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QUADRATIC B ÉZIER CURVES

Kenneth I. Joy
Visualization and Graphics Research Group

Department of Computer Science
University of California, Davis

Overview

The B́ezier curve representation is one that is utilized most frequently in computer graphics and geomet-

ric modeling. The curve is defined geometrically, which means that the parameters have geometric meaning

– they are just points in three-dimensional space. It was developed by two competing European engineers

in the late 1960s to attempt to draw automotive components.

In these notes, we develop the quadratic Bézier curve. This curve can be developed through a divide-

and-conquer approach whose basic operation is the generation of midpoints on the curve. However, this time

we develop the curve by calculating points other than midpoints – resulting in a useful parameterization for

the curve.

Development of the Quadratic B́ezier Curve

Given three control pointsP0, P1 andP2 we develop a divide procedure that is based upon a parameter

t, which is a number between0 and1 (the illustrations utilize the valuet = .75). This proceeds as follows:

• First letP(1)
1 be the point on the segmentP0P1 defined by

P(1)
1 = (1− t)P0 + tP1 (= P0 + t(P1 −P0))
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• then letP(1)
2 be the point on the segmentP1P2 defined by

P(1)
2 = (1− t)P1 + tP2
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• and finally letP(2)
2 be the point on the segmentP(1)

1 P(1)
2 defined by

P(2)
2 = (1− t)P(1)

1 + tP(1)
2
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Point
on the curve
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• DefineP(t) = P(2)
2 .

This is a similar procedure to the divide-and-conquer method in that geometric means are used to define

points on the curve. Each time a new point is calculated, the control points are subdivided into two sets,

each of which may be use to generate new subcurves. The method is identical to the divide-and-conquer

method in the caset = 1
2 .

Developing the Equation of the Curve

There is a different way of looking at this procedure – because there is a parameter involved. Each one

of the pointsP(1)
1 , P(1)

2 , andP(2)
2 is really a function of the parametert – andP(2)

2 can be equated with

P(t) since it is a point on the curve that corresponds to the parameter valuet. In this way,P(t) becomes a

functional representation of the Bézier curve.

Writing down the algebra, we see that

P(t) = P(2)
2 (t)

= (1− t)P(1)
1 (t) + tP(1)

2 (t)

where

P(1)
1 (t) = (1− t)P0 + tP1, and

P(1)
2 (t) = (1− t)P1 + tP2

(Note that we have now denotedP(1)
1 andP(1)

2 as functions oft.) Substituting these two equations back into

the original, we have

P(t) = (1− t)P(1)
1 (t) + tP(1)

2 (t)

= (1− t) [(1− t)P0 + tP1] + t [(1− t)P1 + tP2]

= (1− t)2P0 + (1− t)tP1 + t(1− t)P1 + t2P2

= (1− t)2P0 + 2t(1− t)P1 + t2P2

This is quadratic polynomial (as it is a linear combination of quadratic polynomials), and therefore it is a

parabolic segment. Thus, the quadratic Bézier curve is simply a parabolic curve.
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Properties of the Quadratic Curve

The quadratic B́ezier curve has the following properties, which can be easily verified.

1. P(0) = P0 andP(1) = P2, so the curve passes through the control pointsP0 andP2.

2. The curveP(t) is continuous and has continuous derivatives of all orders. (This is automatic for a

polynomial.)

3. We can differentiateP(t) with respect tot and obtain

d

dt
P(t) = −2(1− t)P0 + [−2t + 2(1− t)]P1 + 2tP2

= 2 [(1− t) (P1 −P0) + t (P2 −P1)]

Thus d
dtP(0) = 2(P1 −P0), is the tangent vector att = 0 and d

dtP(1) = 2(P2 −P1) is the tangent

vector att = 1. This implies that the slope of the curve att = 0 is the same as that of the vector

2(P1 −P0) and the slope of the curve att = 1 is the same as that of the vector2(P2 −P1).

4. The functions(1 − t)2, 2t(1 − t), andt2 that are used to “blend” the control pointsP0, P1 andP2

together are the degree-2 Bernstein Polynomials They are all non-negative functions and sum to one.

Clearly

(1− t)2 + 2t(1− t) + t2 = 1− 2t + t2 + 2t− 2t2 + t2 = 1

5. The curve is contained within the triangle4P0P1P2.

Since the blending functions are non-negative and add to one,P (t) is an affine combination of the

pointsP0, P1, andP2. ThusP(t) must lie in the convex hull of the control points for all0 ≤ t ≤ 1.

The convex hull of a triangle is the triangle itself.

6. If the pointsP0, P1 andP2 are colinear, then the curve is a straight line.

If the points are colinear, then the convex hull is a straight line, and the curve must lie within the

convex hull.

7. The process of calculating oneP(t) subdivides the control points into two sets
{
P0,P

(1)
1 (t),P(2)

2 (t)
}

,

and
{
P(2)

2 (t),P(1)
2 (t),P2

}
, each of which can be used to define another curve, as in our subdivision

process above.
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8. All the points, generated from the divide-and-conquer method, lie on this curve.

ClearlyP(1
2) is the first point calculated by the divide and conquer method.

Lets show thatP(1
4) is exactly the point obtained by performing the divide-and-conquer method, on

the control pointsQ0 = P0, Q2 = P(1)
1 (1

2) andQ2 = P(2)
2 (1

2) which were generated in the first step

of the divide-and-conquer method. If we call this pointQ, then by the divide-and-conquer method

Q =
1
2
Q(1)

1 +
1
2
Q(1)

2

=
1
2

[
1
2
Q0 +

1
2
Q1

]
+

1
2

[
1
2
Q1 +

1
2
Q2

]
=

1
4
Q0 +

1
2
Q1 +

1
4
Q2

and by substituting for theQs, and similifying

Q =
1
4
P0 +

1
2
P(1)

1 (t) +
1
4
P(2)

2 (t)

=
1
4
P0 +

1
2
P(1)

1 (t) +
1
4

[
1
2
P(1)

1 (t) +
1
2
P(1)

2 (t)
]

=
1
4
P0 +

3
8
P(1)

1 (t) +
1
8
P(1)

2 (t)

=
1
4
P0 +

5
8

[
1
2
P0 + +

1
2
P1

]
+

1
8

[
1
2
P1 + +

1
2
P2

]
=

9
16

P0 +
3
8
P1 +

1
16

P2

If we calculateP(t) with t = 1
4 , we have

P(
1
4
) = (1− t)2P0 + 2t(1− t)P1 + t2P2

=
9
16

P0 +
3
8
P1 +

1
16

P2

SoP(1
4 is exactly the point constructed in from the divide-and-conquer algorithm. Similar calcula-

tions exist for all other points generated in the divide and conquer method – each point generated by

the method will correspond to one with a corresponding parameter ofk
2n for somek andn.

Summarizing the Development of the Curve
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We now have two methods by which we can generate points on the curve. The first of which is geomet-

rically based – points are found on the curve by selecting successive points on line segments. The other is

an analytic formula, which expresses the curve in functional notation.

• The Geometrical Construction Method– Given pointsP0, P1, andP2, we can construct a curve

P(t) by the following construction

P(t) = P(2)
2 (t)

where

P(j)
i (t) =

(1− t)P(j−1)
i−1 (t) + tP(j−1)

i (t) if j > 0

Pi if j = 0

for t ∈ [0, 1].

• The Analytical Formula – Given pointsP0, P1, andP2, we can construct a curveP(t) by the

following

P(t) = (1− t)2P0 + 2t(1− t)P1 + t2P2

for t ∈ [0, 1].

Summary

The quadratic curve serves as a good example for discussing the development of the Bézier curve, but

really only generates parabolas. This eliminates the curve for many applications where smooth curves with

inflection points are necessary. The problem can be addressed by performing exactly the same steps as

above, but utilizing the procedure on four control points – resulting in the cubic Bézier curve.
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