Control Gravity Compensation - jhu-dvrk/sawIntuitiveResearchKit GitHub Wiki
Table of Contents generated with DocToc
This page is deprecated
Please check README.md on https://github.com/jhu-dvrk/dvrk-gravity-compensation instead.
Gravity Compensation
In ideal case, given robot link mass and center of mass, Recursive Newton Euler (RNE) algorithm can be used to compute gravity compensation terms. To get this correct, we need two things:
- A correct implementation of RNE
- Robot model
- Kinematics: DH Parameters
- Dynamatics: Link mass & Center of Mass (COM)
In this section, we use a simple two link RR robot (RRBot in Gazebo tutorial) as a testbed for different robot kinematics and dynamics libraries in particular cisstRobot and KDL (See Appendix II). The robot parameters are known and described in an URDF file. Also MATLAB Robotics Vision & Control (RVC) toolbox is used as reference. Besides, we send computed values to Gazebo Simulator to visually check the values.
See:
- Gazebo tutorial: http://gazebosim.org/wiki/Tutorials/1.9/Using_A_URDF_In_Gazebo
- Code: https://github.com/ros-simulation/gazebo_ros_demos
- Code: https://github.com/ros-simulation/gazebo_ros_demos
DH Parameters
Table: Standard DH for RRBot
Frame | Joint Name | alpha | a | d | theta |
---|---|---|---|---|---|
1 | Joint 1 | 0 | 0.9 | 0 | q1 |
2 | Joint 2 | 0 | 0.9 | 0.1 | q2 |
Table: Modified DH for RRBot
Frame | Joint Name | alpha | a | d | theta |
---|---|---|---|---|---|
1 | Joint 1 | 0 | 0.0 | 0 | q1 |
2 | Joint 2 | 0 | 0.9 | 0.1 | q2 |
3 | Tip | 0 | 0.9 | 0 | 0 |
Simulation
A Gazebo model plugin has been written for testing.
Code Repository: https://github.com/zchen24/gazebo_ros_demos
Summary
CisstRobot & KDL have been tested in this simple case using both Standard and Modified DH parameters.
Cisst Robot | KDL | Matlab | |
---|---|---|---|
Kinematics Std | YES | YES | YES |
Kinematics Mod | YES | YES | YES |
Gravity Std | YES | YES | YES |
Gravity Mod | NO | NO (? Not sure) | YES |
NOTE:
- center mass is with reference to link frame
- use Standard DH for dynamics
MTM Dynamatics
NOTE:
- COM is with reference to link frame (Standard DH)
- Unit: m, kg
Link 7: Wrist Roll
NOTE: no mass, information is integrated to link 6
Link 6: Wrist Yaw
Link | Mass | COM | Comment |
---|---|---|---|
6 | 0.05 | [0.0 -0.025 0.05] | Motor is heavy |
Link 5: Wrist Pitch
NOTE: Left / Right are mirrored, different COM
Link | Mass | COM | Comment |
---|---|---|---|
5 | 0.04 | [0.0 0.036 -0.065] | MTMR |
5 | 0.04 | [0.0 -0.036 -0.065] | MTML |
NOTE: massive spring here, don't know how to deal with this.
Link 4: Setup Joint (Platform)
NOTE: Left / Right are mirrored, different COM
Link | Mass | COM | Comment |
---|---|---|---|
4 | 0.14 | [0.0 -0.084 -0.12] | MTMR |
4 | 0.14 | [0.0 -0.084 0.12] | MTML |
Link 3: Outer Pitch 2 (Elbow)
Link | Mass | COM | Comment |
---|---|---|---|
3 | 0.04 | [-0.25 0.00 0.00] | Parallel Mechanism |
taugc = torque computed using RNE
tau(3) = taugc(3) - m * g * cos(q2 + q3) // parallel
if (q[3] < 0.05) tau[3] += ((q[3] - 0.05) * 0.1 - 0.07); // cable
Parallel Mechanism
Link 2: Outer Pitch 1 (Shoulder)
Link | Mass | COM | Comment |
---|---|---|---|
3 | 0.65 | [-0.38 0.00 0.00] |
NOTE: huge mass at the top of this link, thus the COM is at the top.
tau[2] = taugc - 0.30 // 0.30 is offset for cable
if (q[2] < 0.05) tau[2] += (q[2] - 0.05) * 1.0 + 0.05 // cable
Link 1: Outer Yaw
Link | Mass | COM | Comment |
---|---|---|---|
1 | 0.00 | [0.00 0.00 0.00] |
// Cable MTMR at JHU
tau[1] = -0.1 * qd[1] // add damping
if (q[1] > -0.15) tau[1] = tau(1) + (q[1] - (-0.15)) * 0.1 + 0.04;
NOTE:
- Disk set mass to 0, does not affect RNE computation
- Huge cable force
Demo Video
Other Approaches
See:
Atkeson, Christopher G., Chae H. An, and John M. Hollerbach. "Estimation of inertial parameters of manipulator loads and links." The International Journal of Robotics Research 5.3 (1986): 101-119.
??? Anyone wants to try ???
Appendix I: MTM DH Parameters
Standard DH Parameters
Image from Adnan Munawar (WPI)
Table 1: Standard DH for MTM
Frame | Joint Name | alpha | a | d | theta |
---|---|---|---|---|---|
1 | Outer Yaw | pi/2 | 0 | 0 | q1 - pi/2 |
2 | Outer Pitch 1 | 0 | l_arm | 0 | q2 - pi/2 |
3 | Outer Pitch 2 | -pi/2 | l_forearm | 0 | q3 + pi/2 |
4 | Setup Joint | pi/2 | 0 | h | q4 |
5 | Wrist Pitch | -pi/2 | 0 | 0 | q5 |
6 | Wrist Yaw | pi/2 | 0 | 0 | q6 - pi/2 |
7 | Wrist Roll | 0 | 0 | 0 | q7 + pi/2 |
Modified DH Parameters
Image from ISI da Vinci Research Kit Manual
Frame | Joint Name | alpha | a | d | theta |
---|---|---|---|---|---|
1 | Outer Yaw | 0 | 0 | 0 | q1 + pi/2 |
2 | Outer Pitch 1 | -pi/2 | 0 | 0 | q2 - pi/2 |
3 | Outer Pitch 2 | 0 | -l_arm | 0 | q3 + pi/2 |
4 | Setup Joint | pi/2 | -l_forearm | h | q4 |
5 | Wrist Pitch | -pi/2 | 0 | 0 | q5 |
6 | Wrist Yaw | pi/2 | 0 | 0 | q6 + pi/2 |
7 | Wrist Roll | pi/2 | 0 | 0 | q7 + pi/2 |
Appendix II: KDL with DH parameters
Kinematics and Dynamics Library (KDL) is a library that supports chain/tree like manipulator kinematics and dynamics computation. By default, it uses frame to represent adjacent joint/link relations, which is more flexiable. DH parameter is also supported as showed in the following code snippet.
Table: Standard DH for RRBot
Frame | Joint Name | alpha | a | d | theta |
---|---|---|---|---|---|
1 | Joint 1 | 0 | 0.9 | 0 | q1 |
2 | Joint 2 | 0 | 0.9 | 0 | q2 |
#include <kdl/chainfksolverpos_recursive.hpp>
#include <kdl/chainidsolver_recursive_newton_euler.hpp>
// Construct KDL
KDL::Chain RRBotKdl;
inert = KDL::RigidBodyInertia(1.0, KDL::Vector(-0.45, 0, 0),
KDL::RotationalInertia(1, 1, 1, 0, 0, 0));
RRBotKdl.addSegment(KDL::Segment(KDL::Joint(KDL::Joint::RotZ),
KDL::Frame::DH(0.9, 0.0, 0.0, 0.0), inert));
RRBotKdl.addSegment(KDL::Segment(KDL::Joint(KDL::Joint::RotZ),
KDL::Frame::DH(0.9, 0.0, 0.1, 0.0), inert));
// Get some joint pos, vel, acc values
KDL::JntArray jnt_q(mNumJnts);
KDL::JntArray jnt_qd(mNumJnts);
KDL::JntArray jnt_qdd(mNumJnts);
KDL::JntArray jnt_taugc(mNumJnts);
KDL::Wrenches jnt_wrenches;
for (unsigned int i = 0; i < mNumJnts; i++) {
jnt_q(i) = q[i];
jnt_qd(i) = 0.0;
jnt_qdd(i) = 0.0;
jnt_wrenches.push_back(KDL::Wrench());
}
// Kinematics
KDL::ChainFkSolverPos_recursive fkSolver = KDL::ChainFkSolverPos_recursive(RRBotKdl);
KDL::Frame fkKDL;
fkSolver.JntToCart(jnt_q, fkKDL);
// Compute Dynamics
KDL::Vector gravity(-9.81, 0.0, 0.0);
KDL::ChainIdSolver_RNE gcSolver = KDL::ChainIdSolver_RNE(RRBotKdl, gravity);
ret = gcSolver.CartToJnt(jnt_q, jnt_qd, jnt_qdd, jnt_wrenches,jnt_taugc);
if (ret < 0) ROS_ERROR("KDL: inverse dynamics ERROR");
NOTE: Support both standard & modified DH Wrenches
Reference:
- ROS Answers: http://answers.ros.org/question/9545/kdl-for-arm/
- NOTE: Jon Bohren mentioned first joint should be fixed, don't understand why
- http://www.orocos.org/wiki/orocos/kdl-wiki
Appendix III: Matlab Toolbox
% start rvc toolbox
startup_rvc
% construct DH robot
% L(1) 1st Revolute
L(1) = Link([0 0 0 pi/2 0]);
L(1).offset = -pi/2;
L(1).m = 0.00;
L(1).r = [0 0 0];
L(1).I = [0.001, 0.001, 0.001, 0, 0, 0];
L(1).G = 1;
L(1).Jm = 0.0;
% L(2) 2nd Revolute
L(2) = Link([0 0 l_arm 0 0]);
L(2).offset = -pi/2;
L(2).m = 0.10;
L(2).r = [-0.1794, 0, 0];
L(2).I = [0.001, 0.001, 0.001, 0, 0, 0];
L(2).G = 1;
L(2).Jm = 0.0;
% Create Serial Link
rob = SerialLink(L, 'name', 'Two link robot', ...
'manufacturer', 'Zihan');
% Forward Kinematics
rob.fkine(q)
% Gravity
rob.gravload(q)
NOTE: it also supports symbolic computation
List of codes:
- mdl_mtm.m: create MTM model with standard DH
- mdl_mtm_modified.m: create MTM model with modified DH
- mdl_psm.m: create PSM model with modified DH
Reference:
- Robotics, Vision and Control by Peter Corke
- Chapter 5: kinematics
- Chapter 7: dynamics
- NOTE: more examples can be found in the book