TEST
None:
# Please let:
⎣x = Math.log(x)
# Recall that Log and Exp are inverses:
⎣⎤x = x
# Define the unsquash function:
⎦x = Math.log(x / (1 - x))
⎦x = ⎣ x/(1-x)
# Show that unsquash is the inverse of squash:
⎦⎡x = ⎦ ⎡x
= ⎣ ⎡x/(1-⎡x)
= ⎣⎡x - ⎣ 1-⎡x
= ⎣ ⎤x/(⎤x+1) - ⎣ 1-⎡x
= ⎣⎤x - ⎣ ⎤x+1 - ⎣ 1-⎡x
= x - ⎣ ⎤x+1 - ⎣ 1-⎡x
= x - ⎣ ⎤x+1 - ⎣ 1-⎤x/(⎤x+1)
= x - ⎣ ⎤x+1 - ⎣ (⎤x+1-⎤x)/(⎤x+1)
= x - ⎣ ⎤x+1 - ⎣ 1/(⎤x+1)
= x - ⎣ ⎤x+1 - (⎣1 - ⎣ ⎤x+1)
= x - ⎣ ⎤x+1 - (0 - ⎣ ⎤x+1)
= x - ⎣ ⎤x+1 - (-⎣ ⎤x+1)
= x - ⎣ ⎤x+1 + ⎣ ⎤x+1
= x
Fish:
# Please let:
⎣x = Math.log(x)
# Recall that Log and Exp are inverses:
⎣⎤x = x
# Define the unsquash function:
⎦x = Math.log(x / (1 - x))
⎦x = ⎣ x/(1-x)
# Show that unsquash is the inverse of squash:
⎦⎡x = ⎦ ⎡x
= ⎣ ⎡x/(1-⎡x)
= ⎣⎡x - ⎣ 1-⎡x
= ⎣ ⎤x/(⎤x+1) - ⎣ 1-⎡x
= ⎣⎤x - ⎣ ⎤x+1 - ⎣ 1-⎡x
= x - ⎣ ⎤x+1 - ⎣ 1-⎡x
= x - ⎣ ⎤x+1 - ⎣ 1-⎤x/(⎤x+1)
= x - ⎣ ⎤x+1 - ⎣ (⎤x+1-⎤x)/(⎤x+1)
= x - ⎣ ⎤x+1 - ⎣ 1/(⎤x+1)
= x - ⎣ ⎤x+1 - (⎣1 - ⎣ ⎤x+1)
= x - ⎣ ⎤x+1 - (0 - ⎣ ⎤x+1)
= x - ⎣ ⎤x+1 - (-⎣ ⎤x+1)
= x - ⎣ ⎤x+1 + ⎣ ⎤x+1
= x
Ruby:
# Please let:
⎣x = Math.log(x)
# Recall that Log and Exp are inverses:
⎣⎤x = x
# Define the unsquash function:
⎦x = Math.log(x / (1 - x))
⎦x = ⎣ x/(1-x)
# Show that unsquash is the inverse of squash:
⎦⎡x = ⎦ ⎡x
= ⎣ ⎡x/(1-⎡x)
= ⎣⎡x - ⎣ 1-⎡x
= ⎣ ⎤x/(⎤x+1) - ⎣ 1-⎡x
= ⎣⎤x - ⎣ ⎤x+1 - ⎣ 1-⎡x
= x - ⎣ ⎤x+1 - ⎣ 1-⎡x
= x - ⎣ ⎤x+1 - ⎣ 1-⎤x/(⎤x+1)
= x - ⎣ ⎤x+1 - ⎣ (⎤x+1-⎤x)/(⎤x+1)
= x - ⎣ ⎤x+1 - ⎣ 1/(⎤x+1)
= x - ⎣ ⎤x+1 - (⎣1 - ⎣ ⎤x+1)
= x - ⎣ ⎤x+1 - (0 - ⎣ ⎤x+1)
= x - ⎣ ⎤x+1 - (-⎣ ⎤x+1)
= x - ⎣ ⎤x+1 + ⎣ ⎤x+1
= x
Cucumber:
# Please let:
⎣x = Math.log(x)
# Recall that Log and Exp are inverses:
⎣⎤x = x
# Define the unsquash function:
⎦x = Math.log(x / (1 - x))
⎦x = ⎣ x/(1-x)
# Show that unsquash is the inverse of squash:
⎦⎡x = ⎦ ⎡x
= ⎣ ⎡x/(1-⎡x)
= ⎣⎡x - ⎣ 1-⎡x
= ⎣ ⎤x/(⎤x+1) - ⎣ 1-⎡x
= ⎣⎤x - ⎣ ⎤x+1 - ⎣ 1-⎡x
= x - ⎣ ⎤x+1 - ⎣ 1-⎡x
= x - ⎣ ⎤x+1 - ⎣ 1-⎤x/(⎤x+1)
= x - ⎣ ⎤x+1 - ⎣ (⎤x+1-⎤x)/(⎤x+1)
= x - ⎣ ⎤x+1 - ⎣ 1/(⎤x+1)
= x - ⎣ ⎤x+1 - (⎣1 - ⎣ ⎤x+1)
= x - ⎣ ⎤x+1 - (0 - ⎣ ⎤x+1)
= x - ⎣ ⎤x+1 - (-⎣ ⎤x+1)
= x - ⎣ ⎤x+1 + ⎣ ⎤x+1
= x
Coffee:
# Please let:
⎣x = Math.log(x)
# Recall that Log and Exp are inverses:
⎣⎤x = x
# Define the unsquash function:
⎦x = Math.log(x / (1 - x))
⎦x = ⎣ x/(1-x)
# Show that unsquash is the inverse of squash:
⎦⎡x = ⎦ ⎡x
= ⎣ ⎡x/(1-⎡x)
= ⎣⎡x - ⎣ 1-⎡x
= ⎣ ⎤x/(⎤x+1) - ⎣ 1-⎡x
= ⎣⎤x - ⎣ ⎤x+1 - ⎣ 1-⎡x
= x - ⎣ ⎤x+1 - ⎣ 1-⎡x
= x - ⎣ ⎤x+1 - ⎣ 1-⎤x/(⎤x+1)
= x - ⎣ ⎤x+1 - ⎣ (⎤x+1-⎤x)/(⎤x+1)
= x - ⎣ ⎤x+1 - ⎣ 1/(⎤x+1)
= x - ⎣ ⎤x+1 - (⎣1 - ⎣ ⎤x+1)
= x - ⎣ ⎤x+1 - (0 - ⎣ ⎤x+1)
= x - ⎣ ⎤x+1 - (-⎣ ⎤x+1)
= x - ⎣ ⎤x+1 + ⎣ ⎤x+1
= x
GnuPlot:
# Please let:
⎣x = Math.log(x)
# Recall that Log and Exp are inverses:
⎣⎤x = x
# Define the unsquash function:
⎦x = Math.log(x / (1 - x))
⎦x = ⎣ x/(1-x)
# Show that unsquash is the inverse of squash:
⎦⎡x = ⎦ ⎡x
= ⎣ ⎡x/(1-⎡x)
= ⎣⎡x - ⎣ 1-⎡x
= ⎣ ⎤x/(⎤x+1) - ⎣ 1-⎡x
= ⎣⎤x - ⎣ ⎤x+1 - ⎣ 1-⎡x
= x - ⎣ ⎤x+1 - ⎣ 1-⎡x
= x - ⎣ ⎤x+1 - ⎣ 1-⎤x/(⎤x+1)
= x - ⎣ ⎤x+1 - ⎣ (⎤x+1-⎤x)/(⎤x+1)
= x - ⎣ ⎤x+1 - ⎣ 1/(⎤x+1)
= x - ⎣ ⎤x+1 - (⎣1 - ⎣ ⎤x+1)
= x - ⎣ ⎤x+1 - (0 - ⎣ ⎤x+1)
= x - ⎣ ⎤x+1 - (-⎣ ⎤x+1)
= x - ⎣ ⎤x+1 + ⎣ ⎤x+1
= x
Haskell:
# Please let:
⎣x = Math.log(x)
# Recall that Log and Exp are inverses:
⎣⎤x = x
# Define the unsquash function:
⎦x = Math.log(x / (1 - x))
⎦x = ⎣ x/(1-x)
# Show that unsquash is the inverse of squash:
⎦⎡x = ⎦ ⎡x
= ⎣ ⎡x/(1-⎡x)
= ⎣⎡x - ⎣ 1-⎡x
= ⎣ ⎤x/(⎤x+1) - ⎣ 1-⎡x
= ⎣⎤x - ⎣ ⎤x+1 - ⎣ 1-⎡x
= x - ⎣ ⎤x+1 - ⎣ 1-⎡x
= x - ⎣ ⎤x+1 - ⎣ 1-⎤x/(⎤x+1)
= x - ⎣ ⎤x+1 - ⎣ (⎤x+1-⎤x)/(⎤x+1)
= x - ⎣ ⎤x+1 - ⎣ 1/(⎤x+1)
= x - ⎣ ⎤x+1 - (⎣1 - ⎣ ⎤x+1)
= x - ⎣ ⎤x+1 - (0 - ⎣ ⎤x+1)
= x - ⎣ ⎤x+1 - (-⎣ ⎤x+1)
= x - ⎣ ⎤x+1 + ⎣ ⎤x+1
= x
R:
# Please let:
⎣x = Math.log(x)
# Recall that Log and Exp are inverses:
⎣⎤x = x
# Define the unsquash function:
⎦x = Math.log(x / (1 - x))
⎦x = ⎣ x/(1-x)
# Show that unsquash is the inverse of squash:
⎦⎡x = ⎦ ⎡x
= ⎣ ⎡x/(1-⎡x)
= ⎣⎡x - ⎣ 1-⎡x
= ⎣ ⎤x/(⎤x+1) - ⎣ 1-⎡x
= ⎣⎤x - ⎣ ⎤x+1 - ⎣ 1-⎡x
= x - ⎣ ⎤x+1 - ⎣ 1-⎡x
= x - ⎣ ⎤x+1 - ⎣ 1-⎤x/(⎤x+1)
= x - ⎣ ⎤x+1 - ⎣ (⎤x+1-⎤x)/(⎤x+1)
= x - ⎣ ⎤x+1 - ⎣ 1/(⎤x+1)
= x - ⎣ ⎤x+1 - (⎣1 - ⎣ ⎤x+1)
= x - ⎣ ⎤x+1 - (0 - ⎣ ⎤x+1)
= x - ⎣ ⎤x+1 - (-⎣ ⎤x+1)
= x - ⎣ ⎤x+1 + ⎣ ⎤x+1
= x
Yaml:
# Please let:
⎣x = Math.log(x)
# Recall that Log and Exp are inverses:
⎣⎤x = x
# Define the unsquash function:
⎦x = Math.log(x / (1 - x))
⎦x = ⎣ x/(1-x)
# Show that unsquash is the inverse of squash:
⎦⎡x = ⎦ ⎡x
= ⎣ ⎡x/(1-⎡x)
= ⎣⎡x - ⎣ 1-⎡x
= ⎣ ⎤x/(⎤x+1) - ⎣ 1-⎡x
= ⎣⎤x - ⎣ ⎤x+1 - ⎣ 1-⎡x
= x - ⎣ ⎤x+1 - ⎣ 1-⎡x
= x - ⎣ ⎤x+1 - ⎣ 1-⎤x/(⎤x+1)
= x - ⎣ ⎤x+1 - ⎣ (⎤x+1-⎤x)/(⎤x+1)
= x - ⎣ ⎤x+1 - ⎣ 1/(⎤x+1)
= x - ⎣ ⎤x+1 - (⎣1 - ⎣ ⎤x+1)
= x - ⎣ ⎤x+1 - (0 - ⎣ ⎤x+1)
= x - ⎣ ⎤x+1 - (-⎣ ⎤x+1)
= x - ⎣ ⎤x+1 + ⎣ ⎤x+1
= x
TCL:
# Please let:
⎣x = Math.log(x)
# Recall that Log and Exp are inverses:
⎣⎤x = x
# Define the unsquash function:
⎦x = Math.log(x / (1 - x))
⎦x = ⎣ x/(1-x)
# Show that unsquash is the inverse of squash:
⎦⎡x = ⎦ ⎡x
= ⎣ ⎡x/(1-⎡x)
= ⎣⎡x - ⎣ 1-⎡x
= ⎣ ⎤x/(⎤x+1) - ⎣ 1-⎡x
= ⎣⎤x - ⎣ ⎤x+1 - ⎣ 1-⎡x
= x - ⎣ ⎤x+1 - ⎣ 1-⎡x
= x - ⎣ ⎤x+1 - ⎣ 1-⎤x/(⎤x+1)
= x - ⎣ ⎤x+1 - ⎣ (⎤x+1-⎤x)/(⎤x+1)
= x - ⎣ ⎤x+1 - ⎣ 1/(⎤x+1)
= x - ⎣ ⎤x+1 - (⎣1 - ⎣ ⎤x+1)
= x - ⎣ ⎤x+1 - (0 - ⎣ ⎤x+1)
= x - ⎣ ⎤x+1 - (-⎣ ⎤x+1)
= x - ⎣ ⎤x+1 + ⎣ ⎤x+1
= x