
Graphical User Interfaces in Haskell
Good morning, my name is Gideon Sireling and I’ll be presenting my project on graphical user

interfaces in Haskell.

Outline
After introducing the topic with some background material, I’ll analyse past work on the topic, and

define the project’s aims going forwards. I’ll then present the design and implementation of my

solution, how it was tested, and the project’s conclusions. Finally, we can evaluate what has been

achieved, and present some suggestions on how it could be extended.

Introduction
Programming languages may be broadly divided into two classes; imperative and functional. The

languages typically used in business environments, such as Java and C++, are imperative; a program

consists of a series of statements that perform IO, or operate on the data in the computer’s store.

Functional languages, on the other hand, such as Haskell and ML, are declarative; the program is

expressed as a set of immutable equations, and is executed by evaluating the main equation.

Functional languages are typically found in computer science departments and financial firms.

However, interest in functional programming outside of these niches is growing. Immutable data

structures and referential transparency eliminate many of the difficulties associated with parallel

processing, essential for utilising the capabilities of multi-core architectures. Similarly, the strong

type systems of Haskell and ML enhance confidence that the code will perform as the programmer

intended.

Graphical user interfaces have long been a strength of imperative, object-oriented languages;

graphical widgets are easily modelled by stateful objects. If functional languages are to gain traction

as mainstream programming languages, they will have to work with tasks outside of their traditional

domains.

The aim of this project will be to investigate how to better support GUI development with the purely

functional language, Haskell.

Literature Review
“Purely functional” means that all Haskell functions are referentially transparent; a function is

guaranteed to always give the same output for a particular set of inputs. This presents a problem for

IO; how can we have a function to, for example, read from the keyboard, which will give a different

result each time it is called?

The solution to this is monads, a construct borrowed from category theory. A proper treatment of

monads is beyond the scope of this overview, but it suffices to say that programming in the IO

monad gives a reasonable illusion of imperative code.

So the most obvious solution for GUI programming is to bind to an existing graphical toolkit, and

write the GUI code as IO actions. This has been done with the three most popular toolkits; Gtk2Hs

for GTK+, WxHaskell for WxWidgets, and QtHaskell for Qt.

An alternative approach is to find a more functional, or declarative abstraction for constructing GUIs.

This is the direction taken by functional reactive programming. The fundamental concepts are

events, which indicate that something has occurred at a specific time; behaviours, which are time-

varying values, and reactive behaviours, which are behaviours that change in response to events.

The graphical output consists of widget properties bound to behaviours. So, for example, in a very

simple FRP program where a label widget shows what’s been typed at the keyboard, key presses are

events, the accumulation of everything that’s been typed is a reactive value, and the text property of

a label widget is bound to this value.

Analysis
So given that functional reactive programming is a much more functional paradigm than the

imperative toolkits, we would expect FRP to dominate in graphical Haskell applications. However,

the opposite is true. FRP driven user interfaces only seem to exist in the sample code that comes

with FRP libraries, whereas real-world programs all use one of the imperative toolkits.

We can understand why this is by considering the domains in which FRP has developed. The most

prominent framework, Yampa, grew out of a robotic control system, while the graphical frameworks

are mostly focused on computer-driven animations. Along with arcade games, these systems all

involve autonomous sensors and processors communicating with each other through a network of

event streams. FRP is an excellent model for these kinds of scenarios, but does not deal with global

state.

If you think of a typical line-of-business application, where the user enters and edits data, and

displays reports, this is a very imperative workflow. It follows that the imperative IO monad is

perfectly adequate for modelling this workflow. However, libraries could be written to ease the

execution of particular tasks, with IO actions holding everything together.

Aims
For this project, I’m going to develop a framework for data binding, a key enabler of Rapid

Application Development. The simple case of one-way data binding has a widget continuously

updated to reflect some mutable value, such as whether an application is online. Two-way data

binding is ubiquitous in data processing applications, where form fields are updated to reflect the

value of a database record, and user edits to these fields are posted back to the database.

The design will be guided by three principles:

 Existing work will be reused wherever possible

 The framework will be simple to use

 and the framework will live in the IO monad

Design
The framework has five key components:

 An interface for mutable variables

 A data type to describe a binding

 Simple data sources, which can be bound to IO objects

 Binding lists, which bind a list of data

 and a common binding interface for all data sources

MVP
The binding framework is based on the Model View Presenter pattern. The model is the binding

source’s data source, which is presented to the graphical view by a binding. The view is able to send

updates back to the model.

Class Diagram
Here you can see how the different parts of the design fit together. The binding source encapsulates

a variable, which holds the mutable data; this data can only be accessed through the source’s own

variable interface. The source also holds a collection of bindings, each of which can apply the data to

an IO target.

Sequence Diagram
This sequence diagram shows the process for updating a binding source. The binding source is

updated through its variable interface, which then passes on the update to its encapsulated variable.

It then instructs each of its bindings to update their targets with the new data.

Packaging
All this functionality is agnostic to the type of the binding target, and forms the binding-core

package. Convenient toolkit-specific functions for binding to graphical widgets are provided in the

binding-gtk and binding-wx packages.

Testing
Two types of testing were used to ensure correctness; unit testing and integration testing.

Unit testing tests one function at a time, verifying that the actual output for a given input is the same

as the expected output. Integration testing verifies that a system’s components work together, and

with their environment. The binding-core package comes with full unit test coverage. The binding-

gtk and binding-wx packages are targeted at integrating the core framework with graphical toolkits,

so they’re packaged with integration tests.

There are two major unit testing frameworks for Haskell; HUnit and QuickCheck. HUnit is a member

of the traditional xUnit family, where each test asserts that a function’s actual output matches the

expected output for a given input. QuickCheck, on the other hand, offers a more declarative

approach; the programmer lists various properties which the function must adhere to, and

QuickCheck generates the test data at run time.

For the integration tests, two programs are provided in each package; one to demonstrate simple

data binding, and one to demonstrate binding lists.

Conclusions
So what conclusions can we take away from this? We’ve seen that there’s no one-size-fits-all

abstraction for GUI work; rather, a different abstraction is needed for each type of GUI task, with the

IO monad holding everything together. Functional reactive programming provides an abstraction for

animations and arcade games; a data binding library provides the support needed for writing data

processing applications. Finally, we can conclude that Haskell as a language is perfectly capable for

general business software; it just needs the appropriate tools and libraries.

Evaluation
The project began with a somewhat quixotic quest for one abstraction to rule all Haskell GUI

development. After reviewing the problem space and the current state of solutions, it was found

that a more pragmatic approach would be to identify specific domains that could do with better

support, such as data binding, and write libraries specific to these domains. Having developed a

library for data binding with Haskell, there is every reason to expect that Haskell will prove equally

capable with other requirements for general business programming, including those traditionally

considered to be the sole domain of imperative languages.

Future Work
Looking forward to how this work could be extended, the next step might be what Microsoft terms

“complex data binding”. Instead of a binding list being bound to a set of widgets which show one

item at a time, it could be bound to a grid, which shows all the items simultaneously. Moving on, we

would like to support relationships between data sources; selecting a customer from one binding list

should load all the customer’s orders from a related binding list into a grid.

This project has only tackled the GUI aspect of data binding. The other side of the data binding coin

is automatic persistence. .NET, Ruby, and other languages provide facilities whereby a data set can

be automatically loaded from a persistent store, edited by the user, and the changes posted back to

the store.

Persisting objects, the standard data type of object-oriented languages, in a relational database is

the domain of object relational mappers. This has proven extraordinarily difficult to get right in

practice, and has been termed “The Vietnam of computer science”. Functional data structures are

much more compatible with the relational model; perhaps Haskell could be better suited to data

processing applications than object-oriented languages?

Summary
Imperative languages are commonly considered to be the only solution for developing business

software, while functional languages are relegated to academia and financial wizardry. However,

more general purpose programming is now finding that it needs some of the benefits which

functional languages can bring; easy parallelism, and strong static guarantees of correctness. If

functional programming is to go more mainstream, it will have to tackle common programming tasks

which it has hereunto neglected. We have shown how Haskell, a purely functional language; can

adequately bind data to a graphical user interface; and by extension, can be considered a suitable

language for general business programming.

	Graphical User Interfaces in Haskell
	Outline
	Introduction
	Literature Review
	Analysis
	Aims
	Design
	MVP
	Class Diagram
	Sequence Diagram
	Packaging
	Testing
	Conclusions
	Evaluation
	Future Work
	Summary

