TEST - carlosjhr64/neuronet GitHub Wiki

TEST

None:

# Please let:
⎣x = Math.log(x)
# Recall that Log and Exp are inverses:
⎣⎤x = x
# Define the unsquash function:
⎦x = Math.log(x / (1 - x))
⎦x = ⎣ x/(1-x)
# Show that unsquash is the inverse of squash:
⎦⎡x = ⎦ ⎡x
    = ⎣ ⎡x/(1-⎡x)
    = ⎣⎡x - ⎣ 1-⎡x
    = ⎣ ⎤x/(⎤x+1) - ⎣ 1-⎡x
    = ⎣⎤x - ⎣ ⎤x+1 - ⎣ 1-⎡x
    = x - ⎣ ⎤x+1 - ⎣ 1-⎡x
    = x - ⎣ ⎤x+1 - ⎣ 1-⎤x/(⎤x+1)
    = x - ⎣ ⎤x+1 - ⎣ (⎤x+1-⎤x)/(⎤x+1)
    = x - ⎣ ⎤x+1 - ⎣ 1/(⎤x+1)
    = x - ⎣ ⎤x+1 - (⎣1 - ⎣ ⎤x+1)
    = x - ⎣ ⎤x+1 - (0 - ⎣ ⎤x+1)
    = x - ⎣ ⎤x+1 - (-⎣ ⎤x+1)
    = x - ⎣ ⎤x+1 + ⎣ ⎤x+1
    = x

Fish:

# Please let:
⎣x = Math.log(x)
# Recall that Log and Exp are inverses:
⎣⎤x = x
# Define the unsquash function:
⎦x = Math.log(x / (1 - x))
⎦x = ⎣ x/(1-x)
# Show that unsquash is the inverse of squash:
⎦⎡x = ⎦ ⎡x
    = ⎣ ⎡x/(1-⎡x)
    = ⎣⎡x - ⎣ 1-⎡x
    = ⎣ ⎤x/(⎤x+1) - ⎣ 1-⎡x
    = ⎣⎤x - ⎣ ⎤x+1 - ⎣ 1-⎡x
    = x - ⎣ ⎤x+1 - ⎣ 1-⎡x
    = x - ⎣ ⎤x+1 - ⎣ 1-⎤x/(⎤x+1)
    = x - ⎣ ⎤x+1 - ⎣ (⎤x+1-⎤x)/(⎤x+1)
    = x - ⎣ ⎤x+1 - ⎣ 1/(⎤x+1)
    = x - ⎣ ⎤x+1 - (⎣1 - ⎣ ⎤x+1)
    = x - ⎣ ⎤x+1 - (0 - ⎣ ⎤x+1)
    = x - ⎣ ⎤x+1 - (-⎣ ⎤x+1)
    = x - ⎣ ⎤x+1 + ⎣ ⎤x+1
    = x

Ruby:

# Please let:
⎣x = Math.log(x)
# Recall that Log and Exp are inverses:
⎣⎤x = x
# Define the unsquash function:
⎦x = Math.log(x / (1 - x))
⎦x = ⎣ x/(1-x)
# Show that unsquash is the inverse of squash:
⎦⎡x = ⎦ ⎡x
    = ⎣ ⎡x/(1-⎡x)
    = ⎣⎡x - ⎣ 1-⎡x
    = ⎣ ⎤x/(⎤x+1) - ⎣ 1-⎡x
    = ⎣⎤x - ⎣ ⎤x+1 - ⎣ 1-⎡x
    = x - ⎣ ⎤x+1 - ⎣ 1-⎡x
    = x - ⎣ ⎤x+1 - ⎣ 1-⎤x/(⎤x+1)
    = x - ⎣ ⎤x+1 - ⎣ (⎤x+1-⎤x)/(⎤x+1)
    = x - ⎣ ⎤x+1 - ⎣ 1/(⎤x+1)
    = x - ⎣ ⎤x+1 - (⎣1 - ⎣ ⎤x+1)
    = x - ⎣ ⎤x+1 - (0 - ⎣ ⎤x+1)
    = x - ⎣ ⎤x+1 - (-⎣ ⎤x+1)
    = x - ⎣ ⎤x+1 + ⎣ ⎤x+1
    = x

Cucumber:

# Please let:
⎣x = Math.log(x)
# Recall that Log and Exp are inverses:
⎣⎤x = x
# Define the unsquash function:
⎦x = Math.log(x / (1 - x))
⎦x = ⎣ x/(1-x)
# Show that unsquash is the inverse of squash:
⎦⎡x = ⎦ ⎡x
    = ⎣ ⎡x/(1-⎡x)
    = ⎣⎡x - ⎣ 1-⎡x
    = ⎣ ⎤x/(⎤x+1) - ⎣ 1-⎡x
    = ⎣⎤x - ⎣ ⎤x+1 - ⎣ 1-⎡x
    = x - ⎣ ⎤x+1 - ⎣ 1-⎡x
    = x - ⎣ ⎤x+1 - ⎣ 1-⎤x/(⎤x+1)
    = x - ⎣ ⎤x+1 - ⎣ (⎤x+1-⎤x)/(⎤x+1)
    = x - ⎣ ⎤x+1 - ⎣ 1/(⎤x+1)
    = x - ⎣ ⎤x+1 - (⎣1 - ⎣ ⎤x+1)
    = x - ⎣ ⎤x+1 - (0 - ⎣ ⎤x+1)
    = x - ⎣ ⎤x+1 - (-⎣ ⎤x+1)
    = x - ⎣ ⎤x+1 + ⎣ ⎤x+1
    = x

Coffee:

# Please let:
⎣x = Math.log(x)
# Recall that Log and Exp are inverses:
⎣⎤x = x
# Define the unsquash function:
⎦x = Math.log(x / (1 - x))
⎦x = ⎣ x/(1-x)
# Show that unsquash is the inverse of squash:
⎦⎡x = ⎦ ⎡x
    = ⎣ ⎡x/(1-⎡x)
    = ⎣⎡x - ⎣ 1-⎡x
    = ⎣ ⎤x/(⎤x+1) - ⎣ 1-⎡x
    = ⎣⎤x - ⎣ ⎤x+1 - ⎣ 1-⎡x
    = x - ⎣ ⎤x+1 - ⎣ 1-⎡x
    = x - ⎣ ⎤x+1 - ⎣ 1-⎤x/(⎤x+1)
    = x - ⎣ ⎤x+1 - ⎣ (⎤x+1-⎤x)/(⎤x+1)
    = x - ⎣ ⎤x+1 - ⎣ 1/(⎤x+1)
    = x - ⎣ ⎤x+1 - (⎣1 - ⎣ ⎤x+1)
    = x - ⎣ ⎤x+1 - (0 - ⎣ ⎤x+1)
    = x - ⎣ ⎤x+1 - (-⎣ ⎤x+1)
    = x - ⎣ ⎤x+1 + ⎣ ⎤x+1
    = x

GnuPlot:

# Please let:
⎣x = Math.log(x)
# Recall that Log and Exp are inverses:
⎣⎤x = x
# Define the unsquash function:
⎦x = Math.log(x / (1 - x))
⎦x = ⎣ x/(1-x)
# Show that unsquash is the inverse of squash:
⎦⎡x = ⎦ ⎡x
    = ⎣ ⎡x/(1-⎡x)
    = ⎣⎡x - ⎣ 1-⎡x
    = ⎣ ⎤x/(⎤x+1) - ⎣ 1-⎡x
    = ⎣⎤x - ⎣ ⎤x+1 - ⎣ 1-⎡x
    = x - ⎣ ⎤x+1 - ⎣ 1-⎡x
    = x - ⎣ ⎤x+1 - ⎣ 1-⎤x/(⎤x+1)
    = x - ⎣ ⎤x+1 - ⎣ (⎤x+1-⎤x)/(⎤x+1)
    = x - ⎣ ⎤x+1 - ⎣ 1/(⎤x+1)
    = x - ⎣ ⎤x+1 - (⎣1 - ⎣ ⎤x+1)
    = x - ⎣ ⎤x+1 - (0 - ⎣ ⎤x+1)
    = x - ⎣ ⎤x+1 - (-⎣ ⎤x+1)
    = x - ⎣ ⎤x+1 + ⎣ ⎤x+1
    = x

Haskell:

# Please let:
⎣x = Math.log(x)
# Recall that Log and Exp are inverses:
⎣⎤x = x
# Define the unsquash function:
⎦x = Math.log(x / (1 - x))
⎦x = ⎣ x/(1-x)
# Show that unsquash is the inverse of squash:
⎦⎡x = ⎦ ⎡x
    = ⎣ ⎡x/(1-⎡x)
    = ⎣⎡x - ⎣ 1-⎡x
    = ⎣ ⎤x/(⎤x+1) - ⎣ 1-⎡x
    = ⎣⎤x - ⎣ ⎤x+1 - ⎣ 1-⎡x
    = x - ⎣ ⎤x+1 - ⎣ 1-⎡x
    = x - ⎣ ⎤x+1 - ⎣ 1-⎤x/(⎤x+1)
    = x - ⎣ ⎤x+1 - ⎣ (⎤x+1-⎤x)/(⎤x+1)
    = x - ⎣ ⎤x+1 - ⎣ 1/(⎤x+1)
    = x - ⎣ ⎤x+1 - (⎣1 - ⎣ ⎤x+1)
    = x - ⎣ ⎤x+1 - (0 - ⎣ ⎤x+1)
    = x - ⎣ ⎤x+1 - (-⎣ ⎤x+1)
    = x - ⎣ ⎤x+1 + ⎣ ⎤x+1
    = x

R:

# Please let:
⎣x = Math.log(x)
# Recall that Log and Exp are inverses:
⎣⎤x = x
# Define the unsquash function:
⎦x = Math.log(x / (1 - x))
⎦x = ⎣ x/(1-x)
# Show that unsquash is the inverse of squash:
⎦⎡x = ⎦ ⎡x
    = ⎣ ⎡x/(1-⎡x)
    = ⎣⎡x - ⎣ 1-⎡x
    = ⎣ ⎤x/(⎤x+1) - ⎣ 1-⎡x
    = ⎣⎤x - ⎣ ⎤x+1 - ⎣ 1-⎡x
    = x - ⎣ ⎤x+1 - ⎣ 1-⎡x
    = x - ⎣ ⎤x+1 - ⎣ 1-⎤x/(⎤x+1)
    = x - ⎣ ⎤x+1 - ⎣ (⎤x+1-⎤x)/(⎤x+1)
    = x - ⎣ ⎤x+1 - ⎣ 1/(⎤x+1)
    = x - ⎣ ⎤x+1 - (⎣1 - ⎣ ⎤x+1)
    = x - ⎣ ⎤x+1 - (0 - ⎣ ⎤x+1)
    = x - ⎣ ⎤x+1 - (-⎣ ⎤x+1)
    = x - ⎣ ⎤x+1 + ⎣ ⎤x+1
    = x

Yaml:

# Please let:
⎣x = Math.log(x)
# Recall that Log and Exp are inverses:
⎣⎤x = x
# Define the unsquash function:
⎦x = Math.log(x / (1 - x))
⎦x = ⎣ x/(1-x)
# Show that unsquash is the inverse of squash:
⎦⎡x = ⎦ ⎡x
    = ⎣ ⎡x/(1-⎡x)
    = ⎣⎡x - ⎣ 1-⎡x
    = ⎣ ⎤x/(⎤x+1) - ⎣ 1-⎡x
    = ⎣⎤x - ⎣ ⎤x+1 - ⎣ 1-⎡x
    = x - ⎣ ⎤x+1 - ⎣ 1-⎡x
    = x - ⎣ ⎤x+1 - ⎣ 1-⎤x/(⎤x+1)
    = x - ⎣ ⎤x+1 - ⎣ (⎤x+1-⎤x)/(⎤x+1)
    = x - ⎣ ⎤x+1 - ⎣ 1/(⎤x+1)
    = x - ⎣ ⎤x+1 - (⎣1 - ⎣ ⎤x+1)
    = x - ⎣ ⎤x+1 - (0 - ⎣ ⎤x+1)
    = x - ⎣ ⎤x+1 - (-⎣ ⎤x+1)
    = x - ⎣ ⎤x+1 + ⎣ ⎤x+1
    = x

TCL:

# Please let:
⎣x = Math.log(x)
# Recall that Log and Exp are inverses:
⎣⎤x = x
# Define the unsquash function:
⎦x = Math.log(x / (1 - x))
⎦x = ⎣ x/(1-x)
# Show that unsquash is the inverse of squash:
⎦⎡x = ⎦ ⎡x
    = ⎣ ⎡x/(1-⎡x)
    = ⎣⎡x - ⎣ 1-⎡x
    = ⎣ ⎤x/(⎤x+1) - ⎣ 1-⎡x
    = ⎣⎤x - ⎣ ⎤x+1 - ⎣ 1-⎡x
    = x - ⎣ ⎤x+1 - ⎣ 1-⎡x
    = x - ⎣ ⎤x+1 - ⎣ 1-⎤x/(⎤x+1)
    = x - ⎣ ⎤x+1 - ⎣ (⎤x+1-⎤x)/(⎤x+1)
    = x - ⎣ ⎤x+1 - ⎣ 1/(⎤x+1)
    = x - ⎣ ⎤x+1 - (⎣1 - ⎣ ⎤x+1)
    = x - ⎣ ⎤x+1 - (0 - ⎣ ⎤x+1)
    = x - ⎣ ⎤x+1 - (-⎣ ⎤x+1)
    = x - ⎣ ⎤x+1 + ⎣ ⎤x+1
    = x