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1 Overview of section 2.4

In section 2.4 of his thesis, Schöberl proceeds to apply the theory developed in
section 2.3 to three particular sets of equations. The application of the theory
of section 2.3 consists in:

1. Construct the primal system

Aε(u, v) = f(v)

and the dual system

Bε((u, p), (v, q)) = f(v).

2. Consider well-posedness of the system at ε = 0 in V ×Q0 (Theorem 2.8).
Remember that Q0 is ΛV endowed with the norm:

||p||Q0
' sup
v∈V

c(p,Λv)

||v||
.

3. Define a norm V × Q and consider uniform well-posedness for 0 < ε ≤ 1
in V ×Q (Theorem 2.9). The norm on Q is given by

||p||2Q = ||p||2Q0
+ ε||p||2c .

4. Choose elements for a non-conforming discretisation Vh×Qh with bilinear
form Aεh and prove stability of the discrete system.

2 Nearly incompressible materials

We analyse the equations from linear elasticity and consider the stability of the
formulation in the incompressible limit. Note that the same primal formulation
arises with Stokes when enforcing incompressibility with a penalty term [3] or
with an augmented Lagrangian term [2].
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2.1 Primal and dual formulations

The primal system for linear elasticity is set in

V =
[
H1

0,D

]2
with the bilinear form

Aε(u, v) = (e(u), e(v))0︸ ︷︷ ︸
=:a(u,v)

+ε−1 (div u,div v)0︸ ︷︷ ︸
=:c(Λu,Λv)

.

By defining p = ε−1 div u, we get the dual formulation, defined in terms of the
bilinear form

Bε((u, p), (v, q)) = (e(u), e(v)0 + (div u, q)0 + (div v, p)0 − ε(p, q)0.

Thanks to Korn’s inequality, which states that

||u||1 . ||e(u)||0 ∀u ∈ V

we have the coercivity of a(·, ·).

2.2 The Q0 and Q norms

2.2.1 Pure Dirichlet boundary conditions

If we have pure Dirichlet boundary conditions, i.e. ΓD = ∂Ω, then

||p||Q0
:= ||p||L2/R

because

||p||L2/R . sup
v

(p,div v)

||v||1
≤ ||p||L2/R.

The lower bound follows from the inf-sup conditions on L2
0(Ω) = L2/R and

V = H1
0 (Ω). For the upper bound: given a constant α ∈ R,

(p,div v)

||v||1
=

(p+ α,div v)

||v||1
≤ ||p+ α||0

=⇒ sup
v

(p,div v)

||v||1
≤ inf

α
||p+ α||0 = ||p||L2/R.

Therefore, we have uniform well-posedness of Bε in the norm X = Q× V , with
Q = L2

0(Ω) with norm
||p||2Q = ||p||2L2/R + ε||p||20.

2



2.2.2 Mixed boundary conditions

If we have mixed boundary conditions (Dirichlet + Neumann), the inf-sup con-
ditions hold over Q = L2(Ω) (check) and we have

||p||0 . sup
v

(p,div v)

||v||1
≤ ||p||0

so ||p||0 = ||p||Q,0. This also implies that

||p||20 ≤ ||p||2Q,0 + ε||p||20 ≤ 2||p||20 ∀ε ∈ (0, 1]

and therefore we have uniform well-posedness of Bε on X = V × Q, with
Q = L2(Ω) with its usual norm.

2.3 The discrete system

The P2 − P0 elements are used for the discrete velocity and pressure spaces
Xh = Vh ×Qh. Then, the discrete bilinear form Aεh : Vh × Vh → R is given by

Aεh(uh, vh) = (e(uh), e(vh))0 + ε−1(div uh
h
,div vh

h
)0.

2.3.1 Stability in Xh

We can prove that the inf-sup conditions hold in Xh by constructing an appro-
priate Fortin operator. This is carried out in [1, Section 8.4.3].

Definition 1 (Fortin operator). We call Ih : V → Vh a Fortin operator if

1. It is uniformly bounded, i.e.

||Ihv|| . ||v|| ∀v ∈ V.

2. It satisfies
c(ΛIhv, qh) = c(Λv, qh) ∀v ∈ V, ∀qh ∈ Qh.

For our case, property 2 can be rewritten as follows:

(div (Ihv), qh)0 = (div v, qh)0 ∀v, qh

⇐⇒
∑
K∈Th

∫
K

div (Ihv)qh dx =
∑
K∈Th

∫
K

div (v)qh dx ∀v, qh

⇐⇒
∫
K

div (Ihv − v) dx = 0 ∀v,K

⇐⇒
∫
∂K

(Ihv − v) · nds = 0 ∀v,K.

A standard way to construct such an operator (see [1, Proposition 5.4.4]) is
by means of two operators I1

h, I
2
h from V onto Vh as follows:
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Lemma 2. Let I1
h, I

2
h be two operators from V onto Vh with the following prop-

erties:

1. I1
h is uniformly bounded,

2. I2
h satisfies

c(ΛI2
hv, qh) = c(Λv, qh)

(although in general it won’t be uniformly bounded),

3. I2
h(I − I1

h) is uniformly bounded.

Then
IFh = I1

h + I2
h(I − I1

h)

is a Fortin operator.

For the P2 − P0 elements, we set I1
h : V → Vh to be the standard Clement

interpolator, which has the optimal approximation property∑
K

h2r−2
K |v − I1

hv|2r,K . ||v||21 r = 0, 1.

As a result, setting r = 1, using the triangle and Poincaré inequality, we see
that I1

h is uniformly bounded:

||I1
hv||1 ≤ ||I1

hv − v||1 + ||v||1 . ||v||1.

We define I2
h : V → Vh by enforcing 6 (linearly independent) conditions for

each component of the vector I2
hv per triangle:

I2
hv|K(M) = 0 ∀M vertex of K,∫
e

I2
hv ds =

∫
e

v ds ∀e edge of K.

This last condition implies that∫
∂Ω

(I2
hv − v) · nds = 0

and therefore condition 2 holds for I2
h. We now need to check condition 3. We

use a scaling argument to show that

|I2
hv|1,K = |Î2

hv|1,K̂ ≤ c||v̂||1,K̂ ≤ c
(
h−1
K ||v||0,K + |v|1,K

)
,

for v ∈ V and K̂ = h−1
K K (so it has diameter 1 and the constants that arise in

inequalities do not depend on h, only on minimum angles etc.). Now,

||I2
h(I − I1

h)u||21,K ≤ c
(
h−2
K ||(I − I

1
h)u||0,K + ||(I − I1

h)u||21,K
)
≤ ||u||21,K .
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3 Reissner-Mindlin plate

The first part of section 2.4.3 introduces the (primal) scaled problem and
its dual counterpart. It also presents a regularity result, which motivates the
introduction of the spaces V +, V − and Q+ and the characterisation of the dual
of V −.

3.1 The discrete stabilised bilinear form

We work directly with the discrete problem because a stabilised h dependent bi-
linear form is considered. A stabilisation parameter µ ∈ (0, 1] is introduced.
The material parameter is

ε =
t2

k
.

3.1.1 Primal formulation

We have the primal space

V = H1
0 (Ω)× [H1

0 (Ω)]2

which represents the space of transverse displacements (scalar) and rotations
(vector). The space Vh is P2 × [P+

1 ]2. Stabilised primal formulation:

Aεh((wh, βh), (vh, δh)) = a((wh, βh), (vh, δh)) + ε−1c(Λh(wh, βh),Λh(vh, δh)),

where

a((wh, βh), (vh, δh)) = ab(βh, δh) +
kµ

h2 + t2
(∇wh − βh,∇vh − δh)0,

Λh(wh, βh) = ∇wh − βh
h
,

c(ph, qh) =

(
1− t2µ

h2 + t2

)
||p||20.

Here, ab(·, ·) is uniformly continuous and coercive. Note that the bilinear forms
depend on h and t. In order to have uniform continuity and coercivity for a(·, ·),
we define the norm

||(w, β)||2V := ||β||21 +
1

h2 + t2
||∇w − β||20.

Regarding || · ||c, uniform norm equivalence with || · ||0 depends on the value of
µ ∈ (0, 1]:

if µ < 1: (1− µ)||p||20 ≤ ||p||2c ≤ ||p||20 =⇒ ||p||0 ' ||p||c,
if µ = 1: ||p||2c ' min (1, h2/t2)||p||20.
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For the last equivalence, note that if µ = 1 then we have

1− t2

t2 + h2
= 1− 1

h2/t2 + 1
=

h2/t2

1 + h2/t2
.

Now, we consider the function x/(1 + x) for x ≥ 0. We have

x

1 + x
≤ x and

x

1 + x
≤ 1 =⇒ x

1 + x
≤ min (1, x).

Also,

if 0 ≤ x ≤ 1: x(1 + x) ≤ 2x =⇒ 1

2
x ≤ x

1 + x
,

if 1 ≤ x:
x

1 + x
≥ 1

2
,

so
x

1 + x
≥ 1

2
min (1, x).

3.1.2 Dual formulation

We introduce the dual variable

p = ε−1Λ(w, β) =
k

t2
(∇w − β)

which represents the scaled shear force. We have

Q = L2(Ω) and Qh = P0.

We define the norm on Q such that we directly obtain stability:

||p||2Q := sup
(w,β)∈V )

c(∇w − β), p)2

||(w, β)||2V︸ ︷︷ ︸
=:||p||2Q0

+ε||p||2c .

Using the definition of || · ||V and Cauchy-Schwartz we get the upper bound

||p||Q0 = sup
(w,β)∈V )

c(∇w − β), p)2

||(w, β)||2V
≤ (h+ t)||q||c.

3.2 Stability of the discrete formulation

We construct a Fortin operator to prove that the discretisation

Vh = P2 × [P+
1 ]2 Qh = [P0]2

is stable with respect to the operator

((wh, βh), qh) 7→ c(∇wh − βh, qh).
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We will show that the discrete inf-sup conditions hold by using the relaxed
criterion of Fortin. We break Ω into two subsets

Ω = Ωh≤t ∪ Ωh>t

and define

Qh≤t = {q ∈ Qh : supp(q) ⊂ Ωh≤t}
Qh>t = {q ∈ Qh : supp(q) ⊂ Ωh>t} , .

We have
Qh = Qh≤t ⊕Qh>t

and
ph = p0︸︷︷︸

∈Qh≤t

+ p1︸︷︷︸
∈Qh>t

, ||ph||20 = ||p0||20 + ||p1||20.

Also, given the estimate for || · ||Q0 , for q0 ∈ Qh≤t,

||q0||Q ' ||q0||Q0 + ε1/2||q0||c ≤ (h+ t+ ε1/2)||q0||c . ε1/2||q0||c.

So, in order to show stability, we have to find an operator

IFh : Vh → V

that is uniformly bounded and

(wh, βh) = IFh ((w, β)); c(∇wh − βh, q1) = c(∇w − β, q1) ∀q1 ∈ Qh>t.(1)

Lemma 3. Define the operator

IFh ((w, β)) = (0, βh),

where

βh =
∑

T∈Th:hT>t

((∂1w − β1, 1)T , (∂2w − β2, 1)T )
bT

(bT , 1)T
,

bT is the bubble function in T and (·, ·)T is the L2 inner product restricted to
T . This operator is uniformly bounded and satisfies (1).

Proof. For uniform boundedness:

||(0, βh)||V . ||βh||1 +
1

h+ t
||βh||0

. h−1||βh||0 (h > t and ||∇bT ||0 . (h+ t)−1||bt||0)

. (h+ t)−1||∇w − β||0 (Hölder’s inequality)

≤ ||(w, β)||V .

Regarding the invariance property (1), its a straightforward consequence of the
definition:

(∇wh − βh, q1) =
∑

T∈Th:hT>t

q1|T (∂1w − β1, 1)T + q2|T (∂2w − β2, 1)T

= (∇w − β, q1).
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3.3 A priori estimates

A result of having a stable discretisation is that the solution of the discrete
mixed problem is a best approximation, in the sense that

||(w, β)− (wh, βh)||V + ||p− ph||Q(2)

. inf
(vh,ηh,qh)∈Xh

(||(w, β)− (vh, ηh)||V + ||p− qh||Q) .

We also have the regularity result:

||(w, β)||V + + ||p||Q+ . ||(g, δ)||(V −)∗ ,(3)

where

||(w, β)||2V + = inf
w=w0+wr

(
||w0||23 + t−2||wr||22

)
+ ||β||22,

||(w, β)||2V − = inf
w=w0+wr

(
||w0||21 + t−2||wr||20

)
+ ||β||20,

||q||2Q+ = ||p||20 + t2||p||21.

We also have optimal interpolation operators in Hk(Ω)-norms

IVh = (IV,wh , IV,βh ) : V → Vh,

IQh : Q→ Qh

such that

||w − IV,wh w||k . hl−k||w||l 0 ≤ k ≤ 1, k ≤ l ≤ 3,(4)

||β − IV,βh β||k . hl−k||β||l 0 ≤ k ≤ 1, k ≤ l ≤ 2,(5)

||q − IQh q||k . hl−k||q||l 0 ≤ k ≤ l ≤ 1.(6)

Our goal is to obtain approximation estimates in V ×Q norms. Once we
have these, the a priori estimates follow from (2) and (3).

3.3.1 Some technical lemmas

Lemmas 2.17 and 2.18 are used to characterise the norm || · ||V −,w . In order to
do so, a local regularisation operator at length scale t

Iwt : V −,w → V

with certain approximation properties is introduced and assumed to exist.

3.3.2 Approximation estimates in V ×Q norms

Theorem 4. The interpolation operators have full order of approximation in
the V ×Q norms:

h−1||(w, β)− IVh (w, β)||V − + ||(w, β)− IVh (w, β)||V . h||(w, β)||V + ,(7)

h−1||(w, β)− IVh (w, β)||V − + ||IVh (w, β)||V . ||(w, β)||V ,(8)

||IVh (w, β)||V − . ||(w, β)||V − ,(9)

8



and

||p− IQh p||Q . h||p||Q+ .(10)

Proof. (V − norm in (7).) We have

||(w, β)− IVh (w, β)||V − = inf
w=w0+wr

(
||w0||21 + t−2||wr||20

)
+ ||β||20.

For ||β||0 we just use the property of the IV,βh , that is, (6). For the w component,
we use an adequate decomposition. Since

(a2 + b2)1/2 ≥ a2 + b2 ∀a, b ≥ 0,

for any w ∈ V w we can find a decomposition w = w0 + wr such that

||w0||3 + t−1||wr||2 ≤ ||w||V +,w .

Then using this inequality and the interpolation properties of IV,wh , that is, (4),
we get

||w − IV,wh w||V −,w . h2||w||V +,w .

(V norm in (7).)

||(w, β)− IVh (w, β)||V
. ||β − IV,βh β||1 + (h+ t)−1||∇(w − IV,wh w)− (β − IV,βh β)||0
. h||β||2 + (h+ t)−1||(w0 + wr)− IV,wh (w0 + wr)||1
. h||β||2 + (h+ t)−1

(
h2||w0||3 + h||wr||2

)
. h||β||2 + h

(
||w0||3 + t−1||wr||2

)
so taking the infimum we have the result we want.
(V − norm in (8).) We want to show that

||(w, β)− IVh (w, β)||V − . h||(w, β)||V .

To do so, we shall use the regularisation operator from Lemma 2.17. We con-
centrate on the V −,w component. We use the splitting

w − IV,wh w = Iwt

(
w − IV,wh w

)
+ (I − Iwt )

(
w − IV,wh w

)
and the definition of the V − norm:

||w − IV,wh w||V −,w . ||Iwt
(
w − IV,wh w

)
||1 + t−1|| (I − Iwt )

(
w − IV,wh w

)
||0

= ||Iwt
(
w − IV,wh w

)
||1,Ωh>t

+ t−1|| (I − Iwt )
(
w − IV,wh w

)
||0,,Ωh>t

+||Iwt
(
w − IV,wh w

)
||1,Ωh≤t

+ t−1|| (I − Iwt )
(
w − IV,wh w

)
||0,,Ωh≤t
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Then, we use the properties of the regularisation operator (approximation on
Ωh>t and uniform coninuity in || · ||Ωh≤t

), see Lemma 2.17, to obtain

||w − IV,wh w||V −,w . ||w − IV,wh w||1,Ωh>t
+ t−1||w − IV,wh w||0,Ωh≤t.

Now, by a scaling argument (I think...),

||w − IV,wh w||0,Ωh≤t ≤ h||w − IV,wh w||1,Ωh≤t

so that

||w − IV,wh w||V −,w . ||w − IV,wh w||1,Ωh>t
+ ht−1||w − IV,wh w||1,Ωh≤t

.
h

h+ t
||w − IV,wh w||1

where we have used:

h+ t < 2h =⇒ 1 .
h

h+ t
on Ωh>t,

h+ t ≤ 2t =⇒ ht−1 .
h

h+ t
on Ωh≤t.

See the thesis for the last step.
(V norm in (8); uniform continuity in V .) Since

||(w, β)||2V := ||β||21 +
1

h2 + t2
||∇w − β||20.

and we already have uniform continuity of IV,βh in the || · ||1 norm, we need
to do something about the second part of the V -norm. We will show that
IVh is uniformly continuous in that norm by first showing that it is uniformly
continuous in the following seminorm:

|(w, β)|2V := ||∇β||20 + ||∇w − β||20.

Schöberl shows this by using the Bramble-Hilbert lemma. This essentially boils
down to the following: Note that

V00 =
{

(w, β) = (a+ bTx, b) : a ∈ R, b ∈ R2
}

= Ker (| · |V )

and
V00 ⊂ Ker

(
I − IVh

)
= Vh.

Then, by a standard isomorphism theorem on normed vector spacces, | · |V is a
norm on the quotient space V/V00 equivalent to its canonical norm, i.e.

|(w, β)|V ' inf
(v,η)∈V00

||(w, β)− (v, η)||1(11)
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and, using the fact that IVh is continuous in || · ||1 and I − IVh is surjective onto
V , we have that I − IVh is an isomorphism from V/Vh onto V , i.e.

||(w, β)− IVh (w, β)||1 ' inf
(v,η)∈Vh

||(w, β)− (v, η)||1.(12)

Also, on the reference element, we have the following norm equivalence:

||(w, β)||1 ' ||(w, β)||0 + |(w, β)|V .(13)

Therefore, on the reference element (so we ignore h’s that may arise in the .),
we can deduce that

|(w, β)− IVh (w, β)|V . ||(w, β)− IVh (w, β)||1 (by (13))

. inf
(v,η)∈Vh

||(w, β)− (v, η)||1 (by (12))

≤ inf
(v,η)∈V00

||(w, β)− (v, η)||1 ( V00 ⊂ Vh)

. |(w, β)|V . (by (11))

Using the triangle inequality, we see that

|IVh (w, β)|V . |(w, β)|V

holds on the reference element. By a scaling argument, we have continuity with
respect to the seminorm

||∇β||20 + h−2||∇w − β||20.

By the properties of the interpolation operator IVh , we also have continuity with
respect to the seminorm

||∇β||20
so therefore the operator is uniformly continuous with respect to the family of
seminorms

||∇β||20 + α||∇w − β||20 ∀α . h−2

and in particular, this holds for α = (h2 + t2)−1 and this establishes the uniform
continuity of the operator with respect to the V -norm.
(V − norm in (9); uniform continuity in V −.)
(Q norm in (10))

3.3.3 An inverse estimate
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