INTRODUCING CLOUD-NATIVE SUPERCOMPUTING BARE-METAL, SECURED SUPERCOMPUTING ARCHITECTURE RICH GRAHAM, GILAD SHAINER, JITHIN JOSE DECEMBER 2021

DIVERSITY OF APPLICATIONS REQUIRES ARCHITECTURAL FLEXIBILITY

• –	
• —	
• –	

DIVERSITY OF APPLICATIONS REQUIRES ARCHITECTURAL FLEXIBILITY

EDGE

NETWORK

EXTREME IO

IN-NETWORK COMPUTING ACCELERATED SUPERCOMPUTING Software-Defined, Hardware-Accelerated, InfiniBand Network

Most Advanced Networking

	High	Extremely	High
	Throughput	Low Latency	Message Rate
End-to-End	RDMA	GPUDirect RDMA	GPUDirect Storage
	Adaptive	Congestion	Smart
	Routing	Control	Topologies

Adapter/DPU	All-to-All	MPI Tag Matching	Data Reductions (SHARP)	tch
	Programmable Datapath Accelerator	Data processing units (Arm cores)	Self Healing Network	S
End-to-End	Data sec	curity / tenant isola	ation	End-to-End

In-Network Computing

CLOUD-NATIVE SUPERCOMPUTING

Bare-metal Secured Infrastructure Higher Application Performance From the Edge to the Main Data Center

CLOUD-NATIVE SUPERCOMPUTING INFRASTRUCTURE

Traditional Supercomputing **Cloud-Native Supercomputing** Host Host Applications Management Isolation Applications -----HPC / AI Monitoring Storage: File System Client InfiniBand Adapter BlueField DPU HPC / AI HPC / AI Acceleration Engines ----**>** Communication Storage: File Frameworks System Client Magnum IO DOCA InfiniBand Switch Acceleration Engines Acceleration Engines InfiniBand Switch

Acceleration Engines

MULTI-TENANT ISOLATION Zero-Trust Architecture

Secured Network Infrastructure and Configuration Storage Virtualization Tenant Service Level Agreement (SLA) 32K Concurrent Isolated Users on Single Subnet

Secure Partitioning with Bare-Metal Performance

NVIDIA BlueField DPU

HIGHER APPLICATION PERFORMANCE DPU-Accelerated HPC Communications

Collective Offloads

Active Messages

Smart MPI Progression

Data Compression

User-defined Algorithms

NON-BLOCKING MPI PERFORMANCE

HIGHER APPLICATION PERFORMANCE 100% Communication - Computation Overlap

Courtesy of: Ohio State University MVAPICH Team and X-ScaleSolutions

32 servers, Dual Socket Intel® Xeon® 16-core CPUs E5-2697A V4 @ 2.60 GHz (32 processes per node), NVIDIA BlueField-2 HDR100 DPUs and ConnectX-6 HDR100 adapters, NVIDIA HDR Quantum Switch QM7800 40-Port 200Gb/s HDR InfiniBand, 256GB DDR4 2400MHz RDIMMs memory and 1TB 7.2K RPM SATA 2.5" hard drive per node.

Overlap of Communication and Computation with

MVAPICH X-ScaleSolutions

HIGHER APPLICATION PERFORMANCE Higher App Performance, MPI Collectives Offload

Courtesy of: Ohio State University MVAPICH Team and X-ScaleSolutions

32 servers, Dual Socket Intel® Xeon® 16-core CPUs E5-2697A V4 @ 2.60 GHz (32 processes per node), NVIDIA BlueField-2 HDR100 DPUs and ConnectX-6 HDR100 adapters, NVIDIA HDR Quantum Switch QM7800 40-Port 200Gb/s HDR InfiniBand, 256GB DDR4 2400MHz RDIMMs memory and 1TB 7.2K RPM SATA 2.5" hard drive per node.

NVIDIA DOCA

Enabling Broad DPU Partner Ecosystem

Software Application Framework for BlueField DPUs DOCA is for DPUs What CUDA is for GPUs Protects Developer Investment for Future DPUs Certified Reference Applications, APIs & Partner Solutions Rich Partner Ecosystem Across Industries and Workloads https://developer.nvidia.com/networking/doca

Applications			
tware-defined Software-defined Storage		Software-defined Networking	
DO	OCA		
Security	Networking	Storage	

Acceleration Libraries

MULTI-TENANT SUPERCOMPUTING CLOUD – PERFORMANCE ISOLATION Molecular Dynamics (LAMMPS) Example

HPC ON SUPERCOMPUTING

Molecular Dynamics (LAMMPS)

HPC ON THE CLOUD

Molecular Dynamics (LAMMPS)

CLOUD NATIVE SUPERCOMPUTING PLATFORM Performance Isolations via Telemetry Based Congestion Control

HPC ON CLOUD-NATIVE SUPERCOMPUTING

Molecular Dynamics (LAMMPS)

Proactive / Reactive

Telemetry Data Time Sensors Traffic Planners

HPC ON SUPERCOMPUTING

Time

Iterations of er Numb

PERFORMANCE ISOLATION - MICROSOFT AZURE Quantum InfiniBand Congestion Control

Time

HPC ON THE CLOUD

Time

HPC ON CLOUD-NATIVE SUPERCOMPUTING

Azure HPC/AI VM Series

Standard HPC VMs

Standard HPC Applications High Compute/Memory + InfiniBand *HPC SKUs: H, HB, HC, HBv2, HBv3

- "r" in VM type indicates RDMA support
- *InfiniBand/RDMA enabled VMs: One VM per Host

Visualization SKUs: NV series *Deep Learning/AI SKUs (InfiniBand): NC, ND series

InfiniBand exposed to VMs using SR-IOV, offers full host bypass with full feature support

GPU VMs

Deep Learning, AI workloads

• VM Specs:

- AMD Rome (NPS=2)
- VM Cores: 96 (48 per socket)
- Memory: 900 GB
- 8 x NVIDIA A100 GPUs
- 8 x HDR 200Gbps InfiniBand
- Local Disk: 6.4 TB local NVMe SSD

Standard_ND96asr_v4 (NDv4)

Hyper-V Partition (8 cores per NUMA)

Azure HBv3 with Milan-X

AMD EPYC Milan

- VM Specs:
 - AMD Milan-X (NPS = 2)
 - VM Cores: 120
 - Memory: 448 GB •
 - Local Disk: 2 x 900 GB NVMe SSD •
 - Network: 200 Gbps HDR (SR-IOV)

200Gbps

Hyper-V Partition (2 cores per NUMA)

HBv3 VM Sizes (one VM per Host): Standard_HB120rs_v3 (all 120 cores) Standard_HB120-96rs_v3 (6 cores per CCD) Standard_HB120-64rs_v3 (4 cores per CCD) Standard_HB120-32rs_v3 (2 cores per CCD) Standard_HB120-16rs_v3 (1 cores per CCD)

InfiniBand Features in Azure

\cdot HB, HC, NDv2:

- EDR 100 Gb/s InfiniBand
- Up to 200 M messages/second

· HBv2, HBv3, NDv4: Connect K·b

- HDR 200 Gb/s InfiniBand
- Up to 215 M messages/second

• Dynamically Connected Transport (DCT)

- Reliable and scalable transport
- Lesser Memory footprint

Hardware offload

- Collectives offload framework
- Hardware tag matching

• UD multicast (MCAST)

- Unreliable datagram (UD) based multicast Create a mcast group and broadcast •

SHARP

Switch based collectives

Dynamic Routing

- **Advanced Congestion Control**
- Adaptive Routing

Better Reliability

SHIELD detects link failures and reroutes

GPUDirect RDMA

- Available on Azure NDv4
- Direct data path b/w A100 GPU and HDR200
- Each NIC/GPU pair gets peak b/w simultaneously over GPUDirect RDMA
- Combined GPUDirect RDMA b/w of **1.6 Tbps**
- Supports *all* GDR capable MPI libraries/middleware

hpcadmin@c	ompute000000:~3
Pair 0:	
8388608	2922
8388608	2920
Pair 1:	
8388608	2928
8388608	2930
Pair 2:	
8388608	2894
8388608	2896
Pair 3:	
8388608	2883
8388608	2881
Pair 4:	
8388608	2893
8388608	2895
Pair 5:	
8388608	2883
8388608	2885
Pair 6:	
8388608	2922
8388608	2920
Prit-7i 1	
8388608	2915
	i sasaa

/test_ib_gpu.sh	compute000000	compute000001 cpu /
0.00	196.09	0.002922
0.00	195.96	0.002920
0.00	196.49	0.002928
0.00	196.63	0.002930
0.00	194.21	0.002894
0.00	194.34	0.002896
0.00	193.47	0.002883
0.00	193.34	0.002881
0.00	194.14	0.002893
0.00	194.28	0.002895
0.00	193.47	0.002883
0.00	193.61	0.002885
0.00	196.09	0.002922
0.00	195.96	0.002920
	195.48	0.002913
0.00	195.62	0.002915

hpcadmin@c	:ompute000000:~\$./test_ib_gpu.sh	compute000000	compute000001 gpu ,
Pair 0:				
8388608	2913	0.00	195.49	0.002913
8388608	2913	0.00	195.49	0.002913
Pair 1:				
8388608	2914	0.00	195.55	0.002914
8388608	2914	0.00	195.55	0.002914
Pair 2:				
8388608	2914	0.00	195.55	0.002914
8388608	2914	0.00	195.55	0.002914
Pair 3:				
8388608	2915	0.00	195.62	0.002915
8388608	2915	0.00	195.62	0.002915
Pair 4:				
8388608	2914	0.00	195.55	0.002914
8388608	2914	0.00	195.55	0.002914
Pair 5:				
8388608	2915	0.00	195.62	0.002915
8388608	2915	0.00	195.62	0.002915
Pair 6:	• <u> </u>			
838068)ipp/rtRDN	1 00.00	195.55	0.002914
8388608	2914	0.00	195.55	0.002914
MAT DI L	Momory			
8311668	TV9GIIIOI Y	0.00	195.62	0.002915
8388608	2915	0.00	195.62	0.002915
hpcadmin@c	:ompute000000:~\$			

RЛ	ic		o	F+
		05		

SHARP on NDv4

- Enabled on dedicated NDv4 clusters
- UCX-based Sharp-AM / SharpD communication
- Optimized SHARP tree initialization
- Connection keepalive
- GRH support

NCCL AllReduce (64 ranks)

Adaptive Routing

- \bullet \bullet two or more communicating pairs
- \bullet performance

NCCL AllReduce Bandwidth

MPI Benchmarks on HBv3 (inter-node)

GPUDirect RDMA (MPI Level) on NDv4

osu_latency

----MPI

osu_bw

NCCL on NDv4

NCCL AllReduce (w/o SHARP)

NCCL AlltoAll

Scaling Efficiency on HBv3 (Milan-X)

156% scaling efficiency

106% scaling efficiency

https://aka.ms/MilanXPerf

119% scaling efficiency

Concusion

- Supercomputer on Cloud is real!
- - Rank 10 in Top500 Nov. 2021 igodol
 - Rank 17 in Graph500 Nov. 2020 lacksquare
- Azure HPC democratizes Supercomputer! •

Azure HPC Cloud powered with InfiniBand in Top500, Graph500 top spots

Thank you!

