at the physical level and for the algorithms. The data require the
defi nitions shown in Fig. 5-71. The algorithms require the design decisions for arguments and

AUTOMOTIVE SOFTWARE ENGINEERING

-304-

return values, as well as the assignment to the memory segments of the microcontroller onboard
the ECU. If the implementation uses integer arithmetic, additional defi nitions must be made
(e.g., with respect to the strategy for handling rounding errors, underfl ows, and overfl ows, as
discussed in Section 5.4.2). A design tool supports the subject defi nitions.

On the basis of this information, the automated generation (e.g., in source code) of complete
software components is possible. These may then be subjected to further processing in a
conventional software development environment and fi nally integrated to form a program ver-
sion and data version for the respective microcontroller. Accordingly, this method is known as
the Additional Programmer Method (Fig. 5-72).

Provided that the description of the software architecture also is possible and that the components
of the platform software can be integrated and confi gured, the integration of a compiler toolset

Fig. 5-70. Data version parameterization using the example
of a characteristic curve.

Methods and Tools for Development

-305-

Fig. 5-71. Automated generation of data structures and a description fi le. (Ref. [89])

Fig. 5-72. Automated generation of software components plus program
and data version. (Ref. [73])

AUTOMOTIVE SOFTWARE ENGINEERING

-306-

for the respective microprocessor will facilitate the generation of a complete program and data
version (Fig. 5-72). Accordingly, this method is known as the Integration Platform Method.

Example: Design and implementation of “Integrator” class

The objective is to implement the “Integrator” class already specifi ed in Fig. 5-27. Thus,
the design decisions shown in Fig. 5-73 are made with respect to the data.

Fig. 5-73. Design decisions for data and interfaces of “Integrator” class.

Figure 5-74 shows a possible C language implementation using the “compute()” method in fi xed-
point arithmetic. Concerning the algorithms, additional design decisions, such as overfl ow or
underfl ow handling, are taken into consideration.

5.5 Integration and Testing of Software Functions

This section discusses verifi cation and validation methods applied to software functions during
the integration and test phases. Because of the cross-corporate applicability of integration and
test procedures, methods employing modeling and simulation techniques that turn nonexistent
physical components into virtual entities provide a crucial function in vehicle development.

The structure of this section takes its orientation from the following integration and test envi-
ronments:

• Simulation tools

• Laboratory vehicles and test benches

• Experimental, prototype, and production vehicles

Designation
X Notation

Formula
Ximpl(Xphys) = K1 • Xphys

Value Range at the
Physical Level

Xphys

Value Range at the
implementation

Level Ximpl

E/compute() uint8 K1 = 1 true/false 1/0

in/compute() uint16 K1 = 256 0 ... 100 0 ... 25 600

K/compute() uint16 K1 = 256 0 ... 255.996 0 ... 65 535

MN/compute() uint32 K1 = 256 0 ... 16 777 215.99 0 ... 4 294 967 295

MX/compute() uint32 K1 = 256 0 ... 16 777 215.99 0 ... 4 294 967 295

return/out() uint16 K1 = 256 0 ... 255.996 0 ... 65 535

I/init() uint8 K1 = 1 true/false 1/0

IV/init() uint16 K1 = 256 0 ... 100 0 ... 25 600

memory uint32 K1 = 256 0 ... 16 777 215.99 0 ... 4 294 967 295

dT uint16 K1 =1024 0 ... 63.999 0 ... 65 535

Methods and Tools for Development

-307-

Fig. 5-74. Implementation of the “compute()” method of “Integrator” class
as a function in C language.

/* Variables */

extern uint32 memory;

extern uint16 dT;

/* Method compute() */

void compute (uint16 in, uint16 K, uint32 MN, uint32 MX,

uint8 E)

{

 uint32 t1uint32, t2uint32, t3uint32;

 if E {

 /* Overflow handling 15 Bits */

 t1uint32 = MX >> 1;

 /* min=0, max=2147483647, impl=128phys */

 t2uint32 = (((uint32) (in >> 5)

 *(((uint32) K * dT) >> 10)

) >> 4)

 + (memory >> 1);

 /* min=0, max=2357192447, impl=128phys+0 */

 t3uint32 =

(uint32)((t2uint32<t1uint32)?t2uint32:t1uint32)<<1;

 /* min=0, max=4294967294, impl=256phys+0 */

 memory = (t3uint32 > MN) ? t3uint32 : MN;

 /* min=0, max=4294967295, impl=256phys+0 */

 }

}

AUTOMOTIVE SOFTWARE ENGINEERING

-308-

The necessary synchronization—among all development partners and across all development
environments—of the various verifi cation and validation steps (e.g., the coordination of com-
ponent models and test cases) must be considered as early as possible along the timeline in
project planning.

Some validation methods, such as rapid prototyping for specifi ed software functions that can be
employed during the specifi cation phase, were discussed in Section 5.3. Those methods already
discussed can be combined with the ones described in this section. The methods highlighted here
facilitate the timely verifi cation and validation of implemented software functions in an environ-
ment that is part virtuality and part reality. The discussion features several typical intermediate
steps, and the starting situation and fi nal objectives are depicted in Fig. 5-75.

Fig. 5-75. Starting situation and objectives for software and systems integration and testing.

Development
Progress

Hardware

Setpoint
Generators &

Sensors

Figure 5-76 presents an overview of the various intermediate steps occurring in integration. The
models representing the logical system architecture may provide the basis for the simulation of
nonexistent system components. The following sections discuss widely accepted integration,
verifi cation, and validation methods, using the selected sample segments from Fig. 5-76.

The earliest possible validation step consists of a simulation of the model of a control function,
with a model of the system to be controlled. The simulation model permits the replication of

Methods and Tools for Development

-309-

Fig. 5-76. Intermediate steps in software and systems integration and testing.

components such as setpoint generators, controllers or monitors, actuators, plant, and sensors.
The simulation also attaches relevance to the infl uence that vehicle operator and environment
exert on system behavior. To this end, the operator and environment may be considered addi-
tional components, as shown in Fig. 5-44.

Because virtual models represent all of the components, real-time requirements with respect
to suitable modeling or simulation techniques are nonexistent. At this juncture, however, a
detailed discussion of the modeling of vehicle components would exceed the scope of this book.
For a detailed discussion of function modeling, reference is made to the relevant specialized
literature [35].

5.5.1 Software-in-the-Loop Simulations

The execution of implemented software components in a simulated environment is known as
software-in-the-loop simulation (SiL simulation, for short).

If one contemplates a closed-loop control function, then this designation makes sense. For
example, a software component of the application software layer that represents a closed-loop
control function implementation may be modeled and executed as a component in the “loop,”
as shown in Fig. 5-77.

However, this approach can be put to good use with a number of other application cases in point,
too, even if no control loop exists as such. For example, in the event that software components
used to implement open-loop control or monitoring functions, or software components of the
platform software (e.g., the communications layer) are to be verifi ed and validated in this man-
ner, it becomes apparent that the designation SiL simulation fails to adequately describe that
situation.

In this case, the structure of the simulation model does not greatly differ from that shown in
Fig. 5-44. However, a signifi cantly stricter specifi cation of the model components is called for.
For example, the modeling procedure for the ECU must be brought to a point of concretion where
the analog/digital and digital/analog signal conversion, as well as the “real-time behavior” are
accounted for as precisely as possible. Only then will it be possible to integrate implemented

AUTOMOTIVE SOFTWARE ENGINEERING

-310-

software components in this system environment and to execute these, as shown in Fig. 5-77.
The implemented software component, having thus become a test candidate, is then executed in
a development and simulation platform in a simulated environment (e.g., on a PC). There are
no real-time requirements concerning the execution of the simulation.

The use of software-in-the-loop simulations facilitates the execution of a number of dynamic
software tests, that is, early on the timeline and without a real-life ECU (e.g., component tests
in conjunction with code coverage analyses).

5.5.2 Laboratory Vehicles and Test Benches

An entire class of methods and tools is used for verifi cation and validation as soon as the hardware
and software of a given ECU are available. These are grouped under the collective designation
laboratory vehicles and test benches. As shown in Fig. 5-78, the attendant objective may be the

Fig. 5-77. Software-in-the-loop (SiL) simulation.

Setpoint
Generators

Open-/Closed-
Loop Control,

Monitoring

Methods and Tools for Development

-311-

Fig. 5-78. Operation of an ECU in a virtual environment. (Ref. [90])

Setpoint
Generators

Open-/Closed-
Loop Control,

Monitoring

operation of a real-world ECU in a partly virtual and partly real environment. For this reason, in
contrast to the aforementioned simulation methods, real-time requirements must be considered
during modeling and execution of the simulation of environmental components.

If the focus is on the verifi cation and validation of control functions, then the ECU must be
viewed and treated as a component in the control loop, as shown in Fig. 5-78. For this reason,
this approach is often referred to as hardware-in-the-loop simulation (HiL simulation, for short).
However, it shares with the SiL simulation the fact that this method is not limited to control
functions but can be deployed in a number of other applications, some examples of which are
discussed here. This book groups these different methods under the designation laboratory
vehicles.

Regarding ECU software, a variety of aspects are highlighted, such as the verifi cation and vali-
dation of real-time behavior, onboard and offboard communications behavior on the network,
or the verifi cation of control and monitoring functions.

5.5.2.1 Test Environment for Standalone ECUs

The laboratory vehicle can be used as a software and hardware test bench for a standalone ECU
(Fig. 5-78). It produces real-time simulations of static and dynamic processes of the ECU
environment.

AUTOMOTIVE SOFTWARE ENGINEERING

-312-

The input signals of the ECU are replicated by an environmental model, which is used to stimu-
late the ECU. The signal vectors W and R form the inputs of the ECU, as shown in Fig. 5-78.
The output signal vector U is used as an input variable for the environment simulation in the
laboratory vehicle.

Figure 5-79 shows the structural principle of the laboratory vehicle named LABCAR [90]. The
environmental model is translated and executed on a real-time computer system. In addition to
executing the models, that system outputs the signal vectors W and R of the ECU and acquires
the signal vector U. An operating host computer permits the interactive control of experiments
by the user, as well as automated control of experiments. Modeling tools support modifi cations
to the models of the environmental components.

Fig. 5-79. Structural diagram of the LABCAR laboratory vehicle. (Ref. [90])

Example: Test environment for ECU control functions

A typical application for a laboratory vehicle consists of testing the dynamic characteristics
of the control functions provided by an ECU. In addition to the software functions in the
application software, this includes signal processing by both platform software and ECU
hardware.

Methods and Tools for Development

-313-

The available freedoms in terms of presetting options for ECU input signals afford the tester
a liberal scope for freedom of experimentation:

 • The preselection of environmental conditions for the ECU (e.g., temperature, atmospheric
pressure, or humidity) and the random stimulation of input signals facilitate the testing
of software functions in extreme conditions.

 • In this way, borderline-driving situations can be simulated without hazard to test drivers
or prototype vehicles.

 • It also is possible to randomly specify aging or failure situations on setpoint generators,
sensors, actuators, or wiring connections. The preselection of aging effects for adap-
tive control function components facilitates the evaluation by changes of the respective
signals.

 • Monitoring functions can be systematically checked by entering implausible signals.

 • Component tolerances (e.g., of setpoint generators, sensors, and actuators) can be preset
to any value. The effect of these components on the robustness of control functions
thus can be verifi ed.

 • In contrast to physical test bench trials or in-vehicle testing, the working points can be
randomly entered without limitation, such as for the full revolutions per minute and
load range of a given engine.

All tests are fully reproducible and can be run in automated mode. No other hardware
components or assemblies nor physical vehicles are required for LABCAR testing.

In the context of a laboratory car structure as shown in Fig. 5-78, the ECU is deemed to be a
“black box.” The only way to evaluate the functional behavior of an ECU is to analyze its input
and output signals. Although this method will suffi ce for simple ECU functions, the scrutiny
of more complex functions requires the integration of a measuring procedure for intermediate
internal ECU variables.

5.5.2.2 Test Environment for ECUs, Setpoint Generators, Sensors, and Actuators

The method described in the preceding section also may be expanded to include the setpoint
generators, sensors, and actuators of a given ECU. To accomplish this, the real-life counterparts
of these components are “installed in the loop” and are regarded as test candidates (Fig. 5-80).

As a consequence, modeling procedures in the laboratory vehicle are limited to models repre-
senting the plant, vehicle operator, and environment. Models representing setpoint generators,
sensors, and actuators are no longer required. In this particular case, the laboratory vehicle is
called on to support the output variables W* and X and the input variables Y. This, in turn,
requires a suitable adaptation of the hardware structure.

Rounding out the available options, the combined use of both simulated and real-world setpoint
generator, sensor, and actuator components also is conceivable.

AUTOMOTIVE SOFTWARE ENGINEERING

-314-

Example: Test environment for control and monitoring systems

Compared with the specialized purpose of the preceding example, this setup provides
for the comprehensive testing of electronic control and monitoring systems. Testing the
setpoint generators, sensors, and actuators requires the in-process measurement of a diver-
sity of signals occurring in these components. In most cases, these signals are acquired by
an additional set of sensors—the so-called instrumentation—such as on the sensors and
actuators of a vehicle system. Likewise, the process of acquiring intermediate internal ECU
variables is termed ECU instrumentation.

This can be accomplished by integrating an instrumentation of these components and of the
ECU in the laboratory vehicle with a measuring, calibration, and diagnostic system. The
ECU can be accessed by one of several offboard interfaces, such as the offboard diagnostic
interface.

The test cases that can be shown in a diagram exceed to some degree the test situation of the
preceding example. However, the point could be made that these shortcomings are again
outweighed by limitations imposed in other areas (e.g., with respect to the presetting of aging
effects in sensors, or the specifi cation of extreme situations and fault occurrences).

Fig. 5-80. Operation of ECU, setpoint generators, sensors, and actuators
in a virtual environment. (Ref. [90])

Setpoint
Generators

Open-/Closed-
Loop Control,

Monitoring

Setpoint
Generators

Methods and Tools for Development

-315-

5.5.2.3 Test Environment for ECU Network

If the functions to be tested are implemented in the form of a distributed and networked system,
this means that the procedure must be expanded to handle the simultaneous testing of several
ECUs. That is, the instrumentation must be extended to cover several ECUs (Fig. 5-81).

Fig. 5-81. Operation of multiple ECUs in a virtual environment. (Ref. [90])

Setpoint
Generators

Open-/Closed-
Loop Control,

Monitoring

Tests frequently are conducted in phases. For example, the fi rst phase concentrates on testing
the communications over the bus between ECUs and the relevant components of the platform
software. The application software components are then tested in a second phase (Fig. 5-66).

In both cases, nonexistent ECUs may be replaced by their simulated counterparts. These become
components of the environmental model that is executed on the real-time computer system. For
this purpose, the real-time computer system must be provided with an interface to the bus, which
comprises the communications system.

To describe the virtual replication of the communications characteristics of ECUs and the func-
tional interconnections forming an implemented subsystem for the purpose of checking com-
munications on the ECU network, the term residual bus simulation [91] is used. Figure 5-82
shows one application case in point.

AUTOMOTIVE SOFTWARE ENGINEERING

-316-

Fig. 5-82. Operation of physical and virtual ECUs in a virtual environment. (Refs. [90, 91])

Setpoint
Generators

Open-/Closed-
Loop Control,

Monitoring

5.5.2.4 Test Bench

The transition from laboratory vehicles to test benches may be described as fl uid. In situations
where electrical signals are insuffi cient to drive the actuators (e.g., in the case of electrohydraulic
actuators), a suitable test environment would be termed hydraulic test bench.

Working with laboratory cars is one thing. Quite another situation is the integration of addi-
tional, real-world components in the test environment, such as the plant depicted in Fig. 5-83,
which serves as test candidates. Furthermore, the predefi nition of environmental status variables
(e.g., the ambient temperature in the case of subzero or extreme heat test facilities) is possible.
Similar options exist for the presetting of desired values by a fl esh-and-blood driver (e.g., on
chassis dynamometers).

Nonexistent real-world components are replicated in virtual form, such as by means of a driver
or environmental model, both of which provide for the presetting of a dynamic load profi le. The
resulting virtual components can be used as standardized modules in laboratory vehicles and test
benches alike. To accomplish the simulation, a real-time computer system (e.g., a laboratory
vehicle) is integrated in the test bench (Fig. 5-83).

Example: Engine test bed

The engine test bed installation depicted in Fig. 5-83 regards ECU, setpoint generators,
sensors, actuators, and the engine as test candidates. The remaining vehicle components,
environmental conditions, and driving profi les are replicated, some as real and others as
virtual. At this point, the instrumentation also includes the engine.

Methods and Tools for Development

-317-

Fig. 5-83. An ECU in an engine test bed installation.

Setpoint
Generators

Open-/Closed-
Loop Control,

Monitoring

Setpoint
Generators

5.5.3 Experimental, Prototype, and Production Vehicles

The integration, verifi cation, and validation of electronic systems in the real-world vehicle
require an instrumentation of the participating vehicle system components. In this context, the
instrumentation is frequently expanded to include the environment and the driver. This often
requires, in addition to a measuring and diagnostic system, a calibration system for the fi ne-
tuning of internal ECU parameters, as shown in Fig. 5-84.

It stands to reason that the measuring, calibration, and diagnostic systems must be suited to the
integration of functions residing on a variety of networked ECUs. To be compatible, they must
support the simultaneous instrumentation and calibration of multiple ECUs. A detailed discus-
sion of measuring and calibration systems appears in Section 5.6.

Such a measuring, calibration, and diagnostic system also may be combined with a rapid proto-
typing system, as shown in Fig. 5-47.

In many cases, the transition from prototype to production vehicle, and the associated switch
from development ECU to production ECU, also results in a change in the offboard interface
available for instrumentation. In contrast to the prototype vehicle, the production vehicle often
restricts ECU access to the central offboard diagnostic interface and, in some cases, to the access
to the communications systems.

AUTOMOTIVE SOFTWARE ENGINEERING

-318-

Whereas the aforementioned transition results in reduced transmission speeds for the offboard
interface, it limits the parameters selectable for the calibration functions and changes the operat-
ing principle of that function.

5.5.4 Design and Automation of Experiments

The defi nition of test cases should be considered as early as in the initial design phase. The
structure of the experiments may orient itself on the basis of various criteria, such as vehicle
functions, vehicle system components, or driving situations.

Examples of function-oriented testing of software functions serve as test cases for the following:

• Control functions
• Monitoring and diagnostic functions

Examples of system and component-oriented testing serve as test cases for software components,
such as the following:

• Real-time operating system
• Communications layer and network management
• Diagnostic layer

Fig. 5-84. Onboard instrumentation in an experimental vehicle. (Ref. [87])

Setpoint
Generators

Methods and Tools for Development

-319-

Examples of situation-oriented testing of software components can be divided into the following:

• Normal cases
• Extreme cases
• Fault situations

The automation of test routines depends more on the test environment than on the test case. It
requires that experiments must be formally described. Automation is more easily accomplished
on the laboratory vehicle or test benches than it is on the vehicle.

Automated testing offers a signifi cant potential for cost reduction. However, it would exceed
the scope of this book to engage in a detailed discussion of the design and automation of experi-
ments. For such a discussion of experiment design, reference is made to the relevant specialized
literature [30, 31].

5.6 Calibration of Software Functions

The various deployment options for measuring and calibration systems in conjunction with
laboratory vehicles, test benches, and the physical vehicle were outlined in Section 5.5. The
present section discusses the functional principles of measuring and calibration systems.

A measuring and calibration system consists of a measuring and calibration tool and one or more
ECUs, each featuring one or more microcontrollers equipped with suitable offboard interfaces.
Added to this is auxiliary measuring technology that is bundled under the term instrumentation.

For all of the signals acquired by means of the instrumentation, a standardized mode of rep-
resentation in the tool must be ensured. This applies not only to the value range but also to
the timeline of signals comprising the acquired measurements, or measurement signals. With
regard to the captured discrete measuring signals of the microcontroller program, this means
that a conversion from the notation used for implementation to the physical representation used
by the measuring tool is needed.

The tool is required to provide editor support at the implementation level and—for the repre-
sentation of measurement signals—at the physical level, for any changes in parameter values
(e.g., the values of characteristic values, curves, and maps). Figure 5-85 shows an example of
both the physical view and the implementation view of a characteristic curve KL and a measured
signal S.

In this context, it is quite useful to make a logical distinction between onboard operations car-
ried out by the microcontroller in the ECU and those handled offboard by the measuring and
calibration tool (Fig. 5-85).

This development phase has as its objective the generation or adaptation of the data version,
which encompasses all of the parameter values that were stored in the microcontroller memory
in the form of characteristic values, curves, and maps. The microcontroller program uses this
data as the basis for its operations.

AUTOMOTIVE SOFTWARE ENGINEERING

-320-

Fig. 5-85. Onboard and offboard calculations for measuring
and calibration systems. (Ref. [87])

Time

Time

To accomplish the calibration of software functions that are implemented by means of distributed
and networked systems, measuring and calibration systems must support an entire network of
microcontrollers and ECUs. For the sake of clarity, the following sections use the simplifi ed
approach of regarding only one microcontroller and one ECU.

The starting point consists of the provision of an ECU, that is, of a hardware and software
version. The software version encompasses a program version and an initial data version for
each microcontroller onboard the ECU. The measuring and calibration system also requires
a description of the software version, which may be available in the form of a separate fi le in
ASAM-MCD 2 fi le format. The fi le not only contains information for the conversion between
the physical level and implementation level for all measuring, calibration, and diagnostic data,
it also provides information concerning the interface between the tool and the microcontroller.

The purpose of this at times demanding and costly development step is the adaptation of the
data version. In this play of many actors, several aspects take center stage. Among them are the
adaptation to various working points, the long-term operation of systems aimed at compensat-
ing aging effects by way of parameters and algorithms, fl eet trials facilitating the evaluation of
component manufacturing tolerances, or the adaptation of data versions to vehicle variants.

Methods and Tools for Development

-321-

5.6.1 Offl ine and Online Calibration Procedures

When working with calibration systems, a general distinction between online and offl ine cali-
bration can be made.

In offl ine calibration, the execution of the control and monitoring functions of the ECU—the
so-called drive program—is interrupted while parameter values are modifi ed or calibrated. Thus,
offl ine calibration is fraught with a number of limitations. Especially when used on test benches
or in-vehicle testing, setting or changing of parameters always requires that the test bench or
drive trial operation be interrupted.

For this reason, a testing procedure that supports the more versatile approach of online calibration
is much more useful. In online calibration, parameter values can be modifi ed “on the fl y,” that
is, while the microcontroller onboard the ECU is running the drive program. In other words,
the setting or changing of parameters, and the simultaneous execution of control and monitoring
functions, is possible even while normal test bench and drive trial operation is ongoing.

During the operation of the calibration tool, exception situations may develop where short-
term failures in the ascending sequence of strict x-axis point monotony on characteristic curves
and maps call for a certain robustness of the program running on the microcontroller. For this
reason, online calibration makes greater demands on the stability of the control and monitoring
functions.

Online calibration is ideally suited to protracted tuning tasks on parameters associated with
functions of somewhat lower dynamics (e.g., for fi ne-tuning engine control functions on an
engine test bed).

Although parameter settings are not changed during the active execution of control functions with
high dynamics or safety relevance, here, too, the online calibration of parameters can dispense
with the need to interrupt the drive program.

One pertinent example is the fi ne-tuning of ABS functions in braking applications. In this case,
although adjustments do not occur during the actual ABS control action, online calibration can
reduce the interval between two road tests.

Figure 5-86 depicts two contrasting examples of the procedures involved in online and offl ine
calibration. The diagram outlines the different requirements existing for online and offl ine calibra-
tion systems. For example, offl ine calibration systems “make do” with the available functions,
such as measuring, offboard calibration of parameters, and downloading the program and data
versions—that is, by means of Flash programming—into the microcontroller. By contrast, online
calibration calls for additional functions facilitating on-the-fl y calibration without requiring the
drive program to be interrupted. The following sections are oriented in line with the functions
required for online and offl ine calibration procedures.

5.6.2 Software Update Through Flash Programming

To initialize the ECU, the program version and data version fi rst must be downloaded to the
respective memory areas of the microcontroller. In standard practice, development ECUs are

AUTOMOTIVE SOFTWARE ENGINEERING

-322-

Fig. 5-86. Procedural differences between offl ine and online calibration.

Download Program and
Data Versions to Microcontroller

Download Program and
Data Versions to Microcontroller

equipped with Flash memory. The software update for the program and data versions can be
accomplished through Flash programming (Fig. 5-87).

Figure 4-23 in Chapter 4 showed that, for any software update using Flash programming, a dedi-
cated software operating state is defi ned, in which the execution of the control and monitoring
functions required for normal vehicle operation is interrupted. The transition to the Software
Update operating state is initiated by the Flash programming tool and may occur only in certain
conditions. For example, in engine ECUs, such a condition would consist of the detection of
engine standstill, that is, engine RPM = 0.

When the Software Update operating state has been entered, the program version and the initial
data version are downloaded into the Flash memory on the microcontroller. Afterward, triggered
by the Flash programming tool, the microcontroller again exits the Software Update state and
transitions to the Normal Operating state, in which the control and monitoring functions of the
drive program are executed. Section 6.3 in Chapter 6 discusses the actual Flash programming
procedure for the software update.

Next Page

Methods and Tools for Development

-323-

Fig. 5-87. Flash programming of program and data versions.

The capabilities of the Flash technologies in current use are limited to the erasing or reprogram-
ming of entire memory areas, the so-called Flash segments. In situations where it is necessary to
facilitate separate programming of program and data versions, this means that the data version
must be stored in a Flash segment that is different from that of the program version. Thus,
Flash programming requires the addressing of specifi c memory areas. At its current state of the
art, Flash technology is incapable of programming changes made to the values of individual
parameters.

5.6.3 Synchronous Measuring of Microcontroller and Instrumentation
Signals

In standard practice, the effect of changes to parameter values is evaluated by means of measure-
ments. The objective is to analyze the concerted interaction of all vehicle system components in
the execution of a specifi c vehicle function on the basis of a diversity of measurement signals.
A typical example of this kind of experimental observation is that of checking the engine ECU
with regard to oxygen control in cold starting conditions. This experiment may be conducted
either in a subzero testing facility, or it may be carried out through in-vehicle testing in the
course of arctic fi eld trials.

Previous Page

AUTOMOTIVE SOFTWARE ENGINEERING

-324-

In most situations, however, evaluating a function in this manner is hardly possible without
the instrumentation of all participating vehicle components by means of a suitable measuring
technology. Also needed in this context is the synchronous logging of measurement data in the
microcontroller, as well as in the instrumented components.

The measuring system must support the capture of fl uctuating signals in the microcontroller
(e.g., the measurements of variables stored in the RAM onboard the microcontroller) with a
suitable measuring technology. To add to the challenge, these measurements also must be taken
synchronously with additional signals originating in the instrumentation in the periphery of the
ECU (Fig. 5-84). Finally, these measurements may include the acquisition of signals related to
the driver or environment.

These additional signals are frequently picked up at the sensors and actuators associated with
the vehicle function being tested. In many cases, the current environmental conditions, such as
atmospheric pressure and air temperature, are deemed to be relevant, as are additional signals
such as those representing torques, pressures, temperatures, or exhaust emissions, all of which
are picked up at a diverse number of measuring points in the vehicle. Also, the data traffi c
linked to a function under test can be picked up on the onboard communications network of the
vehicle; it is subject to synchronized recording, in many cases.

Thus, it stands to reason that a performance class exceeding that of the vehicle sensors is
demanded for the instrumentation. From the standpoint of measuring technology, major chal-
lenges must be met in two areas. There is the task of synchronizing the various capture rates
of microcontroller signals on one hand, and the acquisition of measured values of the spatially
distributed and decentralized instrumentation on the other. This also involves the placement of
time stamps and the synchronization of the system time (see Fig. 2-53 in Chapter 2).

5.6.4 Downloading and Evaluating Onboard Diagnostic Data

In addition to the setting of parameter values for control functions, calibration of the monitor-
ing and onboard diagnostic functions (e.g., threshold values for plausibility checks) also is
required.

In addition to the measuring technology discussed in the preceding section, the experimental
verifi cation of the serviceability of the onboard diagnostic system requires diagnostic data to
be downloaded for analysis from the fault memory of the microcontroller. It also should be
possible to clear the fault memory in preparation for an experiment. This means that the basic
functionality of an offboard diagnostic system is already required during calibration (see Fig. 2-64
in Chapter 2).

The description fi le in ASAM-MCD 2 format contains the descriptive information required for
the plain-text display of fault memory contents and for the conversion of signals to enable the
physical representation by the measuring and calibration tool. Chapter 6 discusses the archi-
tecture of offboard diagnostic tools in greater detail.

Methods and Tools for Development

-325-

5.6.5 Offl ine Calibration of Parameters

The information contained in the description fi le forms the basis for the description of values
of the parameters of the data version—that is, the values of characteristic values, curves, and
maps—at the physical level of the calibration tool. The tool also provides a comfortable means of
visualizing changes in parameter values by means of graphical or table-based editing functions.

The following sections refer to the data version held in the Flash memory of the microcontroller
as the reference version (also the reference page). Likewise, the data version in the calibration
tool is termed the tool reference page (Fig. 5-88). To change parameter values, a copy of the
reference page—termed the working page—is created in the calibration tool. The data version
of the working page can be modifi ed, whereas the reference page remains unchanged.

Fig. 5-88. Offl ine calibration of the data version using the INCA tool. (Ref. [87])

The changes made to the working page can be backed up to the tool reference page. In this
way, the tool reference page represents a basis for comparison with the other changes made to
the working page.

Conversely, when the current values have been uploaded from the microcontroller, the reference
page comprises a true refl ection of the current state of the ECU.

AUTOMOTIVE SOFTWARE ENGINEERING

-326-

The reference page or working page of the tool is downloaded into the microcontroller with only
a subsequent Flash programming session. This again will require changing the operating state
of the microcontroller, with an interruption of the drive program.

5.6.6 Online Calibration of Parameters

If the online modifi cation of parameter values also must be available, this will require an expan-
sion of the working page/reference page concept on the microcontroller.

This is accomplished by copying the data for online calibration from the ROM or Flash memory
area to a RAM segment that is not used by the program, that is, the segment where the working
page resides (Fig. 5-89). In this RAM area, which is also termed calibration RAM (CAL-RAM,
for short), both the microcontroller and calibration tool work in sync with the calibration data
(Figs. 5-1 and 5-89).

Fig. 5-89. Online calibration of the data version using the INCA tool. (Ref. [87])

(Flash
Program-
ming)

As a result, although parameter value changes on the microcontroller reference page (stored
in Flash memory) require exact memory addressing and an interruption of the drive program,
on-the-fl y calibration on the microcontroller working page (stored in CAL-RAM) is capable of
addressing individual parameters without interfering with or interrupting the drive program.

Methods and Tools for Development

-327-

To this end, the microcontroller software is required to access the working page during the execu-
tion of the drive program; this may be accomplished through modifi cations to the microcontroller
software or hardware. Some of the available methods are introduced in the next section.

5.6.7 Classifi cation of Offboard Interfaces for Online Calibration

The calibration tool can avail itself of several interfaces of the microcontroller to access the
CAL-RAM area. A basis differentiation can be made whether or not a CAL-RAM segment is
present onboard the microcontroller, and whether a tool uses the parallel bus or a serial interface
of the microcontroller to access the CAL-RAM (Fig. 5-90).

Fig. 5-90. Classifi cation of interfaces between the microcontroller and calibration tools.

With respect to the serial interfaces, another distinctive feature should be considered. It is
possible to choose a specifi c serial interface technology that also is deployed in the production
ECU, where it is used for offboard diagnostic communications or for onboard communications.
Widely used examples of such a serial technology are the K-Line [5] or CAN (Controller Area
Network) [2]. It also is possible to use an interface that exists only during the development phase
and that is used for software downloading and debugging. Examples of this are NEXUS [92] or
JTAG [93]. By contrast, the parallel bus of the microcontroller is used for access only during
the development phase.

AUTOMOTIVE SOFTWARE ENGINEERING

-328-

In this way, the classifi cation results in the overall view shown in Fig. 5-90. All of the interfaces
occurring in practical real-world applications may be assigned to one of Methods 1 through 6. After
a short introduction by way of simplifi ed block diagrams, these are subject to a brief evaluation
throughout the following sections.

As an example of the simplifi cation of the block diagrams in question, only the CAL-RAM pres-
ent or not present onboard the microcontroller is mentioned, whereas no further differentiation
is made. This simplifi cation ignores whether the CAL-RAM—to the extent that the existence of
both variants is technically feasible in conjunction with the deployed microcontroller type—is
implemented by means of internal or external RAM. The simplifi cation further ignores the
type of implementation (e.g., through an ECU extension or a microcontroller extension in the
development phase) that is used.

5.6.7.1 Serial Preproduction Interface with Internal CAL-RAM (Method 1)

In conjunction with the internal CAL-RAM, Method 1—that is, the use of a serial interface that
is also deployed in the production ECU—has the inherent advantage that hardly any modifi ca-
tions are necessary on the ECU as compared with the production ECU and that the technology
is suited to in-vehicle deployment (Fig. 5-91). The CAL-RAM is no longer required in the
production ECU. Due to cost considerations, development ECUs can be equipped with micro-
controller development samples equipped with additional CAL-RAM. However, if this is not
possible, this CAL-RAM in certain circumstances will result in higher hardware costs in the
production ECU.

Fig. 5-91. Serial preproduction interface with internal CAL-RAM (Method 1).

Because cost considerations tend to limit the transmission rate of the interface, it does not always
fulfi ll the high demands imposed on the measuring technology during the development phase.
With increasing frequency, the K-Line [5], which also is used for offboard communications, or
the CAN interface, which is used for onboard and increasingly for offboard diagnostic com-
munications, are used for this purpose.

Methods and Tools for Development

-329-

If the interface also is put to concurrent use for onboard communications, as is the case with
the CAN interface, it may already be found to be severely burdened. For this reason, a second
CAN interface often is used, which is exclusively dedicated to offboard communications with
the development tool. In this way, no additional traffi c burden is imposed on onboard com-
munications.

On the downside, the microcontroller is burdened in both cases by the implementation of com-
munications between the microcontroller and tool through software components that occupy
additional resources, such as runtime and memory capacity.

In many cases, online calibration is subject to limitations caused by the limited size of the CAL-
RAM area. This effectively restricts the number of characteristic values, curves, and maps that
can be calibrated at any one time. Although the dynamic management and allotment of the
CAL-RAM capacities may take the edge off this issue, it should not be overlooked that—in each
case, and in a manner reminiscent of offboard communications—CAL-RAM management also
allocates additional microcontroller resources.

CAL-RAM management methods are discussed in Section 5.6.8.

5.6.7.2 Serial Development Interface with Internal CAL-RAM (Method 2)

Method 2, that is, the use of a serial development interface in conjunction with internal CAL-
RAM, also provides the advantage of necessitating only small hardware changes on the ECU
side, as compared with the production ECU. However, parts of the development interfaces such
as NEXUS [92] or JTAG [93] are specifi ed for other areas of application, with debug operations
being one example. Other microcontroller interfaces are specifi cally designed for the microcon-
troller. In most cases, these do not fulfi ll all of the requirements with respect to in-vehicle testing
in rough conditions. Accordingly, the conversion to an interface that is specially confi gured for
in-vehicle use must be effected in the ECU itself. One solution based on this principle, using a
so-called Serial ETK [94], is shown in Fig. 5-92.

Fig. 5-92. Serial development interface with internal CAL-RAM (Method 2).

AUTOMOTIVE SOFTWARE ENGINEERING

-330-

Almost without exception, the transmission rate of development interfaces is considerably
higher than that of production interfaces, thus fulfi lling the greater all-around demands made
on measuring technology in the development phase.

In the event that this type of development interface is used, and if the communications between
the microcontroller and tool utilize a hardware implementation, then no extensions of or modifi ca-
tions to the microcontroller software are required. It also goes without saying that the infl uence
of this method on runtime is much smaller than with other methods.

However, as is the case with Method 1 discussed previously, online calibration continues to be
restricted by the limited size of the CAL-RAM area, and the microcontroller continues to be
burdened with the CAL-RAM management.

5.6.7.3 Parallel Development Interface with Internal CAL-RAM (Method 3)

As an alternative, and to the extent possible, a parallel development interface as per Method 3,
depicted in Fig. 5-93, may be employed. Although the performance features are similar to those
of Method 2, the required hardware modifi cations in the ECU are considerably more extensive
than they would be with access through a serial interface. For this reason, the practical value
of Method 3 might be deemed negligible.

Fig. 5-93. Parallel development interface with internal CAL-RAM (Method 3).

5.6.7.4 Serial Preproduction Interface with Additional CAL-RAM (Method 4)

The restrictions imposed on online calibration by virtue of the limitation of internal CAL-RAM
size may be remedied through the installation of additional CAL-RAM capacity in develop-
ment ECUs and through the use of development samples of the microcontroller, which feature
additional CAL-RAM, as shown in the diagram of Method 4 (Fig. 5-94).

Methods and Tools for Development

-331-

Fig. 5-94. Serial preproduction interface with additional CAL-RAM (Method 4).

The use of a preproduction interface, as shown in Fig. 5-94, does not provide a remedy to the
aforementioned restrictions in terms of transmission performance and microcontroller burden.
These issues persist unabated.

5.6.7.5 Serial Development Interface with Additional CAL-RAM (Method 5)

The restrictions with respect to transmission rate and microcontroller load again can be avoided
through the use of a serial development interface of the kind described in Method 5. Such a solu-
tion, which uses a Serial ETK [94] and additional CAL-RAM, is shown in Fig. 5-95. However,
because this method requires not only additional CAL-RAM but also an interface conversion,
the associated modifi cations to the ECU hardware are quite extensive.

Fig. 5-95. Serial development interface with additional CAL-RAM (Method 5).

Serial
ETK

AUTOMOTIVE SOFTWARE ENGINEERING

-332-

5.6.7.6 Parallel Development Interface with Additional CAL-RAM (Method 6)

Method 6, that is, the use of a parallel development interface in conjunction with additional
CAL-RAM, provides the benefi t that calibration data, as well as independent CAL-RAM access
by the microcontroller and tool, may be combined while keeping the microcontroller burden low
to moderate. Such a solution, which uses a so-called Parallel ETK [95], is shown in Fig. 5-96.
Here, too, the required modifi cations to the ECU hardware are relatively extensive.

Fig. 5-96. Parallel development interface with additional CAL-RAM (Method 6).

5.6.7.7 Communications Protocols for Calibration Tools and Microcontrollers

The communications between calibration tools and microcontrollers are governed by several
standardized protocols. Table 5-3 provides an overview.

TABLE 5-3
STANDARDIZATION OF COMMUNICATIONS BETWEEN

TOOL AND MICROCONTROLLER
Interface Parallel Interface Serial Interface

Physical layer Dependent on
microcontroller

CAN [2] K-Line [5]

Protocol ASAM-MCD 1a:
CCP/XCP [17]
ISO:
Diagnostics on CAN [26]

ISO:
KWP 2000 [25]

Methods and Tools for Development

-333-

5.6.8 CAL-RAM Management

Regardless of the selected method, the microcontroller, once initialized, starts working on the
basis of the reference page parameters. In this way, operation also is possible without a calibration
tool being connected. Upon initialization, the working page is overwritten with the data from
the reference page. Afterward, the procedures to be carried out may use the parameters from
either the reference page or the working page. This requires a switchover of the drive program
from working page to reference page, and vice versa. It can be implemented through software
or hardware modifi cations of the microcontrollers. Some microcontrollers provide full hardware
support for this function. The switchover is controlled by the calibration tool.

A monitoring concept on the microcontroller side may be structured in such a way that any
implausible behavior of drive program functions in response to changes in parameter values on
the working page (e.g., in the event that control function instabilities are detected) will cause an
automatic switchover to the reference page as “limp-home” operating state.

If implausible behavior occurs after parameter value changes, the user of the calibration tool
can quickly restore the system to a serviceable state by switching to the reference page of the
system.

5.6.8.1 CAL-RAM Management with Suffi cient Memory Resources

Provided that the available CAL-RAM area is suffi ciently dimensioned—that is, having at least
the size of memory capacity required by the data version in the Flash memory of the micro-
controller—then the effort expended on the microcontroller side for CAL-RAM management
is essentially limited to three tasks: (1) copying the entire reference page to the working page,
(2) backing up the working page to the reference page via Flash programming, and (3) toggling
between these two pages (Fig. 5-97).

Fig. 5-97. CAL-RAM management with suffi cient memory resources.

AUTOMOTIVE SOFTWARE ENGINEERING

-334-

5.6.8.2 CAL-RAM Management with Limited Memory Resources

However, if the size of the CAL-RAM area is limited, meaning that it will not be possible to copy
the entire data version into CAL-RAM, then the CAL-RAM management must be extended—in
both microcontroller and calibration tool—through the addition of functions that facilitate the
management of a segment of the data version, that is, a parameter subset (Fig. 5-98).

Fig. 5-98. CAL-RAM management with limited memory resources.

As a result, only this parameter subset will permit manipulation by means of the aforementioned
copy function and backup Flash programming, including page toggling and online calibration.

The data version segment can be determined by memory address or on a parameter basis. If the
segment defi nition is memory based, then the parameters of a contiguous Flash memory segment
can be copied into CAL-RAM for subsequent calibration, as shown in Fig. 5-98.

The parameter-oriented defi nition of a data segment provides a larger measure of user comfort
because it allows for more fl exible procedures. One of the reasons is that the reference page is
no longer a contiguous block of Flash memory; instead, it results, as shown in Fig. 5-99, from
the memory areas of the selected parameters. The selection of a parameter subset may take place
in the calibration tool, with subsequent replication in the microcontroller by means of a pointer
table. As a result, the microcontroller program no longer directly accesses the parameters on
the reference page—marked in Fig. 5-99—but engages in indirect access with the aid of the
pointer table labeled in Fig. 5-99. In the procedure thus outlined, the calibration tool can
toggle between the parameter access to the reference page (via) and access to the working
page (via).

Methods and Tools for Development

-335-

Fig. 5-99. Pointer table for managing parameter subsets. (Ref. [87])

If the pointer table is stored in the Flash memory of the microcontroller, then each modifi ca-
tion made to the parameter subset will necessitate the respective Flash segment to be newly
programmed, and the parameter subset will remain static during the execution of the drive
program.

An alternative solution would be to store the pointer table in the CAL-RAM area of the micro-
controller. In that case, it also can be dynamically changed while the drive program is in
progress.

5.6.9 Parameter and Data Version Management

In addition to the basic measuring and calibration systems functions discussed so far, additional
functions must be supported on the tool side. Examples would be those functions that handle
parameter-oriented export, import, and merging of data versions, merging of program and data
versions, and evaluation of measured data. Other required functions would be the calibration
of dependent parameters (Fig. 5-57), the calculation of virtual signals (Fig. 5-58), and interfaces
to documentation and confi guration management tools.

Figure 5-100 provides an overview of the functions required for the management of parameter
values and data versions. With the aid of information from the description fi le, the data version
can be converted inside the tool to the physical display and then stored in a database. These
physical parameter values can be edited and are then available for further processing in a variety
of applications. Using the specifi cation of the data model of a software component, this facili-
tates the calibration of the data model of that software component; based on the design of the

AUTOMOTIVE SOFTWARE ENGINEERING

-336-

data model of a software component, it also is possible to calibrate that software component in
source code. The reverse procedure is possible, too.

5.6.9.1 Binary Program and Data Version File Calibration

The process concludes with the generation of a fi nal data version and a calibration of the binary
fi le. Both the program version and data version thus are passed on in the binary format required
by production and service applications.

The advantage of this procedural approach is that the calibration system can provide the required
functionality in its entirety, for the simple reason that it belongs to the standard feature set of
the system. It also is possible to split the calibration tasks for distribution across corporate
boundaries. In that case, the exchange of program and data versions is unidirectional, that is,
restricted to one-way submissions from vendor to automaker.

The disadvantage is that the binary fi le format tends to restrict the management of data records
at the physical level, while constraining their easy utilization across the boundaries of individual
projects. Another drawback is seen in the fact that when the calibration procedures have been
completed, optimizations concerning the program version can no longer be carried out. The
calibration procedure may require certain adaptations of the software structure, which are to
some extent already integrated in the production version.

Fig. 5-100. Parameter value and data version management.

Methods and Tools for Development

-337-

5.6.9.2 Model or Source Code Calibration and Optimization

These drawbacks can be compensated with the use of a procedure where the calibration system
exports the fi nal data version and where, with the aid of information about the data model, this
version is used for calibration at the source code or model level.

Following this, extensive optimization measures can be carried out. These may range from a
fi le system optimized for runtime or memory capacity, to the adaptation of the number of x-axis
points, to the optimization of the quantization, value range, or memory segment of characteristic
values, curves, and maps. The model or source code thus optimized is then retranslated—pos-
sibly using adapted compiler options—and, subsequent to the required quality checks, is released
for use by production and service. Because, after this juncture, parameter values can either no
longer be changed or can be modifi ed only to a limited extent, this optimizing step can be car-
ried out only immediately prior to the abovementioned release of the data version to production
and service.

5.6.10 Design and Automation of Experiments

The use of an automation interface, such as ASAM-MCD 3 [17], provides for the control of a
diversity of functions by a high-level automation system. This facilitates not only the automa-
tion of offl ine tasks (e.g., the evaluation of recorded measurement data) but also the automation
of online procedures, such as running lengthy tuning procedures on a laboratory vehicle or test
bench, as discussed in Section 5.5.4 [29–31].

Many related activities, such as the automation of measured data analysis or the determination
of optimized parameter values, are at the core of ongoing research and development efforts.

However, we regret that, despite the tremendous signifi cance of these and related topics, discuss-
ing this comprehensive topic in detail would exceed the scope of this book.

-339-

CHAPTER SIX

METHODS AND TOOLS FOR

PRODUCTION AND SERVICE

In many cases, the various tools used in production and service also support software param-
eterization and software update functions in addition to the conventional offboard diagnostic
functions discussed in Section 2.6.6 of Chapter 2.

However, compared with tool deployment during the development phase, special additional
requirements must be fulfi lled, particularly with regard to service applications.

Following the dictate of cost considerations, it must be possible to carry out as many tool func-
tions as possible without removing the production ECU from the vehicle. Frequently, the solution
entails the standardized routing of communications between the tools in the service facility and
the production ECUs onboard the vehicle through the so-called offboard diagnostic interface
of the vehicle, as shown in Fig. 2-67 of Chapter 2. Another essential prerequisite concerns
software updates performed at the service shop; in this case, a high degree of availability must
be ensured to dispense with the necessity to physically remove ECUs in response to abnormal
behavior or functional aborts.

Increasingly, standardized communications protocols between tools and ECUs (e.g., Keyword
Protocol 2000 [25] or Diagnostics on CAN [26]) and standardized databases for the respective
tools (ASAM-MCD [17]) are replacing specialized solutions. Figure 6-1 shows an overview of
the structure of an offboard diagnostic system according to ASAM-MCD [17]. This standard pur-
sues the objective of defi ning a uniform (i.e., standardized) software architecture for measuring,
calibration, and diagnostic tools deployed in vehicle development, production, and service.

6.1 Offboard Diagnostics

In addition to the basic functions such as downloading hardware and software ID of a given ECU,
the offboard diagnostic systems discussed in Section 2.6.6 of Chapter 2 provide the following:

• Diagnostic functions for setpoint generators and sensors

• Diagnostic functions for actuators

• Functions facilitating the downloading and subsequent clearing of fault memory contents

AUTOMOTIVE SOFTWARE ENGINEERING

-340-

In contrast with the onboard diagnostic functions (OBD), offboard diagnostics are not subject
to the same constraints with respect to hardware resources. Therefore, offboard diagnostics can
bring to bear troubleshooting algorithms that are at once extensive and comprehensive, even if
they come with the prerequisites of considerable runtime and memory capacity requirements. It
would exceed the scope of this book to discuss the various diagnostic methods. Thus, reference
is made to suggested reading and advanced literature [52].

When designing software for a microcontroller, it must be determined whether or not an offboard
diagnostic function may be carried out while the ECU is running the drive program (see Fig. 2-64
in Chapter 2 and Fig. 4-23 in Chapter 4).

Example: Sensor diagnostics concurrent with active drive program

Sensor diagnostics are frequently supported through the acquisition of sensor signals, that is,
the variables present at the microcontroller inputs, and by the online transmission of measured
values to the offboard diagnostic system. The diagnostic tester is capable of enabling this
function onboard the microcontroller while the normal drive program is being executed.

The diagnostic tester often is equipped to accept the connection of additional diagnostic
measurement equipment that permits the synchronized recording of additional external
signals—the so-called diagnostic instrumentation. As a result, the sensor diagnostics may
be performed with the aid of an array of measuring technology not unlike that depicted in
Fig. 5-84 of Chapter 5.

Fig. 6-1. Structure of a diagnostic system according to ASAM-MCD. (Ref. [17])

M
C

D
 D

a
ta

Methods and Tools for Production and Service

-341-

Example: Actuator diagnostics with an inactive drive program

By contrast, actuator diagnostics often are supported by the fact that the offboard diagnostic
system can directly support the defi nition of setpoint values for the actuators, that is, the
specifi cation and stimulation of desired microprocessor output values.

To this end, at least those functions of the drive program that calculate the setpoint values
during normal operation must be disabled. This may be accomplished through the transi-
tion to a special operating state dedicated to actuator diagnostics, which is triggered by the
diagnostic tester (see Fig. 4-23 in Chapter 4).

As is the case with calibration, the conversion from implementation display to physical display
and vice versa, while measuring, or in the presence of predefi ned internal microcontroller signals,
occurs onboard the tool.

6.2 Parameterization of Software Functions

As a general statement with respect to today’s manufacture of automobiles, it is safe to say that
the overall situation in both production and service is characterized by a large number of vehicle
variants. The reasons for this phenomenon are equally manifold. First, on one hand, any auto-
motive customer is able to assemble his customized vehicle by selecting individual equipment
options. Second, a variety of regulations and requirements indigenous to the automotive markets
of different countries results in vehicle options that are more or less country specifi c. A third
infl uence factor consists of the option that permits several operators of the same vehicle to store
their personal settings—such as mirror positions, favorite radio stations, and/or air conditioner
settings—in onboard memory for instant recall. These driver-specifi c variants are also known
as personal profi les [96].

Customer and country-specifi c equipment, as well as personal profi les, result in different vehicle
and function variants. In consequence, software variants become a necessity.

In production and service, the aforementioned variants can be controlled by dedicated software
confi guration parameters. Thus, it is possible to achieve a dramatic reduction in the number of
hardware variants to be handled in electronic systems.

All of these logically point to the need to design hardware that is universally deployable. This,
in turn, would permit the selection of a given software variant by means of a suitable parameter-
ization procedure almost at the end of the vehicle production timeline, such as shortly before the
installation of the ECU in the vehicle. Another alternative would be to defer this selection until it
can be performed in the service shop (e.g., on an ECU that is already installed in the vehicle).

With regard to personalizing operator profi les, user-specifi c software parameters must be set,
stored, selected, and enabled. This may be accomplished either in the service shop (by means
of a service tester function) or by the user himself or herself (by using a function provided by
the user interface).

AUTOMOTIVE SOFTWARE ENGINEERING

-342-

To prevent the inadvertent specifi cation of faulty or illegal parameter settings, this software
parameterization procedure must be taken into account early in the design of the software
architecture.

In this context, viewing this task at the level of the logical system architecture of the vehicle,
as shown in Fig. 6-2, will result in defi nite advantages over a view of the technical system
architecture.

Fig. 6-2. Functions and ECUs responsible for temperature displays. (Ref. [96])

Toggle between Celsius and Fahrenheit

Example: Toggling the temperature display unit between degrees Celsius and degrees

Fahrenheit

The parameterization option for the unit of measure of the temperature display may serve as
a case in point. The intent is that all temperature display functions shall be toggled between
degrees Celsius and degrees Fahrenheit by means of a single software parameter. For exam-
ple, this affects the display functions for engine, cabin interior, and outside temperature. On
the ECU side, toggling these display parameters has an effect on the instrument cluster, the
heater and air conditioner ECU, and the man/machine interface (MMI), as shown in Fig. 6-2.
Because the temperatures are indicated on a variety of display units, such as the display of
the engine temperature in the instrument cluster and the MMI, an option to parameterize
each individual ECU would allow for different values being set. The resulting inaccuracy
can be prevented by setting parameters only at the function level.

As discussed in Section 5.4.4 of Chapter 5, several options are differentiated with respect to the
technical implementation. The software parameter values can be stored in Flash memory as
shown in Fig. 5-69 of Chapter 5, or they may be written to the EEPROM of the microcontroller,
as shown in Fig. 5-70 of Chapter 5. In both cases, a function of the production and service tool
can be used to change the values of the software parameters.

Methods and Tools for Production and Service

-343-

In contrast to calibration (see Section 5.6 in Chapter 5), where the intent is to adapt the entire
data version wherever possible, the service-based parameterization of software functions affects
only selected software parameters that also are stored in a programmable memory segment, such
as in EEPROM or Flash memory, onboard the production ECU.

In standard practice, the option of setting these parameters offl ine (i.e., during an interruption of
the drive program) is suffi cient. This may be accomplished through the transition to a special
operating state dedicated to software parameterization, which is triggered by the parameteriza-
tion tool (see Fig. 4-23 in Chapter 4). Thus, it has been demonstrated that the parameterization
procedure is similar to the procedure used in the offl ine calibration of selected parameters.

6.3 Software Update Through Flash Programming

The use of Flash memory as a storage technology for program version and data version also is
increasing with respect to production ECUs. This opens the door to situations where the software
updates for ECUs can be accomplished in the fi eld by newly programming the Flash memory,
possible through the central offboard diagnostic interface of the vehicle. This facilitates a soft-
ware update without the need to remove the ECU from the vehicle. The cost-saving potential
over a physical replacement of the ECU is plainly evident.

Subsequent to covering some technical Flash programming prerequisites, this section discusses
a basic Flash programming procedure through the offboard diagnostic interface. For the sake
of simplicity and clarity, the discussion omits descriptions of some of the optional extensions
that would result in higher Flash programming speeds.

6.3.1 Erasing and Programming Flash Memory

It was mentioned in Section 2.3 of Chapter 2 and in Section 5.6 of Chapter 5 that the Flash
technologies in current use provide for only the deletion or reprogramming of complete Flash
memory segments. The smallest Flash memory unit that is physically contiguous and that can
be erased and programmed as a single entity is termed a segment, or Flash segment. Therefore,
Flash programming makes a distinction between the steps of erasing and programming of Flash
segments.

Also, note that hindrances of a technical nature prevent the simultaneous execution of a pro-
gram from within a Flash segment while another Flash segment of the same Flash module is
being reprogrammed. For this reason, during actual Flash programming, the program parts
needed to control the program fl ow for a given Flash module must be swapped out or moved
to another memory location (e.g., another Flash module or an unused RAM segment onboard
the microcontroller).

With the exception of these relevant prerequisites, the following sections shall ignore the details
of further microcontroller or memory-specifi c differentiations.

AUTOMOTIVE SOFTWARE ENGINEERING

-344-

6.3.2 Flash Programming Through the Offboard Diagnostic Interface

In conjunction with large Flash memory segments, the limited transmission speeds and/or per-
formance of the offboard diagnostic interface combine to produce Flash programming intervals
of considerable length. Thus, it stands to reason that production and service frequently issue the
requirement to reduce Flash programming times. This may be accomplished, for example, by reduc-
ing the number of Flash segments requiring reprogramming (i.e., by means of function-oriented
Flash programming) or by the separate programming of the respective program version and data
version. In actual practice, the program version often is programmed as early as during ECU
manufacture, whereas the data version, being vehicle and variant specifi c, is programmed as the
new vehicle is reaching, quite literally, the “end of the line.” As a result, software development
must store a variety of software functions, as well as the program version and data version, in
different Flash segments.

All of the microcontroller program parts handling the communications between the microcon-
troller and Flash programming tool must be stored in ROM or in a third Flash segment, together
with the Flash programming routines and Flash loader (see Fig. 1-22 in Chapter 1). Through-
out the discussion to follow, the basic program stored in ROM is termed startup block, and its
counterpart stored in Flash memory is termed boot block. Figure 6-3 depicts the division of the
entire program into four parts: startup block, boot block, program version, and data version. The
combination of the startup block and boot block makes available the software functionality of
the microcontroller required for Flash programming through the offboard diagnostic interface.

The separation into startup block and boot block makes good sense for a number of reasons. First,
the boot block—provided that it is stored in Flash memory—can be separately reprogrammed.
The procedures for boot block shifting and subsequent Flash programming are discussed in
detail in Section 6.3.5. Second, the boot block is the ideal storage venue for the nonvolatile
deposit of the current status of a given Flash programming session. This means that a restart
is facilitated in the event of a programming interruption or abort. By contrast, the unalterable
basic functionality of the startup block can be stored in the more cost-effective ROM.

However, the drive program, being part of the program version and data version, is stored in a dif-
ferent memory segment. The next sections differentiate among the following program parts:

• Startup block
• Boot block
• Program version
• Data version

6.3.3 Security Requirements

The Flash programming tool triggers the transition of the microcontroller to the Software Update
operating state.

A discussion in Section 5.6 of Chapter 5 highlighted plausibility checks (e.g., the verifi cation
of engine standstill in conjunction with engine ECUs) that had to be completed prior to the end
of the drive program and to the subsequent transition to the Software Update operating state.

Methods and Tools for Production and Service

-345-

However, production and service call for additional security measures. Product liability consid-
erations require that any unauthorized (i.e., illegal) Flash programming, or Flash programming
that conveys, transfers, and/or installs a manipulated program version or data version, must be
prevented to the extent possible and, barring this possibility, that the said transfer and/or instal-
lation at least may be detected and verifi ed.

For these reasons, Flash programming access normally is protected by two different encryption
schemes, termed authentication and signature verifi cation. Figure 6-4 shows the fl ow of com-
munications procedures between the Flash programming tool and microcontroller.

• Authentication

 Following the plausibility check, the actual verifi cation of access rights is carried out. This
is the authentication check. The procedure uses a fi rst digital key to ascertain whether or
not the respective user of the Flash programming tool is authorized to perform a software
update.

Fig. 6-3. Memory allocation for startup block, boot block, program version,
and data version.

AUTOMOTIVE SOFTWARE ENGINEERING

-346-

• Signature verifi cation for the new program version or data version to be programmed

 Another step checks the data consistency of the new data version or program version to be
programmed. This is the signature verifi cation. The procedure uses a second digital key
to ascertain whether or not the respective program version and/or data version matches the
ECU hardware. The verifi cation also examines whether or not the program version and/or
data version to be programmed has been subject to unauthorized modifi cation since the
vehicle manufacturer has released it to the production plants or service shops.

• Erasing and programming Flash segments

 The boot block will permit the actual erasing and programming actions upon the Flash
segments in question to go forward only after both verifi cation steps—authentication and
signature verifi cation—have been successfully concluded.

• Signature verifi cation for the newly programmed program version and data version

 With the Flash programming session concluded, the microcontroller uses the actual program
version and data version just programmed to calculate the signature and to check for possible

Fig. 6-4. Security measures protecting Flash programming
against unauthorized access.

Methods and Tools for Production and Service

-347-

programming errors. When the signature verifi cation is concluded, the actual result of the
signature calculation is deposited in the Flash memory. This is accomplished by storing
special memory structures, which are part of the program version and data version, in Flash
memory (Fig. 6-5). These are the so-called program version and data version logistics. The
successful signature verifi cation is the signal for the boot block to enable the activation of
the new drive program.

Fig. 6-5. Hardware, program, and data version logistics
for signature calculation, storage, and authentication.

It would exceed the scope of this book to discuss available encryption schemes. Thus, reference
is made to suggested reading and advanced literature [97].

6.3.4 Availability Requirements

Despite the optimization measures discussed in the preceding sections, Flash programming
through the offboard interface may take a relatively long time, and interruptions of the program-
ming sequences caused by malfunctions of one kind or another may be expected at any time.
Interferences of this kind may come in the guise of power failures in the vehicle electrical system
or Flash programming tool, unacceptable responses from other ECUs in the network, or inter-
ruptions in the communications connection between the ECU and Flash programming tool, or
they may be caused by simple operator error. Failed authentications and signature verifi cations
also cause Flash programming sessions to be aborted.

For all of these reasons, the availability of Flash programming in any possible set of circum-
stances takes top priority in the design of Flash programming procedures. This requirement may
be met, for example, by enabling a restart of the programming sequence after a programming
abort. A suitable procedure is presented in the following example.

AUTOMOTIVE SOFTWARE ENGINEERING

-348-

Example: Flash programming sequence for the program version and data version

Figure 6-6 shows a typical Flash programming procedure of the program version and data
version shown in Fig. 6-5.

Fig. 6-6. Boot block states and transitions when Flash programming
the program version and data version.

Upon the successful conclusion of Flash programming, the Flash programming tool issues
a Reset command that triggers the transition of the microcontroller to Normal Operation
State.

The discussion so far has neglected the swap-out of the boot block into another memory mod-
ule, which is needed during the actual Flash programming procedure. The following section
highlights this boot block shifting, as well as programming of the boot block itself.

Methods and Tools for Production and Service

-349-

6.3.5 Boot Block Shifting and Flash Programming

To complete this area of discussion, one method for Flash programming the boot block shall be
examined in detail, taking into account the previously discussed prerequisites of the deployed
Flash technology and the availability requirements.

First, and for the duration of the anticipated Flash programming session, the active boot block
must be swapped to another memory module onboard the microprocessor. This means that the
boot block must be relocatable. This may be accomplished, for example, by copying the boot
block into a RAM area that is unoccupied during the Flash programming procedure. The boot
block is subsequently run from within the RAM.

A restart of the programming sequence must be possible, even if Flash programming the boot block
fails. To retain availability after a programming abort, a fault-free boot block will suffi ce. This
requirement can be met by applying the Recover and Restore commands to the boot block.

Example: Boot block Flash programming sequence

The above-mentioned requirements may be met with the use of the procedural sequence
shown in Fig. 6-7. A differentiation is made between the old boot block and its new coun-
terpart.

Fig. 6-7. Boot block Flash programming steps.

AUTOMOTIVE SOFTWARE ENGINEERING

-350-

The procedure differentiates three major steps:

 Step 1: Copy the old boot block to free RAM area.

 Step 2.1: Enable the old boot block in RAM, and disable the old boot block in Flash
memory.

 Step 2.2: Commit the new boot block to interim storage in Flash segment C.

 This step encompasses the procedures “Erase Flash segment C,” “Program
new boot block in Flash segment C,” and “Verify signature for new boot
block in Flash segment C.”

 In the event of a program abort during any one of these operations, the
valid old boot block in Flash segment A can be used to restart Flash pro-
gramming.

Step 3: Program the new boot block by copying Flash segment C to Flash seg-
ment A.

 This step encompasses the procedures “Erase Flash segment A,” “Program
new boot block in Flash segment A by copying Flash segment C to A,” and
“Verify signature for new boot block in Flash segment A.”

 In the event of a program abort during any one of these operations, the valid
new boot block in Flash segment C can be used to restart Flash program-
ming.

The respective valid boot block in Flash memory must be marked. This validity marker
must be committed to nonvolatile storage in Flash memory, making this information the
basis for a possible restart.

This is followed by the activation of the new boot block in Flash segment A, and the deac-
tivation of the boot block held in RAM. The fi nal step consists of Flash programming the
data version, as described in Fig. 6-6.

6.4 Startup and Testing of Electronic Systems

It may be safe to say that, at the end of the production process, the new vehicle must go to the
service shop for the fi rst time. This is the venue for the fi rst startup and testing of the electronic
systems of the completely assembled vehicle, which also includes every offboard interface. A
similar situation would be occasioned by the replacement of individual electronic vehicle com-
ponents in a real-life service facility.

All of the methods and tools deployed for the described purpose utilize the functions discussed
in Sections 6.1 through 6.3 as a working basis. Application cases in point may be found in
the confi guration of replaced electronic components taken from a specifi c vehicle, or in Flash
programming of test programs in the production of ECUs.

-351-

CHAPTER SEVEN

SUMMARY AND OUTLOOK

Electronic systems and software have become indispensable components of many functions in
the modern automobile. There is every reason to believe that the complement of software-
supported vehicle functions will continue to grow.

The implementation of vehicle functions based on electronic systems and software requires
the concerted application of the knowledge and skills indigenous to several engineering disci-
plines.

Chapters 1 and 2 addressed this need by providing a comprehensive introduction to vehicle
electronics, followed by the basics of control systems, real-time-systems, and distributed and
networked systems, as well as reliable and safety-relevant systems.

The development of electronics and the development of software should be viewed as engineer-
ing disciplines within the area of system development.

This requires that the hardware-based perception of vehicle functions, systems, and components
be expanded to include the software.

Because the development of vehicle functions is a cooperative effort distributed over several
departments and companies, software development is organized according to the principle of
the division of labor, where various development partners contribute their share in the form of
software components, such as real-time operating systems.

Therefore, system and software engineering call for a consistent process that accounts for
every single development step—starting with the analysis of user requirements and progressing
through specifi cation, design, implementation, integration, and calibration to fi nal acceptance
testing. Another important issue is the observation of the entire life cycle of a given vehicle.
This requires the early integration of monitoring and diagnostic functions required by customer
service at a much later juncture.

The established interdependence of hardware and software is in the process of being loosened.
As a basis for defi ning hardware-independent interfaces between application software and
platform software, standards such as ISO, OSEK, ASAM, and future AUTOSAR are gaining
importance in the automotive industry.

The processes discussed in Chapters 3 and 4 may be employed to support the development and
long-term maintenance of automotive electronic systems and software.

AUTOMOTIVE SOFTWARE ENGINEERING

-352-

The model-based specifi cation of electronic systems, and of software functions and the environ-
ment, fosters an easier understanding of complex interactions while providing a host of benefi ts
throughout the various phases of development.

The use of graphical function models during analysis and specifi cation facilitates the evaluation of
alternatives for the technical implementation of the functions. Simulation and rapid prototyping
methods likewise are based on function models. With the aid of appropriate tools for code gen-
eration, function models also can be mapped to software components for production ECUs.

Models of the vehicle functions and of its environment are needed in laboratory vehicles and
on test benches during the integration and test phases of development.

The use of both kinds of models thus clearly supports the testing and integration tasks particular
to development projects in which various departments and companies are involved.

In production and service, function models facilitate the implementation of powerful techniques
and methods for diagnostics, parameterization, and software updates.

Quality and cost optimization in concert with a reduction of development risk become tangible
options through simulation, automation of development tasks, and shifting development steps
from the vehicle to the test bench and laboratory. Compared with conventional road testing, all
of these benefi ts add up to a greater scope for freedom of experimentation and a higher degree
of test reproducibility.

The foregoing notwithstanding, it is safe to say that the most sophisticated simulation techniques
provide answers only to those questions that were actually asked. By contrast, road testing also
answers questions that had not even been thought of in advance. Therefore, it stands to reason
that road trials will remain indispensable because the fi nal validation of vehicle functions can
be obtained only through acceptance testing in the vehicle. Also, note that road testing imposes
special demands with respect to the tools employed. Three major items in the “must have”
category are the support for a vehicle-compatible offboard interface to the ECUs, mobile mea-
surement equipment suitable for deployment in harsh environments, and, last but not least, user
interfaces and displays that are suitable for and easy to use in an in-vehicle environment.

Chapters 5 and 6 examined methods and tools that support the core development processes and
the core production and service processes.

In vehicle function development, the trend toward functions that affect several subsystems and
that cannot be assigned to one single subsystem is gaining momentum. The capability to network
the vehicle and the environment by means of wireless transmission systems created the option
of implementing a large set of new functions. In this context, the spectrum goes from pre-crash
detection to predictive diagnostic functions. Thus, it appears that the networking paradigm must
be expanded to become more encompassing.

This means that environmental systems must be integrated in addition to the in-vehicle systems,
making high demands on suitable analysis, specifi cation, and integration methodologies as they
apply to the distributed and networked systems thus created.

Summary and Outlook

-353-

The fulfi llment of numerous requirements and the consideration of many interdependencies
make the development of vehicle functions a highly demanding endeavor. The complexity of
this endeavor can be managed only by using a small number of simplifi ed design patterns. This
approach must be supported by integrated processes, methods, tools, and standards for the entire
vehicle life cycle. The established close cooperation among vehicle manufacturers, suppliers,
and tool manufacturers will continue to be essential in fostering the further evolution of these
processes, methods, tools, and standards.

Given these trends and forecasts of the industry, the discipline of automotive software engineer-
ing will continue to provide many exciting challenges.

-355-

REFERENCES

[1] Robert Bosch GmbH (Ed.), Konventionelle und Elektronische Bremssysteme, Robert
Bosch GmbH, Stuttgart, Germany, 2002.

[2] ISO International Organization for Standardization, ISO 11898: Austausch digitaler
Informationen; Controller Area Network (CAN) für schnellen Datenaustausch, 1994.

[3] Lapp, A., Torre Flores, P., Schirmer, J., Kraft, D., Hermsen, W., Bertram, T., and
Petersen, J., “Software-Entwicklung für Steuergeräte im Systemverbund—Von der
CARTRONIC-Domänenstruktur zum Steuergerätecode” (“Software Development for
Networked Electronic Control Units—From the CARTRONIC Domain Structure to Code
for Electronic Control Units”; original German), in Proceedings of the 10th International
Congress “Electronic Systems for Vehicles,” Baden-Baden, Germany, September 27–28,
2001, ed. by VDI Society Vehicle and Transportation Technology, VDI-Berichte 1646,
VDI-Verlag, Düsseldorf, Germany, 2001, pp. 249–276.

[4] Robert Bosch GmbH (Ed.), Kraftfahrtechnisches Taschenbuch, 24th Edition, Vieweg-
Verlag, Wiesbaden, Germany, 2002.

[5] International Organization for Standardization, ISO 9141: Straßenfahrzeuge; Diagnose-
systeme; Anforderungen für den Austausch digitaler Informationen, 1992.

[6] Robert Bosch GmbH (Ed.), Motormanagement ME-Motronic, Robert Bosch GmbH,
Stuttgart, Germany, 1999.

[7] Robert Bosch GmbH (Ed.), Otto-Motormanagement: Grundlagen und Komponenten,
Robert Bosch GmbH, Stuttgart, Germany, 2002.

[8] Robert Bosch GmbH (Ed.), Elektronische Dieselregelung EDC, Robert Bosch GmbH,
Stuttgart, Germany, 2001.

[9] Frischkorn, Hans-Georg, Negele, Herbert, and Meisenzahl, Johannes, “The Need for
Systems Engineering. An Automotive Project Perspective,” in Proceedings of the 2nd
European Systems Engineering Conference (EuSEC), Munich, Germany, Septem-
ber 13–14, 2000 (keynote, on CD ROM), Herbert Uth Verlag, Munich, Germany, 2000,
ISBN 3-89675-935-3.

AUTOMOTIVE SOFTWARE ENGINEERING

-356-

[10] Fuchs, M., Lersch, F., and Pollehn, D., “Neues Rollenverständnis für die Entwicklung
verteilter Systemverbunde in der Karosserie- und Sicherheitselektronik (“New Way to
Handle the Development of Distributed Systems in Body and Safety Electronics”; origi-
nal German), in Proceedings of the 10th International Congress “Electronic Systems for
Vehicles,” Baden-Baden, Germany, September 27–28, 2001, ed. by VDI Society Vehicle
and Transportation Technology, VDI-Berichte 1646, VDI-Verlag, Düsseldorf, Germany,
2001, pp. 135–147.

[11] Eppinger, Andreas, Dieterle, Werner, and Bürger, Klaus Georg, “Mechatronik—Mit
ganzheitlichem Ansatz zu erhöhter Funktionalität und Kundennutzen,” ATZ/MTZ special
issue Automotive Electronics, September 2001, pp. 10–18.

[12] Stevens, Richard, Brook, Peter, Jackson, Ken, and Arnold, Stuart, Systems Engineering.
Coping with Complexity, Prentice-Hall, Upper Saddle River, NJ, 1998.

[13] CMMI® Capability Maturity Model Integration®, http://www.sei.cmu.edu/cmmi.

[14] International Organization for Standardization/International Electrotechnical Commission,
ISO/IEC 15504-1: Information Technology—Software Process Assessment—Concepts
and Introductory Guide, 1998.

[15] V-Modell—Entwicklungsstandard für IT-Systeme des Bundes. Vorgehensmodell Kurz-
beschreibung, 1997, http://www.v-modell.iabg.de/vm97.htm.

[16] OSEK Open Systems and the Corresponding Interfaces for Automotive Electronics,
http://www.osek-vdx.org.

[17] ASAM Association for Standardisation of Automation- and Measuring Systems, http://
www. asam.de.

[18] Deutsches Institut für Normung e.V., DIN 19250—Grundlegende Sicherheitsbetrachtungen
für MSR-Schutzeinrichtungen, 1989.

[19] International Electrotechnical Commission, IEC 61508: Functional Safety of Electri-
cal/Electronic/Programmable Electronic Safety-Related Systems, 1998.

[20] Bundesgesetzblatt, “Verordnung über die Inkraftsetzung der ECE-Regelung Nr. 79 über
einheitliche Bedingungen für die Genehmigung der Fahrzeuge hinsichtlich der Lenkan-
lage” (Verordnung zur ECE-Regelung Nr. 79), Part 2, 1995.

[21] DaimlerChrysler AG, “Übereinkommen über die Annahme einheitlicher technischer
Vorschriften für Radfahrzeuge, Ausrüstungsgegenstände und Teile, die in Radfahrzeuge(n)
eingebaut und/oder verwendet werden können, und die Bedingungen für die gegenseitige
Anerkennung von Genehmigungen, die nach diesen Vorschriften erteilt wurden, ECE-
Regelung Nr. 13, Einheitliche Vorschriften für die Genehmigung von Fahrzeugen der
Klassen M, N und O hinsichtlich der Bremsen,” DaimlerChrysler AG, Stuttgart, Germany,
issue 2000-08-31.

References

-357-

[22] Eckrich, Michael, and Baumgartner, Werner, “By-Wire überlagert Mechanik,” Automo-
bilentwicklung, September 2001, pp. 24–25.

[23] IBM International Technical Support Organization, Redbook “Business Process Reengi-
neering and Beyond,” September 28, 2001, http://www.ibm.com/support.

[24] Bertram, Torsten, Opgen-Rhein, Peter, “Modellbildung und Simulation mechatro-nischer
Systeme—Virtueller Fahrversuch als Schlüsseltechnologie der Zukunft,” ATZ/MTZ special
issue Automotive Electronics, September 2001, pp. 20–26.

[25] International Organization for Standardization, ISO 14230: Road Vehicles—Diagnostic
Systems—Keyword Protocol 2000, 1999.

[26] International Organization for Standardization, ISO 15765: Road Vehicles—Diagnostic
Systems—Diagnostics on CAN, 2000.

[27] Lange, K., Bortolazzi, J., Brangs, P., Marx, D., and Wagner, G., “Herstellerinitiative
Software” (“Manufacturer Initiative Software”; original German), in Proceedings of the
10th International Congress “Electronic Systems for Vehicles,” Baden-Baden, Germany,
September 27-28, 2001, ed. by VDI Society Vehicle and Transportation Technology, VDI-
Berichte 1646, VDI-Verlag, Düsseldorf, Germany, 2001, pp. 183–199.

[28] Erben, Meinhard, Fetzer, Joachim, and Schelling, Helmut, “Software-Komponenten—Ein
neuer Trend in der Automobilelektronik,” ATZ/MTZ special issue Automotive Electronics,
September 2001, pp. 74–78.

[29] Gschweitl, Kurt, Pfl uegl, Horst, Fortuna, Tiziana, and Leithgoeb, Rainer, “Steigerung der
Effi zienz in der modellbasierten Motorenapplikation durch die neue CAMEO-Online-
DoE-Toolbox,” ATZ Automobiltechnische Zeitschrift, July/August 2001, pp. 636–643.

[30] Roy, Ranjit K., Design of Experiments Using the Taguchi Approach. Steps to Product
and Process Improvement, John Wiley & Sons, New York, 2001.

[31] Montgomery, Douglas, Design and Analysis of Experiments, John Wiley & Sons, New
York, 2001.

[32] Deutsches Institut für Normung e.V., DIN 19226-1—Leittechnik; Regelungstechnik und
Steuerungstechnik, Allgemeine Grundbegriffe, February 1994.

[33] Föllinger, Otto, Regelungstechnik. Einführung in die Methoden und ihre Anwendung,
Hüthig-Verlag, Heidelberg, Germany, 1994.

[34] Unbehauen, Heinz, Regelungstechnik, Vols. 1–3, Vieweg-Verlag, Wiesbaden, Germany,
2000.

[35] Kiencke, Uwe, and Nielsen, Lars, Automotive Control Systems. For Engine, Driveline,
and Vehicle, Springer-Verlag, Berlin, Heidelberg, New York, 2000.

AUTOMOTIVE SOFTWARE ENGINEERING

-358-

[36] Mayr, Robert, Regelungsstrategien für die automatische Fahrzeugführung. Längs- und
Querregelung, Spurwechsel- und Überholmanöver, Springer-Verlag, Berlin, Heidelberg,
New York, 2001.

[37] Kiencke, Uwe, Signale und Systeme, R. Oldenbourg Verlag, Munich, Vienna, 1998.

[38] Kiencke, Uwe, Ereignisdiskrete Systeme. Modellierung und Steuerung verteilter Systeme,
R. Oldenbourg Verlag, Munich, Vienna, 1997.

[39] Robert Bosch GmbH (Ed.), Mikroelektronik im Kraftfahrzeug, Robert Bosch GmbH,
Stuttgart, Germany, 2001.

[40] Robert Bosch GmbH (Ed.), Sensoren im Kraftfahrzeug, Robert Bosch GmbH, Stuttgart,
Germany, 2001.

[41] Robert Bosch GmbH (Ed.), Autoelektrik/Autoelektronik, Systeme und Komponenten,
4th Edition, Vieweg-Verlag, Wiesbaden, Germany, 2002.

[42] Liu, Jane W.S., Real-Time Systems, Prentice-Hall, Upper Saddle River, NJ, 2000.

[43] Wettstein, H., Architektur von Betriebssystemen, 3rd Edition, Carl Hanser Verlag, Munich,
Germany, 1987.

[44] International Telecommunication Union, Message Sequence Charts, ITU-T Recommen-
dation Z. 120, Geneva, Switzerland, 1994.

[45] Kopetz, Hermann, Real-Time Systems. Design Principles for Distributed Embedded
Applications, Kluwer Academic Publishers, Norwell, MA, 2002.

[46] International Organization for Standardization/International Electrotechnical Commission,
ISO/IEC 7498: Informationstechnik—Kommunikation Offener Systeme—Basis-Refer-
enzmodell, 1994.

[47] International Organization for Standardization/International Electrotechnical Commission,
ISO/IEC 10731: Informationstechnik—Kommunikation Offener Systeme—Basis-Refer-
enzmodell—Konventionen für Defi nition von OSI-Diensten, 1995.

[48] Etschberger, Konrad, Controller Area Network. Grundlagen, Protokolle, Bausteine,
Anwendungen, 3rd Edition, Carl Hanser Verlag, Munich, Vienna, 2002.

[49] FlexRay, www.fl exray.com.

[50] TTP Time Triggered Protocol, www.tttech.com.

[51] International Organization for Standardization, ISO 11898-4: Time Triggered CAN,
2002.

[52] Isermann, Rolf (Ed.), Überwachung und Fehlerdiagnose. Moderne Methoden und ihre
Anwendungen bei technischen Systemen, VDI-Verlag, Düsseldorf, Germany, 1994.

References

-359-

[53] Birolini, Alessandro, Reliability Engineering. Theory and Practice, Springer-Verlag,
Berlin, Heidelberg, New York, 1999.

[54] Birolini, Alessandro, Zuverlässigkeit von Geräten und Systemen, Springer-Verlag, Berlin,
Heidelberg, New York, 1997.

[55] Ehrenberger, Wolfgang, Software-Verifi kation: Verfahren für den Zuverlässigkeitsnachweis
von Software, Carl Hanser Verlag, Munich, Vienna, 2002.

[56] U.S. Environmental Protection Agency, Control of Air Pollution from Motor Vehicles
and New Motor Vehicles; Modifi cation of Federal On-Board Diagnostic Regulations
for Light-Duty Vehicles and Light-Duty Trucks; Extension of Acceptance of California
OBD II Requirements, December 1998.

[57] Halang, W.A., and Konakovsky, R., Sicherheitsgerichtete Echtzeitsysteme, R. Oldenbourg
Verlag, Munich, Vienna, 1999.

[58] Lin, Shu, and Costello, Daniel J., Error Control Coding, Prentice-Hall, Englewood Cliffs,
NJ, 1983.

[59] Leveson, Nancy G., Safeware. System Safety and Computers. A Guide to Preventing
Accidents and Losses Caused by Technology, Addison-Wesley, New York, 1995.

[60] Storey, Neil, Safety-Critical Computer Systems, Prentice-Hall, Harlow, England, 1996.

[61] Deutsches Institut für Normung e.V., DIN 25448—Ausfalleffektanalyse (Fehler-Möglich-
keits- und Einfl uss-Analyse), May 1990.

[62] “Der neue BMW 7er,” Automobiltechnische Zeitschrift/Motortechnische Zeitschrift,
ATZ/MTZ Extra (special issue), November 2001.

[63] International Organization for Standardization, ISO 11519: Straßenfahrzeuge—Serielle
Datenübertragung mit niedriger Übertragungsrate, 1994.

[64] Bytefl ight, www.bytefl ight.de.

[65] MOST Media Orientated System Transport, www.mostcooperation.com.

[66] “Die neue Mercedes-Benz-E-Klasse,” Automobiltechnische Zeitschrift/Motortechnische
Zeitschrift, ATZ/MTZ Extra (special issue), May 2002.

[67] Bluetooth, www.bluetooth.com.

[68] LIN Local Interconnect Network, www.lin-subbus.de.

[69] Boy, J., Dudek, C., and Kuschel, S., Projektmanagement. Grundlagen, Methoden und
Techniken, Zusammenhänge, Gabal-Verlag, Offenbach, Germany, 1998.

[70] The Motor Industry Software Reliability Association, Development Guidelines for Vehicle
Based Software, 1994, http://www.misra.org.uk.

AUTOMOTIVE SOFTWARE ENGINEERING

-360-

[71] International Council on Systems Engineering, http://www.incose.org.

[72] Balzert, Helmut, Lehrbuch der Software-Technik, 2nd Edition, Spektrum Akademischer
Verlag, Heidelberg—Berlin, Germany, 2000.

[73] ETAS GmbH (Ed.), ASCET V5.0 User’s Guide. ETAS GmbH, Stuttgart, Germany,
2004.

[74] Selic, B., Gullekson, G., and Ward, P.T., Real-Time Object-Oriented Modeling, John Wiley
& Sons, New York, 1994.

[75] Stoer, Josef, Numerische Mathematik 1, 8th Edition, Springer-Verlag, Berlin, Heidelberg,
New York, 1999.

[76] Kernighan, B.W., and Ritchie, D.M., Programmieren in C, 2nd Edition, Carl Hanser
Verlag, Munich, Germany, 1990.

[77] Broy, Manfred, Informatik. Eine grundlegende Einführung, Vols. 1/2, Springer-Verlag,
Berlin, Heidelberg, New York, 1998.

[78] Wirth, N., Grundlagen und Techniken des Compilerbaus, Addison-Wesley, Bonn, Germany,
and Paris, France, 1996.

[79] Manufacturer Supplier Relationship, Working Groups MEGMA and MEDOC, http://www.
msr-wg.de.

[80] The Motor Industry Software Reliability Association, Guidelines for the Use of the C
Language in Vehicle-Based Software, 1998.

[81] van Basshuysen, Richard, and Schäfer, Fred (Eds.), Handbuch Verbrennungsmotor.
Grundlagen, Komponenten, Systeme, Perspektiven, 1st Edition, Vieweg-Verlag,
Wiesbaden, Germany, 2002; also published as van Basshuysen, Richard, and Schäfer,
Fred (Eds.), Internal Combustion Engine Reference Handbook, SAE International,
Warrendale, PA, 2004.

[82] Pauli, B., and Meyna, A., “Zuverlässigkeitsprognosen für elektronische Steuergeräte
im Kraftfahrzeug” (“Reliability of Electronic Control Units in Motor Vehicles”; orginal
German), in Proceedings of the 7th International Congress “Electronic Systems for
Vehicles,” Baden-Baden, Germany, September 13, 1996, ed. by VDI Society Vehicle and
Transportation Technology, VDI-Berichte 1287, VDI-Verlag, Düsseldorf, Germany, 1996,
pp. 87–105.

[83] Beer, A., and Schmidt, M., “Funktionale Sicherheit Sicherheitsrelevanter Systeme im
Kraftfahrzeug” (“Functional Safety of Safety Relevant Systems in Vehicles”; original
German), in Proceedings of the 9th International Congress “Electronic Systems for
Vehicles,” Baden-Baden, Germany, October 5–6, 2000, ed. by VDI Society Vehicle and
Transportation Technology, VDI-Berichte 1547, VDI-Verlag, Düsseldorf, Germany, 2000,
pp. 391–409.

References

-361-

[84] UML Unifi ed Modeling Language™, www.uml.org.

[85] Harel, D., Statecharts. A Visual Formalism for Complex Systems, Science of Computer
Programming, Vol. 8, Elsevier Science Publishers, North Holland, 1987.

[86] ETAS GmbH (Ed.), ERCOSEK V4.2 User’s Guide, ETAS GmbH, Stuttgart, Germany,
2002.

[87] ETAS GmbH (Ed.), INCA V5.0 User’s Guide, ETAS GmbH, Stuttgart, Germany, 2004.

[88] Grams, T., Denkfallen und Programmierfehler, Springer-Verlag, Berlin, Heidelberg, New
York, 1990.

[89] ETAS GmbH (Ed.), Data Declaration System V2.3 User’s Guide, ETAS GmbH, Stuttgart,
Germany, 2001.

[90] ETAS GmbH (Ed.), LABCAR-OPERATOR V2.0 User’s Guide, ETAS GmbH, Stuttgart,
Germany, 2003.

[91] Kühner, T., Seefried, V., Litschel, M., and Schelling, H., “Realisierung Virtueller Fahr-
zeugfunktionen für Vernetzte Systeme auf Basis Standardisierter Software-Bausteine”
(“Implementation of Virtual Vehicle Functions for Networked Systems Using Standardized
Software Modules”; original German), in Proceedings of the 7th International Congress
“Electronic Systems for Vehicles,” Baden-Baden, Germany, September 12–13, 1996, ed.
by VDI Society Vehicle and Transportation Technology, VDI-Berichte 1287, VDI-Verlag,
Düsseldorf, Germany, 1996, pp. 691–708.

[92] Institute of Electrical and Electronics Engineers: NEXUS, www.ieee-isto.org/
Nexus5001.

[93] Institute of Electrical and Electronics Engineers: JTAG IEEE 1149.1, www.ieee.org.

[94] ETAS GmbH (Ed.), ETK S2.0 Emulator Probe for Serial Debug Interfaces, Data Sheet,
ETAS GmbH, Stuttgart, Germany, 2002.

[95] ETAS GmbH (Ed.), ETK 7.1 16-Bit Emulator Probe, Data Sheet, ETAS GmbH, Stuttgart,
Germany, 2001.

[96] Gumpinger, F., Huber, F.-M., and Siefermann, O., “BMW Car & Key Memory: Der Kunde
bekommt sein individuelles Fahrzeug” (“BMW Car & Key Memory—The Customer Will
Receive His Individual Vehicle”; original German), in Proceedings of the 8th International
Congress “Electronic Systems for Vehicles,” Baden-Baden, Germany, October 8–9, 1998,
ed. by VDI Society Vehicle and Transportation Technology, VDI-Berichte 1415, VDI-
Verlag, Düsseldorf, Germany, 1998, pp. 995–1007.

[97] Singh, S., Geheime Botschaften. Die Kunst der Verschlüsselung von der Antike bis in
die Zeiten des Internet, Deutscher Taschenbuch Verlag, Munich, Germany, 2001; also
published as Singh, S., The Code Book, Fourth Estate, ISBN 1857028899, 2000.

-363-

Fig. No. Ref.

Robert Bosch GmbH, Stuttgart, Germany:
1-1 [1]
1-5 [6]
1-6 [1]
2-3 [4]
2-11 [39]
2-12 [39]
2-14 [39]
2-15 [39]
2-62 [6]

ETAS GmbH, Stuttgart, Germany:
4-27 [73]
4-29 [73]
5-26 [73]
5-27 [73]
5-28 [73]
5-29 [73]
5-30 [73]
5-43 [73]
5-54 [86]
5-55 [86]
5-56 [86]
5-57 [73, 87]
5-58 [87]
5-71 [89]
5-72 [73]
5-78 [90]
5-79 [90]
5-80 [90]
5-81 [90]
5-82 [90, 91]
5-84 [87]

ILLUSTRATION CREDITS

AUTOMOTIVE SOFTWARE ENGINEERING

-364-

ETAS GmbH, Stuttgart, Germany:

5-85 [87]
5-88 [87]
5-89 [87]
5-99 [87]

Others (outside copyright):

1-9 [9] Uth

1-10 [10] VDI

1-17 [23] IBM

1-21 [17] ASAM

1-22 [16] OSEK

2-18 [42] Prentice-Hall

2-20 [16] OSEK

2-21 [16] OSEK

2-22 [16] OSEK

2-23 [43] Hanser

2-24 [16] OSEK

2-50 [16] OSEK

2-51 [16] OSEK

2-52 [48] Hanser

2-58 [18, 19] DIN, IEC

2-66 [52] VDI

2-67 [62] ATZ

3-21 [23] IBM

3-22 [23] IBM

3-24 [9] Uth

3-26 [12] Prentice-Hall

3-27 [12] Prentice-Hall

3-28 [70] MISRA

4-3 [23] IBM

4-18 [70] MISRA

4-28 [72] Spektrum

5-17 [54] Springer

5-18 [81] Vieweg

5-21 [84] UML

5-22 [84] UML

5-42 [76] Hanser

6-1 [17] ASAM

6-2 [96] VDI

-365-

LIST OF ACRONYMS

ABS Antilock braking system

ACC Adaptive cruise control

AFS Active front steering

API Application programming interface

ALU Arithmetic and logic unit

CAL-RAM Calibration RAM

CAN Controller area network

CCP CAN calibration protocol

CMMI® Capability Maturity Model Integration®

CPU Central processing unit

CSMA Carrier sense multiple access

CSMA/CA CSMA/collision avoidance

CSMA/CD CSMA/collision detection

D/A Digital-analog conversion

DMA Direct-memory I/O access

DRAM Dynamic RAM

DTC Diagnostic trouble code

ECU Electronic control unit

EEPROM Electrical EPROM

EMC Electromagnetic compatibility

AUTOMOTIVE SOFTWARE ENGINEERING

-366-

EPROM Erasable PROM

ESP Electronic stability program

ETC Electronic throttle control

FIFO First in, fi rst out

FMEA Failure mode and effects analysis

FO Fail-operational (system)

FR Fail-reduced (system)

FS Fail-safe (system)

FTA Fault-tree analysis

HAL Hardware abstraction layer

HiL Hardware-in-the-loop (simulation)

I/O Input/output

LOV Line of visibility (diagrams)

MIL Malfunction indicator light

MMI Man/machine interface

MTTF Mean time to failure

MTTR Mean time to repair

NV-RAM Nonvolatile RAM

OBD Onboard diagnostics

OS Operating system

List of Acronyms

-367-

PI Proportional-plus-integral (control)

PPM Parts per million

PROM Programmable ROM

RAM Random access memory

ROM Read-only memory

SBC Sensotronic Brake Control (by Bosch)

SiL Software-in-the-loop (simulation)

SPICE Software Process Improvement and Capability Determination

SRAM Static RAM

TCS Traction control system

TDMA Time division multiple access

TTF Time to failure

UML™ Unifi ed Modeling Language™

UV Ultraviolet

VDA German Association of the Automotive Industry

WCET Worst-case execution time

WCRT Worst-case response time

XCP Extended calibration protocol

INDEX
Page numbers followed by f indicate a figure.

Index Terms Links

A

A-sample 161

Absolute deadline 67

Abstraction level 129

Acceleration function 110

Acceptance test 26 154 208

Accepted user requirements 151

Accident 107

Accumulators 60

Actions 248 251

Activate 69 71

Activation point 66

Activation rate 67 219

Active drive program, sensor diagnostics

 concurrent with 340

Active safety systems 13

Actuators 7

 for body electronic systems 13

 for chassis electronic systems 11

 diagnostics for 120

 concurrent with inactive drive program 341

 integration of 202

 monitoring of 117

 for powertrain electronic systems 9

 test environment for 313 314f

Adaptive cruise control (ACC) system 15

Addition, pointers on 295

Additional Programmer Method 304 305f

Index Terms Links

Addressing 92

Aggregations 130

Algorithms

 definition of 286

 error propagation in fixed-point arithmetic 286

 for fixed- and floating-point arithmetic 277

ALU 52

Analog-digital (A/D) conversion 47

Analysis

 of closed-loop control systems 171 214

 of distributed and networked systems 173 174f 225

 of failure rate 230

 of logical system architecture 24 211 213

 of open-loop control systems 171 214

 of real-time systems 173 218

 of reliability 234

 of safe systems 229

 of schedulability 220

 of software requirement 25 175

 of user requirements 24

Anti-lock braking system, calculating wheel

 rpm and vehicle speed for 240

Aperiodic events 52

Application software 34 297

Arbitration

 diagram 65 66f

 bus, strategies for 97

Arithmetic and logic unit (ALU) 52

Arithmetic instruction 184 185

Arithmetical functions, specification of 244

Artifacts 162 147

Assembler 196

Atomic operations 80

Attributes 75 240

Index Terms Links

Authentication 345

Automation 36

 of experiments 318 337

Availability 100

 requirements 347

 mean, definition of 106

B

B-sample 161

Basic task state model 69 70f

Bathtub life curve 103

Behavior 240

Behavioral model

 design and implementation of 192 303

 specification of 183

 using block diagrams 244

 using decision tables 248

 using high-level languages 256 258

 using state machines 250

Binary file calibration 336

Binary notation 278

Block diagrams 40

 specification of Boolean arguments using 247

 specification of behavioral model using 244

Body electronic systems 12

Body, integrated 7

Boolean functions, specification of 247

Boolean instruction 184 185

Boot block 344

Boot block shifting and Flash programming 349

Brake-by-wire 125

Branching 185

Bus 87

Bus access conflicts 97

Index Terms Links

Bus access strategies 97

Bus system 53

Bypass communications 263

Bypass hooks 262

Bypass implementation 262

Bypass interface 262

Bypass mode, development of horizontal

 prototype in 262

Byte 54

C

C-sample 161

Calculated signals 273

Calculations

 onboard vs. offboard 272

 online vs. offline 271

 of reliability function 233

 of wheel rpm and vehicle speed for anti-lock

 braking system 240

Calibration 25 30 207

 of binary program and data version 336

 of model or source code 337

 offline procedures 321 322f 325

 online procedures 321 322f 326

 online, classification of offboard interfaces for 327

 of parameters

 offline 325

 online 326

 of software functions 212 319

Calibration ECUs 178

Calibration RAM (CAL-RAM) 326

 management of 333

Calibration tools, communications protocols for 332

Call 185

Index Terms Links

Capability Maturity Model Integration

 (CMMI) 130 131

Carrier sense multiple access (CSMA) strategy 98

Cause-and-effect analysis 114

Central processing unit (CPU) 52

Centralized bus access strategies 98

Change management 132

Characteristic curve 182 183f

 resource optimization for 273

Characteristic maps 182 183f

 resource optimization for 273

Chassis

 electronic systems of 10

 integrated 7

Class 240

Classification of offboard interfaces for online

 calibration 327

Client/server model 88

Clock generator 53

Closed-loop control model 40

Closed-loop control systems, analysis and

 specification of 171 214

 logical system architecture for 18

Closed-loop control task 40

Closed-loop plant model 40

C-matrix 93

CMMI 130 131

Code generation 30

Comfort group 12

Communication latency 99

Communications 82

 bypass 263

 links, monitoring 112

 matrix 93

Index Terms Links

Communications (Cont.)

 offboard diagnostic 122

 organization of 95

 protocols for calibration tools and microcontrollers 332

Compare operations, pointers on 296

Compiler 197

Component-oriented reuse 170

Component-oriented testing 318

Component responsibilities 145 158

Component test 154

Component variants 134

Composition 130

Condition 251

Configuration 135

 of standardized software components 299

Configuration management 133

Configuration parameters, setting data variants via 303

Confirmation 88

Conflicts of objectives 169

Conjunction 247

Constraints 165 169

Context and interface model for instrument

 cluster software 177

Continual development and change management 132

Continuous time and value signals 46

Control algorithm 43

Control and monitoring systems

 block diagram of 4f

 logical system architecture for 18

Control flow 176

 specification of 185

Control functions

 ECU, test environment for 312

 monitoring 117

Index Terms Links

Control information 176

Control interfaces 176

Control loop 40

Control parameters 43

Control systems

 open- and closed-loop 39 45f

 test environment for 314

Control units 40

Controlled bus access strategies 98

Controlled system 2

Controlled variables 41

Convenience group 12

Cooperation 79

Core process 158f

 basic definitions and notations 161

 calibration 207

 for electronic systems and software development 23 157

 logical system architecture, analysis of 167

 requirements and prerequisites 158

 software architecture, specification of 175

 software components

 design and implementation of 188

 specification of 181

 software integration, testing 199

 software requirements, analysis of 175

 system and acceptance test 208

 system components, integration of 200

 system integration test 203

 technical system architecture, specification of 167

 user requirements, analysis of 164

Cost 22

Cost planning 140

Country-specific equipment variants 170

CSMA strategy 98

Index Terms Links

CSMA/collision avoidance (CSMA/CA) strategy 98

CSMA/collision detection (CSMA/CD) strategy 98

Customer/supplier relationships 27

D

D-sample 161

Damage 107

Data flow 176

 specification of 183

Data information 176

Data interfaces 176

Data memory 53

Data model

 design and implementation of 191 301

 specification of 182 244

Data structures, generation of 303

Data variants

 setting via configuration parameters 303

 setting via Flash programming 302

Data version 57

 differentiation from program version 189

 file calibration 336

 generating 196

 logistics for 347

 management of 335

Deadline point 66

Deadline violations, monitoring and handling 224

Debouncing measures 224

Decentralized bus access strategies 98

Decision tables, specification of behavioral

 model using 248

Decomposition 130

Defect 101

Defining real-time requirements 186

Index Terms Links

Definitions, V-model 161

Dependent parameters 272

Description file 178

 generating 197 303

Design

 of algorithms for fixed- and floating-point

 arithmetic 277

 of behavioral model 192 303

 of data model 191 301

 of experiments 318 337

 of real-time model 194

 of software architecture 297

 of software components 25 188

 of software functions 211 268

 of technical system architecture for

 instrument cluster 170

Destructive instruction set architecture 61

Development

 cross-corporation, process for 146

 methods and tools for 29 211

 model-based 29

 risk, reducing 32

 roles and responsibilities in 143

 steps of 36

 vehicle, process of 18

Development ECUs 178

Diagnostic data, onboard, download and evaluation of 324

Diagnostics 99 110

 for actuators 120

 fault 111

 model-based 122

 offboard 339

 communications 122

 functions 118

Index Terms Links

Diagnostics (Cont.)

 onboard functions 118

 organization of system for ECUs 118

 for sensors 120

 for setpoint generators 120

Digital system 48

Digital-analog (D/A) conversion 48

Direct-memory I/O access (DMA) 64

Discrete systems 44

Discrete time and continuous value signal 46f 47

Disjunction 247

Dispatcher 72 77

Dispatcher cycle interval 75 76f

Dispatcher round 75 76f

Dispatcher table 75 76f

Distributed and networked systems 15 84

 analysis and specification of 173 174f 225

 defining logical communication links 88

 defining messages 91

 defining network topology 90

 logical and technical system architecture 87

 network management of 94 96

 organization of communications 94

 strategies for bus arbitration 97

Diversity 111

Division operations, pointers on 296

DMA 64

Documentation, generating 198

Download 201

 of onboard diagnostic data 324

Driver–vehicle–environment system 2

Driving program 179

Dynamic RAM (DRAM) 55

Index Terms Links

E

8-bit signed integer (sint8) 279

8-bit unsigned integer (uint8) 278

Electronic control units (ECUs) 2

 assignment of 6f

 communications with diagnostic tester 88

 cost barriers for 190

 development 178

 and function networks 17

 instrumentation for 314

 integration of 202

 interfaces for, differing requirements 133

 model of 45f

 network of, test environment for 315

 networked 85f

 onboard communications among 90

 organization of diagnostic system for 118

 standalone 311

 test environments for 311

 and tools, offboard interfaces between 211 212

 verification of, reference prototype for 266

 See also Engine ECUs

Electrical EPROM (EEPROM) 56

Electromechanical braking system, establishing

 reliability block diagram for 232

Electronic engine management system 109

Electronic systems

 body 12

 of the chassis 10

 core process for 23

 design of 2

 introduction and overview 1

 method of operation of 2

Index Terms Links

Electronic systems (Cont.)

 networking of 4 7

 of the powertrain 8

 overview of 6 20

 production of 28

 software for, methods and tools for development of 29

 startup and testing of 350

 summary and outlook for 16 351

 support processes for 26

 of vehicle and environment 5

Electronic throttle control (ETC) system

 determining requirement for 109

 monitoring concept for 235

Embedded systems 4 51

Empirical failure function 102

Empirical failure rate 103

Empirical reliability function 102

End-of-line-programming 302

Engine, test bed for 316 317f

Engine ECUs

 real-time requirements for functions of 68

 sampling rate in 47

 schematic of 117

Engine management tasks 65

Engineering 157

 simultaneous 27

Environmental components 259

Environments, development 27

Erasable PROM (EPROM) 56

Erasing Flash memory 343 346

ERCOSEK real-time operating system, architecture of 269

Error detection and correction 112

Index Terms Links

Error propagation

 with algorithms in fixed-point arithmetic 286

 pointers on 295

Evaluation, of onboard diagnostic data 324

Events 49 254

Event-driven bus access strategy 99

Event-driven processor scheduling 75

Event message 96

Evolutionary prototypes 266 267f

Exception handling 282

Execution rate 67

Execution time 67

 worst-case (WCET) 76

Experimental system 258

Experimental tool 258

Experimental vehicles 317

Experiments, design and automation of 318 337

Explicit addressing 61

Exponent 279

Extended task state model 70

Exterior view 129

External memory 54

F

Fail-operational (FO) system 113

Fail-reduced (FR) system 113

Fail-safe (FS) system 113

Failure 101

Failure frequency 103

Failure mode and effects analysis (FMEA) 114 230

Failure probability 103

Failure rate 103

 analysis, of 230

 definition of 103 104f

Index Terms Links

Failure rate (Cont.)

 empirical determination of 103

Fault 101

Fault diagnostics 111

Fault memory manager 120

Fault recognition 111

 model-based 122

Fault remedy 113

Fault storage 113

Fault tree analysis (FTA) 114 230

Feedback variables 41

Fixed characteristic curves 276 277f

Fixed-point arithmetic

 design and implementation of algorithms for 277

 error propagation in 286

 implementation of 293

 and physical interrelation 289

Fixed-point representation 278

Flash EPROM 56

Flash programming 202

 and boot block shifting 349

 program sequence 348

 setting data variants via 302

 software update through 321 343

 through offboard diagnostic interface 343

Flat state machines, specification of 251

Floating-point arithmetic

 design and implementation of algorithms for 277

 implementation of 296

Floating-point representation 279

FMEA 114 230

Fractal proliferation 129

Fuel gauge, user formulation of requirement

 concerning 150

Index Terms Links

Fullpass mode, development of vertical prototype in 263

Fully preemptive processor scheduling 74

Function models 44

Function networks 166

 and ECUs 17

Function-oriented testing 318

Function validation 31

Functional malfunction 101

Functional software safety 114

Functional system requirements 165

G

Gateways 90

Global data areas 79

Global time 99

Group characteristic curves 276

H

Handshake 112

Hard real-time task 68

Hardware

 resources, limitation of 190

 integration with software 201

Hardware abstraction layer (HAL) 35 64

Hardware interrupt system 60

Hardware-in-the-loop (HiL) simulation 311

Hazard analysis 108

Hazard 108

Hierarchical relations 135

Hierarchical state machines, specification of 255

Hierarchy building 129

High-level languages, specification of behavioral

 model using 256 258

Index Terms Links

Holding elements 48

Horizontal prototype 261 262 264f

Hydraulic test bench 316

I

I/O modules 52 58

 addressing 62

 architecture of 62

 operating modes of 63

Ignition map 43

Implementation

 of algorithms for fixed- and floating-point

 arithmetic 277

 of behavioral model 192 303

 of data model 191 301

 of fixed-point arithmetic 293

 of floating-point arithmetic 296

 guidelines for 296

 of real-time model 194

 of software architecture 297

 of software components 25 188

 of software functions 211 268

Implementation level, differentiated from

 physical level 292

Implicit addressing 61

Inactive drive program, actuator diagnostics

 concurrent with 341

Indication 88

Information display 15 16f

Input and output (I/O) modules, see I/O modules

Installation space

 for body electronic systems 13

 for chassis electronic systems 12

 for powertrain electronic systems 10

Index Terms Links

Instances 240

Instant 66

Instruction set 62

Instrument cluster

 context and interface model for software 177

 designing technical system architecture for 170

 operating states of software driving 180

 software architecture of 179 180f

 technical system architecture for 171f

 user requirements for 166

 virtual network environment for 205

Instrumentation 314 319

Instrumentation signal, synchronous measurement of 323

Integer division

 rounding errors in 281

 pointers on 293

Integrated quality management 31

Integration 130

 of ECUs, setpoint generators, sensors, and

 actuators 202

 method according to Euler 193

 of software, testing 199

 of software components 25 194

 of software functions 212 306 308

 of software and hardware 201

 of system components 200

 of system, testing 203

 and testing procedures 154

Integration interface 146

Integration Platform Method 306

Integration test 154

“Integrator” class, design and implementation of 306 307f

“Integrator” software component, specification of 256 257f

Intelligent actuators 52

Index Terms Links

Interfaces

 bypass 262

 and context model for instrument cluster

 software 177

 control 176

 data 176

 ECU, differing requirements for 133

 integration 146

 module-based specification of 242

 offboard 5 176 177

 between ECUs and tools 211 212

 classification of, for online calibration 327

 Flash programming through 343

 onboard 5 176 177

 parallel development 327f 330 332

 to real-time operating system 242

 serial development 327f 329

 serial preproduction 327f 328

 for specification and integration 146

 specification of 176 242

 system 129

 See also User interfaces

Interference variables 41

Interior view 129

Internal memory 54

Interpolation, of characteristic curves 273

Interpreting user requirements 149

Interrupt-driven I/O 64

Interrupt line 64

Interrupt lock during write access 80f

Interrupt service routine 60

Interrupts 60

Interval 66

Isolated I/O 62

Index Terms Links

Iteration 185

K

Key process areas 131

L

Laboratory vehicles 30 310

Life cycle, product 22 133

Limit risk 107

Line of visibility (LOV) diagrams 147

Linear-order layer model 179

Linear topology 91

Linker 197

Load/store architecture 61

Logical communication links 87

 defining 88

Logical system architecture 18 152f

 analysis of 24 164 211 213

 for instrument cluster 166 167f

 for open-loop/closed-loop systems 18 172f

 overview of 17

 specification of 24

Low-fuel indicator lamp

 controlling 49

 specification for controlling by means of

 state machine 251

M

Machine instruction 196

Machine numbers 280

Malfunction 101

Malfunction indicator light (MIL) 121

Manipulated variables 41

Index Terms Links

Master/slave architecture 97

Mealy state machines 251

Mean time to failure (MTTF) 102

 definition of 105

Measured variables 41

Measurement signals 319

Memory 245

Memory mapped I/O 62

Memory/memory architecture 60

Memory/register architecture 61

Memory segment, definition of 302

Memory technologies 54

Meshing 140

Message frame 91

Message mechanism 83

Message queue 95

Message sequence chart 78

Messages 91

 assignment of signals to 174f

 defining 91

Methodical steps 163

Methods 163

Microcontrollers

 assignment of software functions to 174f

 communications protocols for 332

 construction of 52

 functional principles of 57

 monitoring functions for 116

 principal operations of 58

 programming of 57

 synchronous measurement of signal 323

Microprocessors 52 57

 architecture and instruction set for 59

Milestones 139

Index Terms Links

Mining user requirements 149

MISRA Guidelines 297

Mnemonics 196

Model-based development 29

 software 161

Model-based diagnostics 122

Model-in-the-loop simulation 259

Modeling 29 40

 guidelines for 296

Modularization 129

Modules 242

Monitoring 99 110 111f 112

 of deadline violations in operating system 224

 of ECUs, organization of system for 115

 systems for

 block diagram of 4f

 test environment for 314

Monitoring computer 115 235

Moore state machines 251

Motor vehicle development, project schedule for 140

MSR standards 297

Multimaster architecture 98

Multimedia systems 14

Multiplication, pointers on 295

N

Nassi-Shneiderman diagrams 185

Negation 247

Network, ECU, of BMW 7 Series 123

Network management 96

Network nodes 87

Network structure 135

Network topology, technical, defining 90

Index Terms Links

Networked systems, see Distributed and

 networked systems

Networking of electronic systems 4 7

Node addressing 92

Nondestructive instruction set architecture 61

Nonfunctional system requirements 165

Nonpreemptive processor scheduling 74

Nonstandard system functions 165

Nonvolatile RAM (NV-RAM) 55

Normalized 280

Notation, V-model 161

Numbers, representation of, in digital processors 278

O

Object-based software architecture modeling 240

Objects 240

Observation level 129

Offboard calculations 272

Offboard communications 5 122

Offboard diagnostics 118 122 339

Offboard functions 6

Offboard interfaces 5 176 177

 between ECUs and tools 211 212

 classification of, for online calibration 327

 Flash programming through 343

Offline calculations 271

Offline calibration

 of parameters 325

 procedures for 321 322f

Offline execution 6

Offset 290

Onboard calculations 272

Onboard communications 5

Index Terms Links

Onboard diagnostics (OBD) 118

 download and evaluation of data 324

 requirements for 106

Onboard functions 6

Onboard interfaces 5 176 177

Online calculations 271

Online calibration

 classification of offboard interfaces for 327

 of parameters 326

 procedures for 321 322f

Online execution 6

Open systems interconnection (OSI) model 94

Open-loop control model 40

Open-loop control systems, analysis and

 specification of 171 214

 logical system architecture for 18

Open-loop control task 41

Open-loop plant model 40

Operand addresses 61

Operand memory 60

Operating states, specification of 179

Operating system, monitoring and handling

 deadline violations in 224

Opinion mining 149

Optimization 337

OSEK-COM 94 95

OSEK-NM 94 96

OSEK-OS 69 70

OSEK-TIME 71

Output modules 52

Output variables 41

Overflow 283

 handling 280 284

Index Terms Links

P

Parallel development interface

 with additional CAL-RAM 327f 332

 with internal CAL-RAM 327f 330

Parallel scheduling 142

Parameter management 335

Parameter set 43

Parameterization of software functions 341

Parity 112

Partitioning 130

Passive safety systems 12

Payload data 92

Periodic events 52

Periphery 128

Personal profiles 341

Physical interrelation and fixed-point arithmetic 289

Physical model level, differentiated from

 instrumentation level 292

Physical properties, monitoring 112

Physical specification, function replicating in

 implementation 192

PI controller, block diagram of 42

Pins 62

Plant 2 3

Platform software 34 297

Polled I/O 63

Powertrain

 electronic systems of 8

 integrated 7

Preempt 69

Preempted 71

Preemptive processor scheduling 73f 74

Prerequisites 149 158

Index Terms Links

Preventive measures 154

Priority processor scheduling 72

 combined with sequential order processor

 scheduling 73

Process models 130

Process steps 147 162

Processes 162

Processor time, allotting to tasks 66

Processors, scheduling strategies for 71

Producer/consumer model 89

Production

 of electronic systems and software 28

 methods and tools for 339

Production vehicles 317

Program and data memory 52

Program execution, monitoring 112

Program memory 57

Program version 57

 differentiation from data version 189

 generating 196

 logistics for 347

Programmable ROM (PROM) 56

Programmed I/O 63

Programming Flash memory 343 346

Project management 137

Project phase 139

Project planning 139

Project scheduling 138 140

Project segments 138

Project targets 138

Project tracking 144

Protection 108

Protective measures 234

Index Terms Links

Prototypes 259

 of ECUs 178

 horizontal 261 262 264f

 model for 161

 evolutionary 266 267f

 reference, for ECU verification 266

 target system identical 266

 throw-away 266

 vehicle 317

 vertical 261 262f 263

Public methods 240

Q

Quality assurance 154

 guidelines for 31

 of software, methods for 155

Quality management, integrated 31

Quality planning 140

Quality schedule 140

Quality testing procedures 154

Quantization 290

Quantizing error 48

Quasi-concurrent tasks 78

Queued messages 95

R

Random access memory (RAM) 53 54

 calibration (CAL-RAM) 326

 management of 333

Random bus access strategies 98

Rapid prototyping 30 163

 of new vehicle function 163

 validating specifications through 258 259

Index Terms Links

Read-only memory (ROM) 55

Read/write memory 54

Ready 69

Real 32 280

Real 64 280

Real-time model

 design and implementation of 194

 specification of 186

Real-time operating system

 ERCOSEK, architecture of 269

 interfaces to, module-based specification of 242

Real-time requirements 67

 hard and soft 68

Real-time systems 64

 analysis and specification of 173 218

 defining requirements of 66

 defining tasks of 64

 interaction among tasks 78

 organization of 77

 processor scheduling strategies for 71

 task states of 69

ReceiveMessage() 95

Receiving a message 83

Recording user requirements 149

Redundant value check 111

Reference page 325

Reference prototype for ECU verification 266

Reference value check 111

Reference variables 41

Reference version 325

References 136

Registers 57

Relative cumulative failure frequency 102

Relative deadline 67 219 220

Index Terms Links

Relative rounding error 282

Release 70

Reliability 99 100 102

 analysis of 173 175f 234

Reliability block diagram, establishing 231

Reliability function

 calculation of 233

 definition of 103 104f

Reliable systems, analysis and specification of 229

Repetition 185

Representative requirement profiles 231

Reprogrammable nonvolatile memory 56

Request 88

Requested nonfunctional product properties,

 consideration of 189 269

Required functions, defining 231

Requirement classes 151 152f

Requirement profiles, defining 231

Requirements 158

Requirements management 147

Residual bus simulation 315

Resolution 290

Resource optimization 271

Response time 67 219

Reusable software components 33

 class-based specification of 242

Ring topology 91

Risk 107

 determining 108

 management of 144

Roles, development 143

Rounding 280

 errors from, in integer division 281

Rule R 248

Index Terms Links

Running state 66 71

Runtime optimization 269

Runtime overhead 75

S

Safe state 113

Safe systems, analysis and specification of 229

Safety 99 100 101

 active systems for 13

 analysis of 173 175f

 definition of terms 107

 functional software 114

 management of, integrated 7

 passive systems for 12

 requirements for 23

 relevance of 100

Safety Integrity Level 108 109f

Safety logic 113

Safety-relevant functions 235

Sample ECUs 178

Sampled signal 47

Samples 161

Sampling elements 47

Sampling rate 47

Scalability 133

 for body electronic systems 14

 for chassis electronic systems 12

 for powertrain electronic systems 10

Schedulability

 verifying by measurements 224

 analysis of 220

Scheduler 72 77

Scheduling strategies for processor 71

Security requirements 344

Index Terms Links

Sending a message 83

SendMessage() 95

Sensors 52

 for body electronic systems 13

 diagnostics for 120

 concurrent with active drive program 340

 integration of 202

 monitoring of 117

 for powertrain electronic systems 9

 signals from 7

 test environment for 313 314f

Sensotronic brake control (SBC), configuration of 2

Sequence 185

Sequential scheduling 72 141

 combined with priority scheduling 73

Serial development interface

 with additional CAL-RAM 327f 331

 with internal CAL-RAM 327f 329

Serial preproduction interface

 with additional CAL-RAM 327f 330

 with internal CAL-RAM 327f 328

Service, methods and tools for 339

Setpoint generators 41

 for body electronic systems 13

 for chassis electronic systems 11

 diagnostics for 120

 integration of 202

 monitoring of 117

 for powertrain electronic systems 8

 test environment for 313 314f

Setpoint values 41

7±2 rule 130

Shared system and component responsibilities 158

Shift operations 284

Index Terms Links

Shut Down state 96

Shutdown 113

Sign bit 278

Signals 83

 addition of two 289

 assignment to messages 174f

 measurement of 319

 from sensor 7

 types of 41

Signature verification 345

Significant digits 280

Simulations 30

 hardware-in-the-loop (HiL) 311

 of new vehicle function 163

 residual bus 315

 software-in-the-loop (SiL) 309

 for validating specifications 258

Simultaneous engineering 27 140 153

Situation-oriented testing 319

16-bit signed integer (sint16) 279

16-bit unsigned integer (uint16) 279

Soft real-time task 68

Software

 application 297

 and hardware diversity 112

 integration with hardware 201

 methods and tools for development of 29

 platform 297

 production of 28

 update through Flash programming 321 343

Software architecture

 design and implementation of 297

 of instrument cluster 179 180f

 object-based modeling of 240

Index Terms Links

Software architecture (Cont.)

 specification of 25 175 239

Software components

 design and implementation of 25 188

 integration of 25 194

 platform, standardization of 297

 reusable, class-based specification of 242

 specification of 25 176 181 239

 standardized, configuration of 299

 testing of 25 194

Software development

 core process for 23

 model-based 161

 support processes for 26

Software engineering 158 160

 coordination with systems engineering 159

 summary and outlook for 16 351

 distribution to several tasks 270

Software functions 7

 assignment to microcontrollers 174f

 for body electronic systems 13

 calibration of 212 319

 for chassis electronic systems 11

 design and implementation of 211 268

 early validation of 32

 integration of 212 306 308

 testing of 25 199

 interrupt system for 63

 layers, specification of 179

 monitoring system for, in ECUs 116f

 parameterization of 341

 for powertrain electronic systems 9

 prototype 260

 quality assurance methods for 155

Index Terms Links

Software functions (Cont.)

 requirements for, analysis of 25 175

 reuse of 33

 specification of 211 237

 testing of 212 306 308

 verification of 32

Software-in-the-loop (SiL) simulations 309

Software Process Improvement and Capability

 Determination (SPICE) 130

Source code 197

Specification interface 146

Specification of control flow 185

Specifications 31

 of arithmetical functions 244

 of behavioral model 183

 using decision tables 248

 using high-level languages 256 258

 using state machines 250

 using block diagrams 244

 of Boolean functions 247

 class-based, of reusable software components 242

 of closed-loop control systems 171 214

 of data flow 183

 of data model 182 244

 of distributed and networked systems 173 174f 225

 of flat state machines 251

 of hierarchical state machines 255

 of interfaces 176

 of logical system architecture 24

 module-based, of interfaces to real-time

 operating system 242

 of open-loop control systems 171 214

 of operating states 179

 of real-time model 186

Index Terms Links

Specifications (Cont.)

 of real-time systems 173 218

 of reliable and safe systems 229

 of software architecture 25 175 239

 of software components 25 176 181 239

 of software functions 211 237

 of software layers 179

 of technical system architecture 25 167 213

 of transitions with branching instructions 254

 validation of 211 237

 through rapid prototyping 258 259

 through simulation 258

Spiral model 161

Standard system functions 165

Standardization 34

Standards 130

Star topology 90 91f

Start 69

Start state 252

Startup, of electronic systems 350

Startup block 344

State actions 251

State machines 48 69

 hierarchical, specification of 255

 specification of behavioral model using 250

State 251

State-dependent reactive execution model 187

State-independent reactive execution model 188

State message 96

Static RAM (SRAM) 55

Steer-by-wire 125

Step size 194

Strict-order layer model 179

Structure 240

Index Terms Links

Structurograms 185

Subcontractor management 145

Subsystem 129

Subtraction, pointers on 295

Support processes 127f

 for electronic systems and software development 26

Surrounding models 44

Suspended 69 71

Switching functions 247

Synchronization 78

Synchronous measurement of signals 323

System and acceptance test 208

System and component responsibilities 145

System boundaries 129

 defining 231

System components, integration of 200

System deviation 43

System input 129

System integration test 203

System interface 129

System levels 129

 in automotive electronics 130 131f

System-oriented testing 318

System output 129

System periphery 129

System responsibilities 158

System safety 234

System status 129

System test 26 154

System theory, basic definition of 129

Systems engineering 157

 coordination with software engineering 159

Index Terms Links

T

Target system identical prototypes 266

Task activation 66 67f

Task deadline 66 67f

Task execution 65

Task management, by means of state sets 72f

Task responsibilities 143

Task state model 71

Task states 66

 of real-time systems 69

Task switching 66

Tasks

 defining 64

 interaction among 83

 quasi-concurrent 78

Technical communication links 87

Technical system architecture 18 152f

 defining instrument cluster hardware 171f

 for ECU network 171f

 for instrument cluster, designing 170

 in open-loop/closed-loop control systems 172f

 specification of 25 167 213

 for toggling between Celsius and Fahrenheit 342

Terminate 69

Test bed, engine 316 317f

Test benches 310 316

Testing

 component-oriented 318

 of electronic systems 350

 environment

 for ECUs 311

 for setpoint generators, sensors, and

 actuators 313 314f

Index Terms Links

Testing (Cont.)

 function-oriented 318

 procedures for 154

 of software components 25

 of software functions 212 306 308

 situation-oriented 319

 system-oriented 318

Tests

 acceptance 26

 software integration 25

 system 26

32-bit signed integer (sint32) 279

32-bit unsigned integer (uint32) 279

Throw-away prototypes 266

Time- and value-discrete signals 46 48 49f

Time-controlled bus access strategy 99

Time-controlled strategy 98

Time-discrete signals 46

Time division multiple-access (TDMA) strategy 99

Time-driven processor scheduling 75

Time interval 67

Time to failure (TTF) 102

Time-triggered task state model 71

Token 96

Token-controlled strategy 98

Tool reference page 325

Tools 163

Topology, technical network, defining 90

Tracking user requirements 153

Traction control system 3

Transfer function 43

Transition actions 251

Transitions 251

 specifying with branching instructions 254

Index Terms Links

Transport layer 94

Tree structure 135

Trigger() method 254

Truly concurrent tasks 84

U

Underflow 283

Underflow handling 280 284

Unqueued messages 95

User groups 149 150f

User interfaces 5 51

 for body electronic systems 13

 for chassis electronic systems 11

 for powertrain electronic systems 8

User requirements 149

 analysis of 24 164

 for instrument cluster 166

 tracking 153

V

Validation 154

 early, of software functions 32

 of specifications 211 237

 vs. verification 31

Value-discrete signals 46f 47

Variants 133

 for body electronic systems 14

 for chassis electronic systems 12

 country-specific 170

 data

 setting via configuration parameters 303

 setting via Flash programming 302

 for powertrain electronic systems 10

Index Terms Links

Vehicle test record 120

Verification 154

 signature 345

 vs. validation 31

Version-capable component 136

Versions 135

Vertical prototype 261 262f 263

Virtual components 203

Virtual hardware platform 207

Virtual network environment for instrument

 cluster 205

V-Model 23 29 130 131

 145 146 154

 coordination of systems and software

 engineering 160

 definitions and notation 161

W

Wait 70

Waiting 70

Wake Up state 96

Watchdog module 53

Weibull distribution 103

Word length 54 278

Working page 325

Worst-case execution time (WCET) 76 221 224

Worst-case response time (WCRT) 219 220

-385-

ABOUT THE AUTHORS

Dipl.-Ing. Jörg Schäuffele studied Mechanical Engineering at the University of Stuttgart with
a focus on control engineering. He started his professional career in 1993 with the fi rm of
ISG GmbH, a spinoff of the Institute of Control Engineering at the University of Stuttgart. In
1995, he joined ETAS GmbH and supported the introduction of ETAS tools in numerous engi-
neering and consulting projects with various customers in the automotive industry worldwide.
From 1999 to 2001, he worked in the Systems Engineering Methods, Software Process, Tools
department of the Electronics Development section at BMW Headquarters in Munich. Since
2003, he has coordinated the various product divisions at ETAS GmbH.

Dr.-Ing. Thomas Zurawka studied electrical engineering at the University of Stuttgart and
wrote a detailed doctorate thesis on digital signal processing. He started his professional
career in 1992 with ZF Friedrichshafen AG before joining Advanced Development at Robert
Bosch GmbH in 1993, where he worked on real-time operating systems. Dr. Zurawka joined
ETAS in its early days and initially developed code generators. He subsequently headed
the development of the ASCET engineering tool for software development. From 1997 to
2005, he was responsible for the overall development at ETAS. Dr. Zurawka was the CEO
of ETAS GmbH but now is a Member of the Board of Management of SYSTECS GmbH in
Leinfelden-Echterdingen, Germany.

