
Graphical User Interfaces in Haskell

By Gideon Sireling

August 2011

 Introduction
 Literature Review
 Analysis
 Aims
 Design
 Packaging
 Testing
 Conclusions
 Evaluation
 Future Work

 Imperative vs. Functional

 Haskell: Purely functional

 Line-of-Business vs. Academia and Financials

 New Challenges
◦ Parallelism

◦ Correctness

 Graphical User Interfaces

 Haskell

 IO Monad

 Toolkits
◦ Gtk2Hs

◦ WxHaskell

◦ QtHaskell

 Functional Reactive Programming
◦ Events

◦ Behaviours

◦ Reactive Behaviour

 Imperative Toolkits vs. Declarative FRP

 Wherefore art thou FRP?

 Autonomous Components vs. Global State

 Domain-Specific Abstractions

 IO Monad as Glue

 Data Binding
◦ One Way

◦ Two Way

 Reuse the Wheel

 Small, Simple API

 Back to the IO Monad

 Variable Interface
class Variable v where

 newVar :: a -> IO (v a)

 readVar :: v a -> IO a

 writeVar :: v a -> a -> IO ()

 Bindings
data Binding a = Binding (a -> d) t (t -> d -> IO ())

 Simple Data Sources
data Source v a = Source {bindings :: v [Binding a], var :: v a}

 Binding Lists
data BindingList v a = BindingList {source :: Source v a

 ,list :: v [v a]

 ,pos :: v Int}

 Binding Interface
class Bindable b where

 bind :: b a -> Binding -> IO ()

Binding
(Presenter)

Data Source
(Model)

Target
(View)

Model-View-Presenter

-update'()

Binding

+bind()

Binding Source

1 *

+readVar()
+writeVar()
+modifyVar()
+modifyVar'()

«interface»
Variable 11

Variable

Target

1 1

Class Diagram

Binding Source Variable Binding Target

writeVar

writeVar

update'

apply

Sequence Diagram

 binding-core
◦ Core binding functionality

 binding-gtk
◦ Gtk2Hs interface

 binding-wx
◦ WxHaskell interface

 Unit Testing
◦ HUnit

◦ QuickCheck

 Integration Testing
◦ Simple

◦ List

 No one-size-fits-all abstraction for GUIs

 IO Monad = Superglue

 FRP = Animation, Arcade Games

 Data Binding = Data Processing Applications

 Haskell = Corporate Desktop?

 Quixotic Quest
◦ One abstraction to rule them all

 Domain-specific frameworks
◦ Build on existing toolkit bindings

 Business applications

 Complex data binding

 Master-detail relationships

 Data Persistence

 Mapping Functional Data Types to Relational
Databases; the Saigon of Computer Science?

 False Dichotomy?
◦ Imperative Languages for Business

◦ Functional Languages for Academia and Finance

 Need more Functional Programming
◦ Free lunches

◦ Static verification

 Functional programming languages must
support imperative tasks

 Data Binding for Data Processing Applications

 It can be done!

