
Graphical User Interfaces in Haskell

by Gideon Sireling

August 2011

1

Abstract
Graphical user interfaces (GUIs) are critical to user friendliness, and are well supported by

imperative, particularly object-oriented, programming languages.

This report focuses on the development of GUIs with the purely functional language Haskell. We

review prior efforts at supporting such interfaces with functional idioms, and investigate why these

are rarely used in practice. We argue that there is no overarching solution, but rather, that each

class of graphical application should be supported by a domain-specific abstraction.

Finally, we present such an abstraction for data-processing applications; a framework for binding

data to graphical interfaces. The framework does not attempt to replace existing graphical toolkits;

rather, it adds a new layer of abstraction, with interfaces provided to Gtk2Hs and WxHaskell. Simple

examples demonstrate how Haskell can be utilised to accomplish this task as easily as any imperative

language.

2

Acknowledgement
I would like to thank my supervisor, Mr Andy Symons, for the clear direction which he provided
throughout this project.

I would also like to thank the good folks who so freely donate their time and expertise to the Haskell
Platform, EclipseFP, and all the community projects utilised in this work.

Finally, I wish to express my deepest gratitude to my family, who tolerated all the time invested in
this project with the utmost grace and patience.

3

Table of Contents
Abstract ... 1

Acknowledgement... 2

1 Introduction .. 7

1.1 Imperative Programming ... 7

1.1.1 Object Orientation ... 7

1.2 Functional Programming ... 7

1.2.1 Pure Functions and IO.. 7

1.3 Graphical User Interfaces .. 8

1.3.1 Graphical User Interfaces in Haskell .. 8

1.4 Project Aims ... 8

2 Overview of Haskell and Graphical User Interfaces ... 9

2.1 Haskell Language Concepts ... 9

2.1.1 Values ... 9

2.1.2 Variables .. 9

2.1.3 Types .. 9

2.1.4 Algebraic Data Types ... 9

2.1.5 Polymorphic Types ...10

2.1.6 Type Annotations ...10

2.1.7 Functions ..10

2.1.8 Currying and Partial Application ..10

2.1.9 Type Classes ...11

2.1.10 Existential Types ..11

2.1.11 Functors ...12

2.1.12 Applicative Functors ..12

2.1.13 Arrows ..12

2.1.14 Arrow Syntax ..13

2.1.15 Monads ..13

2.1.16 do Notation ..14

2.1.17 Modules ...14

2.2 The IO Monad ..14

2.2.1 IORef ..15

2.3 Implementations of Haskell ...15

2.3.1 The Glasgow Haskell Compiler ..15

4

2.3.2 Packages...15

2.3.3 Hackage and the Haskell Platform ...15

2.4 Noughts and Crosses Example ...15

2.5 GUI Toolkits ..17

2.5.1 Gtk2Hs ..17

2.5.2 WxHaskell ..20

2.5.3 QtHaskell ..23

2.6 Functional Reactive Programming ...26

2.6.1 Fudgets...26

2.6.2 Fran ..26

2.6.3 Yampa ..27

2.6.4 Fruit ..28

2.6.5 WxFruit ..28

2.6.6 WxFroot ...29

2.6.7 Reactive..29

2.6.8 Phooey ...30

2.6.9 Grapefruit ..30

2.6.10 Reactive Banana...31

3 Analysis and Design .. 33

3.1 Background Analysis ..33

3.1.1 Abstractions for User Interfaces ..33

3.2 Requirements Specification ...33

3.2.1 Overview ..33

3.2.2 Data Binding ...34

3.2.3 Functional Requirements...34

3.2.4 Non-Functional Requirements...35

3.2.5 Data Analysis ..35

3.3 Design ..37

3.3.1 Overview ..37

3.3.2 Components ...38

3.3.3 Packaging ...40

4 Implementation and Testing .. 42

4.1 Problems and Solutions ...42

4.1.1 Barking up the Wrong Tree..42

5

4.1.2 Technical Issues ...43

4.2 Testing ..45

4.3 Unit Testing ..45

4.3.1 HUnit ..45

4.3.2 QuickCheck ..46

4.4 Integration Testing ...49

4.4.1 Simple Data Binding ...49

4.4.2 Binding Lists ...49

4.4.3 Test Execution ..50

4.5 Test Results ..51

4.5.1 Functional Requirements...51

4.5.2 Non-Functional Requirements...52

5 Evaluation ... 53

5.1 The List in Binding Lists ..53

5.1.1 Performance ..53

5.1.2 Reinventing the IOArray Wheel ..54

6 Summary and Conclusions .. 55

6.1 Summary ..55

6.2 Conclusions ..56

6.3 Future Work ...56

7 Appendix A: Noughts and Crosses Source Code ... 57

7.1 OX.hs ..57

7.2 Console.hs ..59

7.3 Gtk2HS.hs ...60

7.4 WxHaskell.hs ..62

7.5 QtHaskell.hs ...63

7.6 WxGeneric.hs ...66

7.7 Banana.hs...67

8 Appendix B: Data Binding Source Code .. 69

8.1 binding-core ...69

8.1.1 src\Binding\Variable.hs ...69

8.1.2 src\Binding\Core.hs ...70

8.1.3 src\Binding\List.hs ...71

8.1.4 tests\HUnit.hs ..74

6

8.1.5 tests\QuickCheck.hs ..77

8.2 binding-gtk ...80

8.2.1 src\Binding\Gtk.hs ...80

8.2.2 demo\simple.hs ...82

8.2.3 demo\lists.hs ...83

8.3 binding-wx ...84

8.3.1 src\Binding\Wx.hs ...84

8.3.2 demo\simple.hs ...86

8.3.3 demo\lists.hs ...86

9 Appendix C: Data Binding Documentation ... 87

9.1 Binding.Variable ...87

9.2 Binding.Core...88

9.3 Binding.List ...89

9.4 Binding.Gtk ..91

9.5 Binding.Wx ...92

10 Bibliography .. 93

7

1 Introduction
Programming languages may be broadly categorised as imperative or functional (although many

languages support elements of both). These are two fundamentally different approaches, and a

concept which is easily expressed in one paradigm may be troublesome in the other. This project

focuses upon a functional language and how it can be extended to enable graphical user interfaces.

1.1 Imperative Programming
All the commonly used programming languages (C, C++, C#, PHP, Perl etc.) are imperative.

Imperative languages are executed as a series of statements, which typically read a value from

memory (or input), may process the value in some way, and then write it back to memory (or

output). Variables represent memory locations, and are naturally mutable. A function is a lexically

scoped sequence of statements, which may be given some values as input, and may return a value

to the caller as output.

Imperative languages model the computer’s von Neumann architecture. As such, they are an

excellent abstraction of the underlying hardware’s operation.

 Object Orientation

An important abstraction supported by many imperative languages is object orientation. A class

defines a set of variables and methods. An object is a specific instantiation of a class, hence two

objects of the same class will have the same variables and methods, but their variables may hold

different values. A class may derive from another class. The child will inherit all of the parent’s

members, and may define some more of its own. (There are other approaches to object orientation,

but this very brief explanation should suffice for a general overview.)

1.2 Functional Programming
Imperative programming may be considered the practical approach to programming. It encodes

simple CPU operations as statements, then organises them with convenient structures (e.g. loops,

procedures and objects). Functional programming, on the other hand, is the theoretical approach.

Functional programming languages, such as Haskell and ML, are based on the Lambda calculus, a

mathematical theory of computation. A functional program is executed by evaluating a function,

which may itself be composed of other functions.

 Pure Functions and IO

A pure function adheres to the mathematical definition of a function; it is a static mapping of

elements from the function’s domain to its codomain. This creates a problem for interactive

systems. A pure function is referentially transparent, meaning that it will always give the same

output for a given input. How, then, can a program change its behaviour in response to an

interactive environment?

Haskell’s solution is the Monad [1], discussed further in 2.2. Monadic programming, along with

syntactic sugar, can make pure IO look very much like imperative programming:

do putStrLn “What is your name?”
 name <- getLine
 putStrLn $ “Hello ” ++ name

8

1.3 Graphical User Interfaces
An application’s graphical user interface (GUI) comprises graphical elements such as windows,

buttons and icons, with which the user interacts by means of a pointing device (such as a mouse)

and other input devices. A well-designed graphical interface is much more appealing and user-

friendly than a character-based terminal interface, but also much harder to design and implement

[2].

 Graphical User Interfaces in Haskell

Object oriented languages excel at GUIs, and this has been a major driver in their adoption. The

graphical elements of a GUI, with their mutable state, events, and taxonomy, map naturally to object

orientated classes and inheritance.

The most obvious technique for programming GUIs in Haskell is the IO Monad. Unfortunately, while

this suffices for simple interactions, graphical user interfaces are particularly challenging. A graphical

application may deal with hundreds of graphical objects, each of which has a complex state and

many events. Lacking object orientation, such an application will resemble procedural C code, with

thousands of lines of imperative IO statements.

1.4 Project Aims
Haskell is primarily an academic language; its use in business tends to be limited to niches such as

finance, which benefit from a functional approach and the safety of a strong, expressive type

system.

However, broader interest in functional programming is growing. Modern software is exceedingly

complex, and the interaction of program components with the global environment is a common

source of intermittent bugs, which cannot be reliably reproduced for analysis. Additionally, modern

personal computers have multiple processing cores, and an application must execute multiple

computations in parallel to utilise them. Pure functions solve both of these problems, as they are

insulated from the global environment, and can be evaluated in isolation.

Rich user interfaces are essential for a broad class of personal and business applications. While some

work has been done on programming GUIs in Haskell, the standard approach is to use the IO monad,

and program in imperative style.

The aim of this project is to critically review past efforts at developing GUI functionality for Haskell,

and investigate how such functionality can be better supported. It is hoped that an examination of

different approaches and their successes will highlight how the effort can be most effectively

brought forward.

9

2 Overview of Haskell and Graphical User Interfaces
We will begin with a brief overview of Haskell, concentrating on the features that will be used over

the course of the project, and the current state of Haskell GUI programming.

2.1 Haskell Language Concepts
In 1987, the conference on Functional Programming Languages and Computer Architecture (FPCA

'87) decided to create a new, purely functional language, to consolidate the much-duplicated

research that was going on in several existing languages [3]. This language became Haskell.

The Haskell language is defined in the Haskell report, the current version of which is Haskell 2010 [4].

 Values

Haskell values include literals (such as numbers and strings), variables, expressions, and functions.

For example,

• Literals: 23, “hello”

• Expression: x + y

• Function: \x -> x + 1

 Variables

A variable is an identifier which is bound to a value, e.g.

x = 3

Variables are immutable; once bound, the value of a variable cannot be changed.

All variables begin with a lower case letter.

 Types

Haskell is statically and strongly typed. Static typing implies that the type of every value (e.g. literals,

function arguments, expressions) is known at compile time. Strong typing implies that attempting to

use the wrong type (e.g. sqrt "string") will be prevented by the compiler.

Types can be given synonyms with the type keyword, such as

type Point = (Double, Double)
type Transform = Point -> Point

 Algebraic Data Types

New data types are defined with the data keyword, and are constructed with a type constructor. For

example, a new Boolean type may be declared with

data Bool = True | False

This declares a type called Bool (the type constructor) with two data constructors; True and False.

The data constructors may then be used wherever a value is expected, e.g.

t = True
f = False

Data constructors may take other values as arguments, e.g.

10

data Point = Point Double Double
p = Point 4.5 7.8

Type and data constructors are capitalised.

 Polymorphic Types

A type is polymorphic if its data constructor has a parameter which is not of a specific type. For

example, the following code declares a type Pair, with two type variables, a and b.

data Pair a b = Pair a b
x = Pair 3 "string" :: Pair Int String
y = Pair 4.5 'c' :: Pair Double Char

 Type Annotations

Also shown in this example are type annotations (the lines containing ::). The compiler can usually

infer the correct type, in which case type annotations are optional. However, they may aid

comprehension by explicitly indicating an expression’s type.

The compiler will always ensure that type annotations are correct, which can catch errors where an

expression does not mean what the programmer intended it to mean.

 Functions

A function is an expression which maps one or more parameters to a value. For example,

\a b -> a + b

is an expression which returns the sum of two numbers. The expression may be bound to a variable

for reuse, e.g.

add = \a b -> a + b

A more intuitive synonym for this binding is

add a b = a + b

Functions are pure, i.e. referentially transparent. Evaluating a function over a particular set of values

will always yield the same result. This is different to functions in an impure language, which could

ignore their input and return a random number.

Sum may be given a type annotation such as

add :: Int -> Int -> Int

This defines sum as taking two integers, and returns an integer.

 Currying and Partial Application

A simple function to add two integers may be defined as

add :: (Int,Int) -> Int
add (a,b) = a + b

This is a straightforward function that takes a pair of integers, and returns their sum. However, there

is an advantage to be gained with the more common style of definition:

11

add :: Int -> Int -> Int
add a b = a + b

This style of function definition is called currying. It defines a function which takes one argument,

and returns a function that takes a further argument; it is this second function which calculates the

sum. To make this more explicit, note that type signatures are right-associative, hence the type of

add can also be written as

add :: Int -> (Int -> Int)

Applying this function to two arguments is evaluated thus:

add 1 2 =
(\a -> \b -> a + b) 1 2 =
(\b -> 1 + b) 2 =
1 + 2 =
3

It is perfectly acceptable to apply add to just one argument. For example, we can create a function

which adds 3 to its argument with

add3 :: Int -> Int
add3 = add 3

 Type Classes

It is often desirable for functions to be overloaded across many different types. For example, the

equality operator works on strings, numbers, and many other types. This is achieved by declaring a

type class such as

class Eq a where
 (==) :: a -> a -> Bool

This declares a type class Eq. A type a is an instance of Eq if there is an == operator that takes two

values of the type, and returns a Bool. (The parenthesis around == declare it to be infix.)

The class Pair defined above can then be made an instance of Eq with

instance (Eq a, Eq b) => Eq (Pair a b) where
 (Pair a b) == (Pair c d) = (a == c) && (b == d)

We first state that if a and b are instances of Eq, then Pair a b is also an instance of Eq. We then

give the definition of == for a Pair.

 Existential Types

Haskell lists are homogenous; all the elements must be of the same type. This means that we cannot

write an expression such as

map show ["123", 123]

even though show "123" and show 123 are both valid individually.

The first stage to solving this is to wrap each element in a custom type, such as

data Showable x = Show x => Showable x
instance Show Showable where

12

 show (Showable x) = show x

We may then attempt

map show [Showable "123", Showable 123]

However, this still fails to compile. Showable "123" is of type Showable String, whereas Showable

123 is a Showable Int; the list is still heterogeneous.

A solution to this is existential types [5]. Using the forall keyword, we can eliminate the type

variable from Showable.

data Showable = forall x. Show x => Showable x

This tells the compiler that it should neither know nor care what the precise type of the Showable’s

data is; we only know that is of the class Show. The “mixed” list is then valid, and has the type

[Showable].

 Functors

One of the simpler type classes in the standard library is Functor, defined as

class Functor f where
 fmap :: (a -> b) -> f a -> f b

A Functor is a “container” for values; fmap applies an ordinary function to the contents of the

container. For example, lists are Functors, where fmap is synonymous with map.

fmap (+3) [4,5,6] == [7,8,9]

 Applicative Functors

Functors only contain values, while fmap applies an ordinary function to them. Applicative Functors

[6] extend this by storing the function in the Applicative as well.

class Functor f => Applicative f where
 pure :: a -> f a
 (<*>) :: f (a -> b) -> f a -> f b
 (*>) :: f a -> f b -> f b
 (<*) :: f a -> f b -> f a

pure is used to put a value (or function) in the Applicative Functor, while <*> has a similar role to

fmap.

pure (+3) <*> [4,5,6] == [7,8,9]

> and < are combinators, which ignore their first and second arguments respectively.

 Arrows

The Arrow family of type classes define computations which can be chained. The current

implementation has a large number of classes and functions, but for simplicity’s sake, we will work

with the original proposal [7].

class Arrow a where
 arr :: (b -> c) -> a b c
 (>>>) :: a b c -> a c d -> a b d

13

 first :: a b c -> a (b,d) (c,d)

arr takes a function which maps b to c, and yields an arrow. >>> composes two arrows, in the same

way that ∘ composes functions. first transforms a simple arrow into an arrow which accepts a

tuple; the first component is processed by the original arrow, while the second component is passed

through unaltered.

Arrows have an obvious application to dataflow programming, which will be presented in more

detail in 2.6 (Functional Reactive Programming).

 Arrow Syntax

GHC provides syntactic sugar for arrows, as originally proposed by Ross Paterson [8]. For example,

arrow = proc x -> arr show -< x+1

creates an arrow equivalent to

arrow = arr (+1) >>> arr show

which will increment its argument, and convert the result to a string. The proc syntax can be used to

compose multiple arrows in a do block; this will become useful in Functional Reactive Programming

(see 2.6).

 Monads

Monads are a subset of arrows, in that they define chainable actions. Hence, Monads can be viewed

as a computational strategy, defining how a set of computations is to be combined.

The Monad class is defined thus:

class Monad m where
 (>>=) :: m a -> (a -> m b) -> m b
 (>>) :: m a -> m b -> m b
 return :: a -> m a
 fail :: String -> m a

Inspired by the monads of category theory, a monad defines a container (m) for computations. a ->

m b is the type of a monadic function (action) which takes a value a, and returns a value b, inside the

monad m. The bind function >>= combines two actions, extracting the value returned by the first

action, and feeding is a parameter to the second action. >> is a bind which ignores the output of the

first action, and chains a second action which does not take input. return injects a value into the

monad. fail is a convenience function which is not actually related to the definition of a monad; it

defines an error handling mechanism for failed actions.

For example, the Maybe monad is defined as

data Maybe a = Nothing | Just a
instance Monad Maybe where
 (Just x) >>= k = k x
 Nothing >>= _ = Nothing
 (Just _) >> k = k
 Nothing >> _ = Nothing
 return = Just
 fail _ = Nothing

14

Maybe is a wrapper for computations which may not return a result. If a Maybe action succeeds, it

returns Just value; otherwise it returns Nothing. The bind function will feed the contents of Just

to the second action, and short-circuit to Nothing if the first action failed. return wraps a value in

Just, while failure is indicated with Nothing.

Thus, the Maybe monad enables a sequence of functions to bail out with Nothing if any function in

the sequence returns Nothing, without ever having to explicitly check for Nothing. This is a great

improvement on the usual situation in imperative programming, where the return value of every

statement must be tested for null and explicitly handled, and where failure to do so is a frequent

cause of program crashes.

 do Notation

A succession of arrow compositions or monadic computations may be listed in a do block. For

example, the marketing department targets campaigns by postcode. We want to find a particular

customer’s postcode, the campaign associated with this postcode, the marketing manager in charge

of this campaign, and finally, the manager’s mobile number. Any of these lookups could fail (e.g. not

all campaigns are assigned to managers, and not all managers have company phones.) The following

code will return Just mobile if the number can be found. If any of the lookups fail, it will return

Nothing.

do
postcode <- lookup name customers
campaign <- lookup postcode campaignRegions
manager <- lookup campaign campaignManagers
lookup manager mobiles

This is equivalent to

lookup name customers >>= \postcode ->
lookup postcode campaignRegions >>= \campaign ->
lookup campaign campaignManagers >>= \manager ->
lookup manager mobiles

 Modules

If a code file is intended to be a reusable module, it begins with the module keyword, followed by

the module’s name. Modules are imported with an import directive.

The standard library defines a module called Prelude, which is implicitly imported into every code

file.

2.2 The IO Monad
The original motivation for monads was IO. Reverential transparency requires the result of a

function to depend only on its parameters, not the state of disk files or other input mechanisms in

the program’s environment. Another problem is that Haskell’s laziness makes it difficult to control

the order in which functions are evaluated; the program may attempt to read from a file before it

has been written, or wait for the user’s input before asking them for it.

The solution adopted by Haskell is that an IO function conceptually takes the state of the world as an

input, and returns the new state of the world in its output. Thus, referential transparency is

15

preserved, and since the state returned by an IO action will be used for the input of the next action,

correct ordering is guaranteed. The type of an IO action is defined by GHC as:

State RealWorld -> (State RealWorld, a)

The actual implementation of State RealWorld and the bind functions are handled in the compiler.

 IORef

Some requirements are considerably inconvenient to satisfy with immutable variables. For example,

callbacks in an event-driven UI may need to read and write to the global application state. In such

cases, an IORef can be used. An IORef represents a pointer to a pure value. newIORef, readIORef,

and writeIORef are straightforward functions for creating an IORef wrapper, reading the contents

of the wrapper, and writing to it. All these functions are IO actions; writing to and reading from

memory is semantically no different from disk IO.

2.3 Implementations of Haskell
Many Haskell compilers have been written, each with their own language extensions and libraries.

Hugs [9], for example, is popular for teaching and casual use, while the York Haskell Compiler [10]

and Utrecht Haskell Compiler [11] are more research orientated.

 The Glasgow Haskell Compiler

The most popular Haskell compiler for software development is the Glasgow Haskell Compiler (GHC)

[12], which provides many useful extensions, and emits aggressively optimised binaries for a variety

of platforms.

Many modern Haskell libraries can only be compiled with GHC, including the GUI Toolkits soon to be

surveyed (Gtk2Hs, WxHaskell, and QtHaskell). Thus, GHC is the only appropriate implementation for

this project. Furthermore, none of the features or extensions supported by other compilers are

relevant to graphics work.

 Packages

Cabal is a suite of Haskell tools to facilitate code reuse. Modules are zipped with a descriptive

metafile and configuration information to form a package. Cabal can fetch packages from an online

repository and install them, along with all their dependencies.

 Hackage and the Haskell Platform

Hackage [13] is a public package repository. There are many libraries available for a wide variety of

tasks, along with documentation (generated by Haddock [14]) and build reports.

The Haskell Platform [15] is a convenient installation package for GHC, Cabal, the most important

libraries from Hackage, and a suit of development tools. The remainder of this report will use the

Haskell Platform.

2.4 Noughts and Crosses Example
Noughts and crosses is a simple pencil and paper game played on a 3 x 3 grid of squares. The first

player draws an X in any square. The second player then draws an O in any empty square. The two

players continue to take turns until one of them has a line of three tokens, thereby winning the

game. If the board is filled without a win, the game is a tie.

16

This simple, interactive game will be used to demonstrate the various GUI toolkits and frameworks

(barring those which are no longer maintained). All the source code is given in Appendix A.

• Module OX contains the game’s data types and logic.

• Each GUI is contained in its own module, which imports OX.

• Module Console is a textual version of the game for comparison. 1

In order to exercise the frameworks a little harder, the board will be made up of three kinds of

widgets. The first row is buttons, the second row is radio buttons, and the third row is made up of

check boxes. (The resulting interface is exceedingly unappealing, but aesthetics are orthogonal to

our functional aims.)

The graphical examples will be expanded on throughout the remainder of this chapter. Figure 1

demonstrates a game of noughts and crosses in the console.

1 The code to render the game state as a string is included in OX, as it depends on the internals of encapsulated
data types.

 1 2 3
 +-+-+-+
1| | | |
 +-+-+-+
2| | | |
 +-+-+-+
3| | | |
 +-+-+-+

Turn: X

(2,2)

 1 2 3
 +-+-+-+
1|X| | |
 +-+-+-+
2| |O| |
 +-+-+-+
3| | | |
 +-+-+-+

Turn: X

(1,1)

 1 2 3
 +-+-+-+
1|X| | |
 +-+-+-+
2| | | |
 +-+-+-+
3| | | |
 +-+-+-+

Turn: O

(3,1)

 1 2 3
 +-+-+-+
1|X| |X|
 +-+-+-+
2| |O| |
 +-+-+-+
3| | | |
 +-+-+-+

Turn: O

(2,3)

 1 2 3
 +-+-+-+
1|X| |X|
 +-+-+-+
2| |O| |
 +-+-+-+
3| |O| |
 +-+-+-+

Turn: X

(2,1)

 1 2 3
 +-+-+-+
1|X|X|X|
 +-+-+-+
2| |O| |
 +-+-+-+
3| |O| |
 +-+-+-+

X won! Figure 1: Noughts

and Crosses for
Teletypes

17

2.5 GUI Toolkits
The existing solutions for developing graphical user interfaces in Haskell fall into two categories,

which may be (somewhat arbitrarily) termed toolkits and frameworks. Toolkits are lower level

libraries, which enable imperative-style user interface programming in Haskell. Frameworks are

much more ambitious; they use a high-level abstraction of user interfaces to enable a more

declarative, functional style of programming.

There are a number of cross-platform graphical toolkits, written in C or C++. These toolkits provide

an Application Programming Interface for creating and managing windows, buttons, and other

graphical widgets. They often provide additional functionality, such as networking, but this is not

relevant to our investigation.

The more common toolkits have bindings enabling them to be used from numerous languages.

These bindings provide wrappers in the host language that enable the toolkit’s C/++ functions to be

utilised without the programmer having to marshal data across language boundaries, or concern

themselves with C/++ idiosyncrasies.

In the case of another imperative language, such as Java or Ruby, this mapping is fairly

straightforward; C functions (and C++ objects) map to functions and objects in the host language,

while the wrappers mostly deal with marshalling data types. Haskell, however, as a purely functional

language, presents problems in this regard. The language does not support object-orientation,

variables are immutable, and IO functions are a special facility which must be “caged” in the IO

monad.

The Haskell toolkit wrappers simply translate the underlying API methods into IO actions, using

custom data structures to manage widget handles.

 Gtk2Hs

One of the most popular cross-platform graphical toolkits is GTK+; its Haskell binding, likewise the

most popular toolkit for Haskell applications, is Gtk2Hs.

 GTK+

GTK+ [16], originally the GIMP toolkit, is a cross-platform toolkit for creating GUIs. Originally written

for GIMP (the GNU Image Manipulation Program), GTK+ is a set of C libraries for working with

graphical widgets and bitmapped text. Implementations are available for many common platforms,

and bindings exist to numerous programming languages.

 Layout

Layout is implemented with layout widgets. For example, a VBox stacks its children vertically, and a

Table arranges its children in a grid. Positioning and sizing is automatic; properties on the child

widget can request special size or positioning requirements.

 Glade

Glade [17] is a user interface designer for GTK+. The programmer arranges widgets with a point-and-

click interface, and sets properties governing their behaviour and appearance. Glade saves the UI as

an XML file, which GTK+ reads at runtime.

18

Glade was not used for this project, as it does not build on Windows. This is not a great loss, as the

structured, repetitive nature of the board lends itself to easy construction with Haskell’s

combinators.

 Gtk2Hs

Gtk2Hs [18] provides access to the Gtk+ API through idiomatic Haskell functions, which wrap the

Foreign Function Interface. A number of utility functions are also provided.

The object-orientated widget hierarchy is modelled with Haskell type classes. Each widget is defined

as a newtype (a data type created from an existing type), and a type class. This type class is then

declared to be an instance of all its ancestors, and functions are provided to upcast. For example,

the hierarchy Object -> Widget -> Container requires the following code:

--Object
newtype Object = Object (ForeignPtr Object)

class GObjectClass o => ObjectClass o

instance ObjectClass Object

toObject :: ObjectClass o => o -> Object
toObject = unsafeCastGObject . toGObject

--Widget
newtype Widget = Widget (ForeignPtr Widget)

class ObjectClass o => WidgetClass o

instance WidgetClass Widget
instance ObjectClass Widget

toWidget :: WidgetClass o => o -> Widget
toWidget = unsafeCastGObject . toGObject

--Container
newtype Container = Container (ForeignPtr Container)

class WidgetClass o => ContainerClass o

instance ContainerClass Container
instance WidgetClass Container
instance ObjectClass Container

toContainer :: ContainerClass o => o -> Container
toContainer = unsafeCastGObject . toGObject

The complete widget hierarchy requires a vast number of classes and instances, which are

automatically generated from the Gtk+ header files.

 Attributes

Widgets are styled and positioned with attributes, such as colour, height, and text.

data ReadWriteAttr o a b
type Attr o a = ReadWriteAttr o a a
type ReadAttr o a = ReadWriteAttr o a ()

19

type WriteAttr o b = ReadWriteAttr o () b

The basic attribute data type is ReadWriteAttr o a b, where o is the widget type, a is the

attribute’s get type, and b is the set type. Most attributes are get and set with the same type, for

which the Attr type synonym is defined. ReadAttr and WriteAttr define read- and write-only

attributes respectively.

This simple system ensures that all attributes are type-safe, both in their value, and in which widgets

they can be applied to. Specifying the value for an attribute (or a transformation to be applied to its

existing value) creates an attribute operation (AttrOp). Finally, a list of attribute operations is

applied to a widget with set.

 Events and Signals

Gtk exposes events emitted by the UI subsystem, such as key presses and mouse movements, as

events. A widget may respond to an event (or a specific set of events) by emitting a signal, e.g. to

indicate that a button has been pressed. The programmer can respond to events by attaching a

callback function as the event/signal handler.

 The Game

Gtk2HS.hs (Appendix A, 7.3) imports the game logic from OX, and creates a GTK+ user interface,

wiring up Gtk2Hs events to pure functions from OX. The state of the game is kept in a mutable

IORef.

First, the IORef game is initialised with a new game. Then the widgets are all created, including the

layout widgets vbox and table. event is defined to handle widget events; this reads the current

state of the game, labels the square with the appropriate token, and runs the move through

OX.move. If the game has been won, an appropriate dialogue is displayed; otherwise, the game state

is written back to the game, the UI is updated, and play continues.

Finally, event is attached as an event handler, and the widgets are placed in their layout containers.

Figure 2: Gtk2Hs

20

 WxHaskell

Another popular cross-platform toolkit is WxWidgets, wrapped by the WxHaskell library.

 WxWidgets

WxWidgets [19] [20] is a cross-platform toolkit written in C++, which aims to give a native look and

feel on each platform. Whereas other toolkits paint their own widgets, wxWidgets uses the

platform’s native widgets wherever possible. Applications written with wxWidgets thus behave

consistently with whichever platform they are deployed on.

 Layout

WxWidgets implements layout with the Layout data type. The widget function wraps a control in a

Layout; other functions create simple layout objects, such as empty space. Layouts can be enhanced

with transformer functions (Layout -> Layout), such as floatCenter and expand. A layout can

contain other layouts, e.g. the grid function, which creates a layout that arranges an array of child

layouts in a grid. To display a layout, it is assigned to the layout property of the containing widget

(e.g. the top-level window).

This is a more complex system than the use of layout widgets, but does result in more concise code.

 WxHaskell

WxHaskell models the WxWidgets class hierarchy with phantom types; this is best explained with an

example [21]. The data type declarations for Window, Control and Button are:

data CWindow a
data CControl a
data CButton a

No constructors are given for these data types, thus no values can be created, hence the name. The

types are then declared as:

type Object a = Ptr a
type Window a = Object (CWindow a)
type Control a = Window (CControl a)
type Button a = Control (CButton a)

The inheritance hierarchy is thus modelled with nested type synonyms. This is clearer when the type

synonyms are expanded:

type Window a = Object (CWindow a)

type Control a = Window (CControl a)
 = Object (CWindow (CControl a))

type Button a = Control (CButton a)
 = Window (CControl (CButton a))
 = Object (CWindow (CControl (CButton a)))

Button is hence an instance of Window, because

Object (CWindow (CControl (CButton a))) = Object (CWindow a)
 where a = CControl (CButton a)

21

This approach has a considerable advantage over GTK+’s, in that it avoids an explosion of empty type

classes and conversion functions. However, it cannot model multiple inheritance, which is a key

feature of WxWidgets’ C++ implementation. Instead, common interfaces are implemented with type

classes. For example, every widget with a text attribute is an instance of the Textual class. An

advantage of this is that a function or attribute can be implemented differently for different

instances of a class; GTK+ is tied more closely to the object-oriented model [22].

WxHaskell is currently based on the older 2.8 version of WxWidgets. Although 2.9 is officially a

development release, WxWidgets recommends its use, due to the great number of improvements

and enhanced stability.

 Variables

WxHaskell has its own Var type for mutable variables. This is a wrapper for Software Transactional

Memory [23], a technique for handling shared state between concurrent threads. A discussion of

concurrency is beyond the scope of this project; otherwise, they can be used in the same manner as

IORef, which was indeed their implementation in earlier versions.

 Attributes

Attributes are similar to Gtk2Hs attributes, but simpler. Attr w a is an attribute for widgets of type

w and values of type a. Attributes are combined with values or transformer functions to create

attribute operations in the same manner as for Gtk2Hs, and a list of these operations are then set.

(Gtk2Hs acknowledges WxHaskell as a source for their attribute implementation in source

comments.)

 Events

WxHaskell’s on function converts events into attributes, which are then set in a list like any other

attributes. This makes for very concise code, where attributes and event handlers are all set in the

widget creation function. Most widgets are instances of the Selecting or Commanding type classes,

which declare the select and command events respectively.

 The Game

WxHaskell.hs (Appendix A, 7.4) is very similar in structure to Gtk2HS.hs, the major difference being

the absence of layout widgets. In their place, all the positioning is done by the layout property of

the main window. For a more detailed comparison of WxHaskell and Gtk2Hs, see [22].

Figure 3: WxHaskell

22

 WxGeneric

WxGeneric (formerly AutoForms [24]) is an interesting extension to WxHaskell. It defines a function

genericWidget, which given a value, will construct a widget for editing it. This is not of much use in

the noughts and crosses example, as a player cannot arbitrarily edit the board. Neither is it simple to

create an arbitrary board editor, as WxGeneric would have to be taught how to display the board

array as a fixed grid of widgets. Instead, the WxGeneric example (Appendix A, 7.6) generates a form

for editing a hypothetical student record.

Figure 4: WxGeneric

23

 QtHaskell

Finally, we will examine the third popular choice for cross-platform framework GUI programming,

Nokia’s Qt.

 Qt

The Qt cross-platform framework [25] [26] [27] is primarily directed at GUI developers, but also

contains libraries for networking, database querying, and many other functions. Qt is written in C++,

but requires several extensions to the standard language. Qt source files must be pre-processed with

the proprietary meta-object compiler before they can be compiled with standard C++ tools. Other

proprietary features are implemented with standard C++ macros.

 Signals and Slots

In addition to a regular event system, Qt implements the Observer pattern with signals and slots. A

QObject descendant may declare a block of methods to be signals, and another block to be slots.

The connect method is then used to connect a signal to a slot. When the signal is activated, the slot

will be called. Many signals may be connected to the same slot, and many slots may be connected to

a single signal. Signals may also be connected to other signals.

 Layout

Widgets are laid out by decedents of the QLayout class. Basic layout objects such as QHBoxLayout

and QGridLayout may be nested to create more complex layouts. A layout is assigned to a container

widget with setLayout.

 QtHaskell

QtHaskell [28] provides a somewhat thin Haskell layer over the Qt library. Qt classes become Haskell

types, while their constructors and methods become functions. The inheritance hierarchy is

modelled by phantom types in the same manner as WxHaskell, and inherited functions become

members of type classes. The destruction of Qt objects is in most cases performed automatically

when the Haskell value is garbage collected. All QtHaskell functions take a single tuple as the final

argument, which contains the arguments to pass to the underlying C++ method.

 Slots and Signals: C++ in Haskell

Signals and slots have no straightforward equivalent in Haskell. If a custom signal or slot is required,

the class must first be sub-classed.

1. An abstract data type is declared for the new class.

2. A phantom type synonym is declared, inheriting from the relevant Qt class. QtHaskell

provides special sub-classing types for this purpose.

3. A function is written to create a value of the new class, utilising the qSubClass function.

The connectStlot function is used for connecting a signal to a slot. It requires the following

parameters:

1. The object which will emit the signal.

2. The signal’s C++ signature, passed as a string.

3. The object containing the slot.

4. The slot’s C++ signature, passed as a string.

5. A Haskell function for the slot, which is given the signalling object as a parameter.

24

An interesting alternative was proposed by Wolfgang Jeltsch [29], which converts slots and signals

into typed Haskell values. Unfortunately, this approach is only used by HQK library [30], which is no

longer maintained.

 The Game

The structure of QtHaskell.hs (Appendix A, 7.5) differs from the previous two examples, due to the

requirement to subclass the widgets. First, an empty data type is declared for the new widget, and a

type synonym given. Then a function is declared to return an instance of the new type. For example,

in the case of the button, this is done by

data COxQPushButton
type OxPushButton = QPushButtonSc COxQPushButton

oxPushButton :: IO OxPushButton
oxPushButton = qSubClass $ qPushButton " "

A further function is then defined to create an instance of the subclassed widget, perform any

necessary styling, and attach an event handler as a slot.

The code which calls these functions is generic; each widget emits a clicked signal when activated,

and the same event handler is attached to each signal. Unfortunately, simply mapping over a list of

all the widgets is not straightforward. Haskell lists must be homogenous, but the widgets are of

three different types.

To solve this, each such function has the same type, WidgetCreator.

type WidgetCreator = (forall a. a -> IO ()) -> IO (QWidget ())

Existential Types (2.1.10) are used to hide the type of the button’s callback as forall a, and the

created widget is upcast to a QWidget.

Figure 5: QtHaskell

 Imports

When a Haskell module is imported, GHC links the entire module into the final binary, without

eliminating unused code. QtHaskell is an extremely large library, and importing the top level Qt

module requires an excessive amount of time for linking. For this reason, only those sub-modules

25

actually used by the code have been imported, instead of the top-level Qtc module. (The final

binaries are also bloated with much dead code, but this can be stripped out.)

26

2.6 Functional Reactive Programming
Reactive programming is a dataflow programming paradigm. For example, given the expression a =

b + c, the value of a would continually update to reflect changes in the values of b and c, much like

cells in a spreadsheet. Functional Reactive Programming simply refers to reactive programming in a

functional programming language.

 Fudgets

The Fudget Library [31], published in 1995, is one of the earliest examples of applying Functional

Reactive Programming techniques to implementing GUIs in Haskell. The library is based on stream

processors, which are arbitrary transformations of an input stream to an output stream. A fudget is a

stream processor with two pairs of streams; the regular input and output streams which

communicate with other stream processors, and the system’s IO streams. Stream processors are

composed with functions analogous to the Arrows library, which was only proposed five years later.

Fudgets draws its own widgets in X Windows. An interesting feature of Fudgets is that the UI can be

laid out automatically from the dataflow graph.

 Fran

Fran [32] [33] is a library for creating interactive multimedia applications. Important concepts

introduced by Fran are behaviours, events, event streams, and reactive behaviours. Each of these

concepts is further explained below.

 Behaviour

A behaviour is a value which changes over time, e.g. the coordinates of a bouncing ball.

Behaviours are defined by Fran as

type Time = Real
type Behaviour a = [Time] -> [a]

Thus, a very simple behaviour, such as a value which increases at twice the rate of time, could be

defined as

map (*2)

 Event

An event is a behaviour which occurs at particular times. A trivial example of an event is

\t -> if (t > 3) then Just (t*2) else Nothing

This is similar to the trivial behaviour we defined above, but only occurs when time is greater than 3.

 Event Stream

A sequence of events, e.g. keys pressed, forms an event stream. It is defined as

type Event a = [Time] -> [Maybe a]

An event stream for our trivial event could be defined as

map $ \t -> if (t > 3) then Just (t*2) else Nothing

27

 Reactive Behaviour

An event may transform one behaviour into another. This combination of behaviours and events is a

reactive behaviour. To borrow an example from [33],

color :: Behavioiur Color
color = red `until` (lbp -=> blue)

circ :: Behaviour Region
circ = translate (cos time, sin time) (circle 1)

ball :: Behaviour Picture
ball = paint color circ

First we create a color behaviour, which initially has the value red. lbp is a built-in event indicating

that the left mouse button has been pressed; the until and -=> combinators create a behaviour

which is initially red, then becomes blue when the left mouse button is pressed.

circ is another behaviour, representing a Region in a Cartesian plane. It creates a unit circle, whose

position oscillates with time, by means of the built-in translate behaviour.

Finally, we create a Behaviour Picture, a reactive graphic. The paint combinator draws an

oscillating red circle, whose colour changes to blue when the left mouse button is pressed.

 Yampa

Continuously varying behaviours are semantically sound, but cannot be properly implemented on

digital computers. Instead, the behaviour is regularly polled, and the value updated. Clearly, it is

desirable to poll as frequently as possible, to reduce the latency between the value of a behaviour

changing, and the propagation of the new value to listeners. However, frequent polling consumes

computing resources, much of which will be wasted on behaviours whose values have not changed

since the last poll. Furthermore, the value of a behaviour may depend on a function over past

events. Recalculating this value across the full history of the event stream on every polling interval

incurs a considerable time and space cost.

Yampa [34] circumvents this by disallowing arbitrary behaviours and events. Instead, the library is

based on signals and signal functions.

 Signals

A Signal is a function from time to a value. Signals take the place of behaviours and events in Fran.

 Signal Functions

A signal function (SF) is a function which transforms one signal into another, synonymous with

Fudgets’ stream processors.

Signal and SF are abstract types; the programmer can only compose existing signal transformers.

The library’s signal processor knows how to process the basic signals and transformers optimally,

avoiding the space and time leaks to which Fran is prone.

Signal transformers are instances of Arrow, and are composed with Haskell’s arrow syntax.

Arrowised Functional Reactive Programming (AFRP) is discussed at length in [35].

28

Yampa was designed with a focus on controlling sensors and motors in a robot. However, it is not

limited to the domain of robotics; [36] demonstrates an arcade game written with Yampa’s reactive

arrows.

 Fruit

Fruit [37] [38] is a GUI library built on Yampa. Working with Fruit is conceptually similar to Fudgets,

substituting signals and signal transformers for streams and stream processors respectively.

A GUI element is defined by Fruit as the signal function

type GUI a b = SF (GUIInput, a) (Picture, b)

GUIInput and Picture are input and output IO signals, while the auxiliary signals a and b are for

communication with other signal transformers, enabling composition in the same manner as

Fudgets. For example, a button will take mouse or keyboard clicks from GUIInput, and change its

appearance in Picture accordingly. Additionally, the program may instruct the button on auxiliary

signal a to enable or disable itself, while the button will inform the program through auxiliary signal

b when it has been clicked.

A significant advantage of this abstraction is that there is extensive scope for applying higher-level

functions to user interfaces. For example, [37] demonstrates how multiple views can be easily

attached to the same application with Fruit combinators.

Fruit uses Java2D for rendering widgets; the library distribution includes a couple of examples, but

these must generally be created by the programmer.

 WxFruit

Creating a new graphical widget for Fruit is an extremely laborious process; the widget must know

how to process incoming IO events (such as mouse down or key up), and maintain a graphical

representation of itself in Java2D. This is not what using a high-level framework is supposed to be

about, and prevents the reuse of work in existing GUI toolkits.

WxFruit [39] solves this problem by reengineering Fruit to use WxHaskell as a widget library,

changing the type of GUI elements to

type Widget a b = SF (Event WidgetResp, a) (Event WidgetReq, b)

Event WidgetResp bears events from the WxHaskell widget, such as ‘click’ for a button or ‘select’

for a check-box. Event WidgetReq requests the widget to change its state, e.g. new text for a label.

WxFruit instructs Yampa to resample the behaviours as soon as a WxHaskell event is received,

eliminating latency.

The WxFruit library was published as a proof of concept, implementing a small selection of widgets,

and very few events. The problems encountered in extending these are discussed in section 2.6.6

regarding WxFroot.

29

 User Defined Widgets

What if the user wants to define a widget not available in WxHaskell? In this case, the raw IO events

and drawing primitives from which WxFruit shields the programmer are actually needed. For this

reason, the element type must become

type Widget a b = SF (RawInput, Event WidgetResp, a) (Event WidgetReq, b)

RawInput is synonymous with Fruit’s GUIInput, and is added to the incoming signal for the benefit

of user-defined widgets. For graphical output, WxFruit provides a wxpicture widget (based on

WxHaskell’s 2D drawing library), which takes 2D drawing primitives as requests.

 WxFroot

The design of WxFruit requires the WidgetResp and WidgetReq types to be a union of all the

responses and requests handled by all supported widgets; this is an approach which clearly does not

scale well. Additionally, layout containers must route their children’s streams, mixing flow of control

with the graphical layout. These, along with other issues, motivated the design of WxFroot [40].

WxFroot tightly integrates WxHaskell by modifying Yampa so that signal functions can track a widget

handle. Widgets are created with a signal function that takes a list of WxHaskell attributes, and

yields a proxy that holds the handle to the new widget.

No code has been published for WxFroot, but the referenced paper discusses how it might be

implemented. See also Juicy Fruit [41] for a similar solution, without modifying Yampa.

 Reactive

Reactive [42] is a reimplementation of Fran, replacing many bespoke functions with standard type

classes, and a new model for reactive behaviours. In addition to Arrows, the library can be used with

Applicative Functors and Monads; see the next section on Phooey for an example of this.

 Push-Pull Evaluation

Previous FRP implementations used demand-driven (pull) evaluation of behaviours. This would seem

to be the only option, as behaviours may vary continuously with time. This is also the native style of

functional programming, where the behaviour is expressed as a function of time. However, there are

some severe downsides to this approach. Many behaviours are a constant function of time, changing

only in response to events. Continuously evaluating these is a waste of resources. Furthermore, the

effect of a behaviour-changing event will only occur after the next evaluation, while increasing the

polling frequency to reduce latency will have a negative impact on system resources.

Reactive therefore decomposes behaviours into two components: reactive values which are

independent of time, and time functions which are independent of events.

2.6.7.1.1 Reactive Value

A reactive value is constant with regards to time, but changes in response to an event. (A discrete

function of time is treated as a reactive value, reacting to timing events.) Reactive values do not

require continuous sampling; data-driven evaluation (push) is the natural implementation, and there

is no latency.

30

2.6.7.1.2 Time Function

A time function is a continuous function of time, but independent of events. Most time-function

behaviours are constants (e.g. a label displays “nothing happening” until something happens), which

do not require continuous sampling. In the case of a non-constant function, the behaviour is

encapsulated in a polymorphic time -> value data type, yielding opportunities for runtime

optimisations.

Combinators are used to create hybrid behaviours. A combination of push-pull evaluation ensures

that hybrid reactive behaviours are evaluated efficiently and without undue latency.

Many other innovations, including future values and improving values [43] [44], allow for a highly

efficient implementation.

 Phooey

Phooey [45] is a multi-paradigm GUI library which uses Reactive. In addition to the traditional Arrow

approach, Phooey offers Applicative and Monad interfaces, which are simpler to work with; the

Arrow implementation has been dropped altogether from recent releases.

Phooey widgets live in a UI monad. Simple input and output widget types are defined as functions

between values and UI:

type IWidget a = a -> UI (Source a)
type OWidget a = Source a -> UI ()

(Source is a type synonym for reactive behaviours.) Simple examples of IWidget and OWidget are

sliders, which output a value within a fixed range, and a label, which displays its input.

 showDisplay $ islider (0,10) 5

creates a slider (islider) with a range of [0,10], and with an initial value of 5. A label (showDisplay)

will continuously update to show the value of the slider.

 Grapefruit

Grapefruit, an FRP framework with a focus on user interfaces, introduces some refinements to

existing push-based FRP.

 Data Flow System

Grapefruit incorporates a push-based FRP library [46] [47], which adds some features not found in

Reactive, such as the merge function. merge combines two signals into a new signal, such that each

value in the merged signal is a function of the constituent signals; this is a non-trivial operation in

other FRP systems. Grapefruit’s data flow system is built up from arrows of type Circuit i o,

where i and o are (typically tuples of) signals that form the circuit’s input and output respectively.

 Grapefruit

Grapefruit [48] is a toolkit agnostic GUI library; the capabilities of any particular toolkit are specified

by its type. (Only a small subset of the GTK+ backend has actually been implemented.) In addition to

the aforementioned data flow system, Grapefruit comes with an advanced record library for managing

signals and widget attributes.

31

 Reactive Banana

Finally, we review Reactive Banana [49], one of the newest FRP frameworks.

Reactive Banana is a simple push-pull framework. In addition to the typical time-valued behaviours

and events, Banana supports discrete behaviours. A Discrete value is a function of time, and thus a

behaviour. Unlike regular behaviours, however, a discrete behaviour issues an event every time it

changes, and cannot vary continuously. This yields significant performance benefits, as listeners can

subscribe to the Discrete’s event stream, and do not have to continuously monitor a behaviour for

changes. Reactive Behaviours (as described in 2.6.2.4) are not supported, thus eliminating a

potential time leak when working with accumulating behaviours2.

A drawback of all previous FRP frameworks is that an adaptor mush be written for each event and

widget which the application uses, a tedious manual process. Reactive Banana eliminates this

tedium by providing an adapter to WxHaskell, which automatically converts WxHaskell events into

FRP events.

 The Game

The first part of Banana.hs (Appendix A, 7.7)’s main equation is much the same as the toolkit

versions; graphical widgets for the game are created and arranged on a form. However, no event

handlers are attached; this is handled by the FRP network, introduced with the compile function.

The game’s state is represented by the output of OX.move, (Game, Maybe Token), where Game is

the state of the board, and Maybe Token indicates which player has won. This has been given the

type synonym State for convenience.

The network monad’s first task is to import the relevant WxHaskell events as FRP events; this is done

with the event0 method. Then, four reactive values are created, which form the core of the game’s

functionality:

• The events emitted by event0 are of type Event (), carrying no information. moves

replaces these with events that modify the game’s state by playing the appropriate square,

having type Event (State -> State). These are then merged into a single event stream

by the union combinator.

• The state of the game is tracked by a Discrete State, appropriately called state. This is an

accumulation (accumD) of all the State -> State events, beginning with a newGame.

• A Discrete String, player, indicates which player’s turn is next. This is extracted from the

state.

• When a player takes a turn, the correct token must be placed in the square. For this

purpose, a Discrete String is attached to each widget event; when the widget is

activated, the discrete value is updated with the current player’s token. These values are

held in the list tokens.

The sink function binds a WxHaskell property to a Discrete; this is used to provide visual feedback

of the network’s state. The squares’ text properties are bound to tokens, displaying the correct

2 An accumulating behaviour is a function of all the previous events in an event stream. For example, if events
are numeric, their aggregated total would be an accumulating behaviour.

32

token after a move. A similar binding to enabled disables the square after it has been filled. A final

sink to the label control displays player.

The reactimate function executes arbitrary IO actions in response to events; it is used here to

handle the game’s end. changes fires an event whenever state changes, and these events are

filtered (filterE) to find the end-game event (i.e. when the Maybe Token component holds a

value).

Previous examples used existential types to work with the different types of widget in a generic list.

This is not possible for Reactive Banana, as the event handlers are attached by the network, which

must know the widget’s type. Instead, WxHrskell’s objectCast is used to cast all the widgets to a

generic Control.

Reactive Banana uses the same WxWidgets toolkit as WxHaskell, and the compiled game is

indistinguishable at run time.

Figure 6: Reactive Banana

33

3 Analysis and Design
An analysis of the existing work on Haskell GUIs, studying both their successes and failures, leads

towards the requirements for a robust, useable, functional GUI library. In the following Background

Analysis, the main points of note from the preceding chapter are highlighted and discussed.

3.1 Background Analysis
There are two approaches to developing Graphical User Interfaces in Haskell:

1. Imperative libraries, which translate the C/++ API of a standard toolkit into Haskell IO

actions. This is not a desirable state of affairs, as the Haskell programmer prefers to work

with higher abstractions; IO actions should only be used to glue these abstractions together,

or to perform a small handful of operations.

2. Libraries utilising the principles of Functional Reactive Programming, whereby GUI elements

are connected together in a declarative, functional fashion, forming a network of signal

processors. This is a much more attractive approach, as it describes an abstraction of GUIs,

rather than specifying a series of actions to assemble them.

While the second approach would appear to be far preferable, it would be difficult to describe the

work in this direction as universally successful. Few of the many attempts at applying FRP to GUIs

have resulted in a fully functional library. On the rare occasion that such a library is achieved, it is

uniformly ignored by application developers, who invariably utilise one of the imperative toolkits. It

behoves us to investigate why this is the case.

 Abstractions for User Interfaces

FRP, with its network of signals and processors, is closely related to control engineering; indeed, the

popular Yampa [34] library was developed as part of a robot control system. This is also an effective

abstraction for arcade games, which typically consist of many interacting graphical elements, hence

the popularity of arcade games as proofs of concept for FRP libraries (e.g. [36]). Unfortunately,

arcade games are a very specific subset of graphical applications. The aim of this project will be to

develop a GUI library appropriate for general widget-based applications, e.g. line-of-business

systems.

3.2 Requirements Specification
An overview of the requirements for typical GUI applications will lead to the library’s functional

requirements.

 Overview

The functional portion of the user interface for a typical data processing application consists of two

kinds of widget:

Command Widgets

Command widgets, such as buttons, perform some function when activated. This is achieved by

binding a callback to the appropriate event.

Data Bound Widgets

Many widgets are bound to the state of the application, or some other data source. For example, an

indicator may change colour to signal whether the application is online, while a text box may be

34

bound to the contents of a database field. In this case, the binding is two-way; changes to the data

source are reflected by new text in the text box, while editing the text will update the database.

 Data Binding

A key technology of Rapid Application Development (also known as fourth generation programming)

is data binding. With a few mouse clicks and drags, a Delphi or .NET software developer can build a

working application that browses and edits a database. This is all achieved by the IDE’s ability to

write the boilerplate application code, and configure the data binding. While building a RAD IDE for

Haskell is outside the scope of this project, a data binding framework should not be too challenging.

Data binding could certainly be implemented with FRP. Changes to the data would send a signal to

the bound widget, which then updates its representation. Similarly, changes to the widget’s value

would send a signal to the data source, if the binding is two-way. However, this may not be the

easiest approach. FRP frameworks are large, complex endeavours. They are designed to manage

complex networks of signal processors, and to efficiently handle continuous signals. Furthermore,

FRP frameworks have no special facilities for formatting and parsing signals, the basic data binding

operation. While this could be implemented as custom signal processors, a framework specifically

targeted at data binding would be much simpler both in its API and internal implementation.

 Back to the IO Monad

Most graphical user interfaces are inherently stateful and imperative (this is discussed further in

4.1.1). FRP exploits specific domains where this is not the case; otherwise, the IO Monad is as well

suited to user interfaces as it is to any other IO work. Rather than seeking a high-level abstraction to

replace all imperative GUI programming, a more pragmatic approach than would be to identify

common scenarios, and then find a way to make these easier to work with, without reinventing the

rest of the GUI. This is the approach taken by WxGeneric, and it is the approach which will guide us

in data binding.

 Functional Requirements

A one-way data binding creates a one-way relationship between two objects; the binding source and

the target. Some property of the source is defined as its value, and whenever the value changes, the

target is updated to reflect this change. A two-way binding is a pair of one-way bindings, where the

target of one binding is also the source of the second; any changes in the target cause a

corresponding change in the source. It is important to define two-way binding in such a way that the

two bindings do not form a feedback loop.

To make the data binding more useful, this project will focus on binding mutable data to GUI

widgets, other forms of binding being relatively rare. In the case of two-way binding, only user

changes to the widget are pushed to the source, so there are no feedback loops.

To simplify the implementation, a widget cannot be the target of more than one two-way binding. If

such a facility is required, the widget can be wrapped in a custom binding source, which subscribes

to the widget’s change events.

 One-Way Data Binding

1. A one-way data binding binds a data source to a target.

2. When the value of the data source changes, the target will be automatically updated.

35

3. The binding specifies a means for computing the source’s value.

4. The binding specifies how this value will be represented by the target.

5. Any number of targets can be bound to a single source.

 Two-Way Data Binding

6. A two-way data binding can be created between a binding source and a widget. In addition

to the features of a one-way binding, the source will be updated to reflect user interaction

with the widget.

7. There must be a specified means for computing the widget’s value, and some conversion

may be necessary before applying it to the source.

 Binding Lists

8. Data binding scenarios frequently involve lists of data, e.g. a set of records from a database.

The library should provide an interface for binding to such a list of data.

9. Arbitrary positions in the list can be sought to. Whenever the binding source is moved to a

different position in the list, the bound widgets are automatically updated.

 Non-Functional Requirements

1. The API should be simple to use.

2. The framework should be modular and extensible.

3. The binding framework should not require the programmer to learn any new techniques,

beyond those normally required for simple GUI development.

 Data Analysis

The data types required to implement the requirements are:

 Data Source

The data source can be any mutable value, such as a record in a database. It has type

Source v a

where v is the type of the containing variable (e.g. IORef), and a is the type of the data (e.g.

String).

 Binding List

A binding list is a list of mutable values, and shares an interface with simple data sources. For

example, a set of records from a database forms a list, each element of which is an independent

data source. The type, Source v a, is the same as that of a data source.

 Target

The target of a binding is a graphical widget, such as a text box, which is updated whenever the data

source changes. The target can be of any type, and is not defined by the framework.

 Binding

A data binding requires four pieces of information:

1. The data source.

36

2. A function to extract the required data from the source. There is considerable flexibility

here, as the extractor can specify a property of the source (e.g. a field in a database record),

format the data, or any other arbitrary source to data mapping.

3. The binding target.

4. A function to apply the bound data to the target. This function has similar flexibility, in that it

could select any property of the target (e.g. the text property of a label), format the data, or

any other data to target mapping.

A binding has the type

Binding (a -> d) t (t -> d -> IO ())

where a is the type of the bound data, and t is the type of the target. (a -> d) is the function which

converts the data source into some type d; (t -> d -> IO ()) is a function which applies d to the

target.

 Source Updates

The binding target(s) must be updated, according to the binding’s specification, whenever the data

source changes. The update function has the type

Source v a -> IO ()

as all binding is presumed to take place in the IO monad.

 Target Updates

If the binding is two-way, the source must be updated whenever the target changes. This task must

be carried out by the target, and as the design is target-agnostic, the type of this function cannot be

determined for the general case. However, we do know that it will have an argument

(a -> d -> a)

i.e. a function for applying new data (d) from the target to the source (a). The original data is

required for situations such as updating a record field; the other fields of the existing data must be

maintained intact.

37

3.3 Design
The typical object-orientated implementation of data binding is not relevant to Haskell, a purely

functional language. Nevertheless, a simple functional design can be derived which satisfies all of the

requirements.

 Overview

Rather than reinventing the wheel and trying to make it do everything, a pragmatic design will make

use of existing design patterns, and accept reasonable limitations of scope.

 The Model View Presenter Pattern

The Model View Presenter (MVP) pattern [50] was developed my Taligent (a subsidiary of IBM) for

their CommonPoint application system, as an evolution of the venerable Model View Controller

(MVC) pattern [51].

Model

The model of MVP is identical to the model of MVC; it is the application’s underlying data store.

View

The application’s GUI is its view. In addition to the passive responsibilities of an MVC view, an MVP

view can send updates directly back to the model.

Presenter

The presenter is a derived from the model data, transforming it into the format required by view.

When the model’s data changes, it informs the presenter, which in turn updates the view with a new

representation.

For a simple example, consider a list of Forenames and Surnames, and a screen which must display

each name in a “Surname; Forename” format. The model is then the list of names, the presenter is a

string function transforming each pair of names into the required format, and the view is a label

widget.

Figure 7: Model View Presenter for Data Binding

The data binding framework is based on MVP, as illustrated in Figure 7. The model is a data source,

the binding target is a view, and each binding is a presenter.

Binding
(Presenter)

Data Source
(Model)

Target
(View)

38

 The Observer Pattern

The Observer Pattern is a standard design pattern for components that that react to changes in

other components. The subject of the observation maintains a list of observers, and notifies them all

when a change occurs.

The data binding framework utilises this pattern for updates. Binding sources, the subjects,

encapsulate the data source, and maintain a list of bindings (observers). The data source may only

be changed through the binding source’s Variable interface. When such a change occurs, all the

bindings are notified.

Figure 8: Observer Pattern for Data Binding

Figure 8 shows a UML Class Diagram of how this pattern has been implemented. (There is no

standard graphical notation to visualise the structure of functional programs, hence the abuse of

UML for this purpose. Haskell’s classes are the equivalent of UML’s interfaces, while a Haskell data

type is modelled as a UML class.)

 Two-Way Binding

Wrapping the target widget in a binding source, and subscribing to the widget’s change event, would

enable two-way bindings to be created as a complementary pair of one-way bindings. However, as

we have accepted a restriction that a widget cannot participate in more than one two-way binding,

the second binding source can be dispensed with. Instead, a callback to update the data source is

connected directly to the widget’s relevant event.

 Components

As a functional language, the components of a Haskell program consist of data structures, and

functions. The following components are illustrated with simplified excerpts of the full source, given

in Appendix B (8.1).

 Mutable Variables

The standard Haskell libraries contain a number of mutable variable types, suitable for different

scenarios. As they do not have a standard interface, Variable declares a common type class. All

operations on these variables will take place in the IO monad, along with other GUI code.

class Variable v where
 newVar :: a -> IO (v a)
 readVar :: v a -> IO a
 writeVar :: v a -> a -> IO ()

 Binding Source

A binding source contains two mutable variables. The source’s collection of bindings must be

mutable, otherwise adding a binding would create two copies of the source; one with the old

-update'()

Binding

+bind()

Binding Source

1 *

+readVar()
+writeVar()
+modifyVar()
+modifyVar'()

«interface»
Variable 11

Variable

Target

1 1

39

collection, and one with the new binding. The second variable is the data source, which can only be

manipulated through the source’s interface. Whenever the data is changed, all the bindings are

updated.

The binding source is itself a variable; the source’s data is accessed in the same manner as if it was

any other variable.

data Source v a = Source {bindings :: v [Binding a]
 ,var :: v a}

 Binding List

A binding list is conceptually similar to a binding source, except that a mutable list of data is

encapsulated instead of a single item. While the binding list could be thus implemented, this would

be a wasteful approach; the binding mechanism already implemented for simple sources would have

to be reimplemented for binding lists.

One approach would be to separate the binding mechanism from the source. However, there is a

simpler way. The binding list is composed of a binding source, a mutable list, and a pointer into the

list. All binding operations are redirected to the source, and the source’s encapsulated data is copied

to and from the list as required.

The mutable list is a list of variables, and this list is itself held in a variable. The outer variable

enables elements to be added to or removed from the list.

In the same way that the simple binding source does not allow direct access to its data, the binding

list does not allow direct access to its list. A number of functions are provided for moving the pointer

within the list, and the binding list’s Variable interface can be used to access the current element.

Additionally, there are functions to insert and delete elements.

data BindingList v a = BindingList {source :: Source v a
 ,list :: v [v a]
 ,pos :: v Int}

 Binding Interface

The procedure for binding simple binding sources and binding lists is identical. Thus, the bind

operation is declared as a Bindable interface, implemented by both types.

class Bindable b where
 bind :: b a -> Binding -> IO ()

 Binding

A binding is a 3-tuple of

1. A function which extracts the desired data from the source

2. The binding target

3. A function which applies the extracted data to the target

data Binding a = Binding (a -> d) t (t -> d -> IO ())

40

 Updating

The update functions apply data bindings to a binding source’s data. They are called by the binding

source when it’s encapsulated data changes, and are not exported from the module.

update' :: a -> Binding a -> IO ()
update' source (Binding extract target apply) =
 apply target $ extract source

Figure 9: Sequence Diagram of Updating

Figure 9 demonstrates the sequence of updating a binding source. The application calls writeVar on

the binding source’s Variable interface; the source forwards this call to its data source. The source

then calls update’ on each binding, which in turn executes its apply function on the target.

 Binding to Controls

Graphical toolkits have standard mechanisms for manipulating control properties. These are utilised

in convenience functions which create a binding from a source to a control’s attribute; the function

knows how to read from and write to the attribute. An additional convenience function is provided

for textual controls, where only the control needs to be specified, and it is assumed that the

control’s text attribute should be synchronised with the data source.

There is also a function to create a group of navigation widgets for binding lists. The current position

is bound to a spin control, and standard navigation buttons are provided, in addition to insertions

and deletions. (See 4.4.2 for an example of this.)

 Packaging

The core functionality is toolkit agnostic, and forms the binding-core library. Widget-aware

convenience functions are packaged separately; binding-gtk for the Gtk2Hs interface, and

binding-wx for the WxHaskell interface.

All the source code is listed in 8Appendix B: Data Binding Source Code. binding-core contains three

source files:

Binding Source Variable Binding Target

writeVar

writeVar

update'

apply

41

• Variable.hs, which defines the interface for mutable variables

• Core.hs, which implements simple data binding

• List.hs, which implements binding lists.

binding-gtk and binding-wx provide Gtk.hs and Wx.hs respectively, which provide utility

functions for binding to graphical widgets.

42

4 Implementation and Testing
Various issues were encountered and solved during the project’s execution; some were of a

technical nature, but more severely, it became clear that the project had begun in the wrong

direction. In this chapter, these difficulties and their solutions are described. We then proceed to

describe the testing strategy adopted to ensure that the data binding code performs as expected.

4.1 Problems and Solutions
A variety of technical obstacles were encountered during the literature review and development

phase. However, the most significant issue encountered during the project’s execution was that the

search for a solution began with an incorrect assumption.

 Barking up the Wrong Tree

The project was begun with an assumption that GUI programming in the IO monad is “particularly

challenging”, and that an alternative abstraction is needed. This led to a review of Functional

Reactive Programming, a functional abstraction for graphical user interfaces.

Unfortunately, it was generally not possible to exercise the reviewed FRP frameworks with our

noughts and crosses example, as the majority of such frameworks are abandoned projects, or

unimplemented research papers. Furthermore, the implementation of this simple game in Reactive

Banana demonstrates that is not an expedient approach.

An individual square knows whether it contains nothing, a nought, or a cross. It has no knowledge of

the game’s global state; thus, a reactive value must be created, holding the game’s state. The event

stream of each square is attached to this value. After a player takes their turn, the square fires a turn

event, and the game state is updated. Further reactive values track the visual state of each square,

and whether this turn has ended the game. An event stream is also needed in the reverse direction,

from the square states to each square’s widget, in order to place the correct token and disable

further interaction.

Comparing this to the other code in Appendix A: Noughts and Crosses Source Code we see that the

use of FRP has yielded two significant changes to the game’s design:

• In the toolkit (IO monad) design, each cell fires an event when it is activated. This event

reads the current state of the game, displays the appropriate token in the activated cell, and

determines whether an end-game state has been achieved. In the FRP design, displaying the

correct token is carried out by a separate event, from the game state back to the cell.

• The state of the game is no longer kept in a mutable variable. Instead, several reactive

values are used to keep track of various states.

In other words, the use of FRP for a simple board game has doubled the number of events which

must be implemented, and replaced a single mutable variable with multiple reactive values, but has

not brought any apparent advantages. This is not specific to board games; FRP models the

application as a set of interacting (graphical) agents, where each agent determines its own

behaviour, in response to events received from the environment or other agents. This is fine for

applications which can be thus modelled, but does not work terribly well for programs that work

with a global state.

43

It would seem that the initial quest for a new functional abstraction that would replace the IO

monad for all GUI work was a misguided approach. Interacting with the user through a graphical

terminal is as much an IO activity as interacting with the file system, and Haskell’s IO monad is the

natural habitat of IO activity. Of course, abstractions to make the task easier would be appreciated,

but these should not attempt to entirely supplant IO actions. Instead, abstractions can be developed

for common classes of UI tasks, which will fit into the IO monad along with other GUI work.

 The Right Tree

As noted in the Background Analysis, Functional Reactive Programming is an excellent abstraction

for arcade-style computer games. It is also well suited to multimedia applications; much of the work

on FRP was carried out in the context of computer-driven animations. However, none of this is

relevant to typical line-of-business desktop applications.

A common requirement for business applications is to bind graphical widgets to a data store. For

example, a form for editing personnel data may be bound to a personnel database; the operator is

then able to modify the database by editing the content of the form’s graphical fields. Data binding

is a fundamental capability of rapid application development, but there are currently no Haskell

libraries to abstract the common elements of this task. Hence, we chose to pursue the more

pragmatic task of developing a data binding framework, and abandoned the quest for one GUI

abstraction to rule them all.

 Technical Issues

Haskell is primarily an academic language, with some niche industry applications. One consequence

of this is that, unlike languages which are widely used for general purpose programming, there is no

commercial ecosystem, and open-source attention is relatively modest. Commercial operating

systems are not supported to the same extent as their free competitors, and there is a dearth of

development tools. Furthermore, the finesse and quality which may be imposed on commercial

products are often lacking in Haskell’s offerings.

 Integrated Development Environment

When work began on the project, there were two actively developed IDE’s for Haskell; Leksah [52]

and EclipseFP [53]. Leksah was found at the time to be highly problematic on Windows, suffering

from numerous bugs and an unwieldy interface. EclipseFP, on the other hand, is an Eclipse plug-in,

rather than a standalone program, and as such benefits from Eclipse’s considerable polish. However,

work on integrating Eclipse with GHC had run into considerable difficulties [54], and EclipseFP was of

little use.

The overwhelming majority of Haskell programmers [55] use a generic programmer’s editor, and this

was the solution initially resorted to. While workable for very small projects, this became

increasingly inconvenient as the project grew. Management of the project’s resources and build

configuration all have to be done by hand, as the editor does not understand Cabal files. IDEs such as

Visual Studio and Eclipse (for better supported languages) provide numerous features for

understanding and working with code, which are all absent or poorly supported in generic editors.

(Emacs can provide some of these facilities through plug-ins, if the user is comfortable with much

manual configuration and memorising dozens of obscure hotkeys.)

44

EclipseFP version 2 was released last December, finally bringing a useable cross-platform Haskell IDE.

Although very spartan by modern IDE standards, EclipseFP understands how to structure and

configure a Haskell project, and provides basic coding facilities such as continuous background

compilation, and limited code insight. Hopefully the project will continue to provide a high quality

IDE for Haskell.

 Windows

The Haskell ecosystem is Linux centric. Although Windows users are not neglected, problems still

tend to arise. For example, I was unable to use Leksah (it may have been expecting standard *nix file

paths), and Glade complained about missing C libraries. Building libraries with non-Haskell

dependencies is often much more complicated on Windows, and every package seems to require a

different version of MinGW/MSYS/Perl.

In retrospect, it may have been easier to develop on a Linux virtual machine. Nevertheless, there is

usually adequate documentation to get the job done eventually, and the community is helpful to

those who cannot manage alone.

 Gtk2Hs and WxHaskell

Gtk2Hs and WxHaskell, with their dependencies on C/C++ libraries, suffer from the usual problems

associated with installing on Windows. In addition to this, Gtk2Hs ships with a broken setup script,

and as a consequence, does not install on the current version of the Haskell Platform without

significant tweaking [56]. Furthermore, the code repositories of both projects were recently missing

for several months, along with Gtk2Hs’s web site, and both projects are built against older versions

of their underlying toolkits.

Generating useable language bindings for such a large library is a great deal of work. This is

particularly difficult for WxHaskell, as Haskell lacks a foreign function interface to C++; even with a

great deal of manual effort, WxHaskell only covert a subset of WxWidget’s functionality.

45

4.2 Testing
The two types of testing relevant to this project are unit testing and integration testing. Acceptance

testing, performed by stakeholders or other users, is not applicable to a new development that has

no users; neither is regression testing applicable to this first version of the package.

Cabal, described in 2.3.2, has functionality (cabal test) to automatically execute test suites

included with a package and log the results.

4.3 Unit Testing
A unit test verifies that a function gives the correct result for a given input. Multiple tests cases may

be provided for a single function to test across a broad range of inputs, particularly edge cases. Unit

tests are assembled into test suites, which aim to cover every function exported by the module or

package under test.

The binding-gtk and binding-wx packages are thin GUI wrappers over the binding-core API,

which add no significant functionality. As such, it was felt that unit testing efforts should be

concentrated on the core binding-core package.

Unit testing is normally performed with the aid of a framework for automatically running test scripts,

performing ancillary operations, and reporting the test results. The most popular testing frameworks

for Haskell are HUnit [57] and QuickCheck [58].

 HUnit

HUnit is a member of the xUnit family of unit testing frameworks, modelled after the venerable JUnit

for Java. Each test exercises one function, and compares the actual return value to the expected

result. This comparison is performed by an assertion, which determines whether the test has passed

or failed. Various utility functions are provided to build assertions, assemble test suites, and report

the results.

The HUnit tests for binding-core are given in tests\HUnit.hs in Appendix B. Random values are

used to construct test data, thereby ensuring a greater range than if the data was hard coded.

Cases: 13 Tried: 13 Errors: 0 Failures: 0

Figure 10: HUnit test results

46

 QuickCheck

QuickCheck offers a more declarative approach to testing than traditional unit testing frameworks.

Instead of a series of imperative operations, a QuickCheck test consists of a (generally) pure

property, which evaluates to a Boolean. For example, we can test whether doubling a number

always returns an even result with

prop_even :: Int -> Bool
prop_even x = even (x * 2)

Given this function, QuickCheck will automatically create a set of test data (integers in this simple

example), evaluate the function for each, and print the result. When generating test data,

QuickCheck will try to insure that the data covers a good range, including corner cases. If a test fails,

QuickCheck will try to reduce the test case to the simplest form that fails, e.g. the shortest list or

smallest number. To run a test suite, QuickCheck provides the quickCheckAll function, which uses

Template Haskell to run all the tests in its module.

 Modifiers

QuickCheck provides modifiers for restricting test data. For example, if we wanted to limit the above

test to positive numbers, we could write

prop_even :: Positive Int -> Bool
prop_even (Positive x) = even (x * 2)

 Implications

If the built-in modifiers are not sufficient, the simplest solution is to write an implication, such as

prop_even :: Int -> Bool
prop_even x = x > 0 ==> even (x * 2)

This example will discard all non-positive test data. An important difference between modifiers and

implications is that modifiers are a distinct type. In this example, Positive a is a new type defined

by QuickCheck, for which only positive numbers are generated. However, when using the x > 0

implication, QuickCheck generates test data over the full range of Int; test cases failing to satisfy the

condition are then discarded.

 Arbitrary

QuickCheck knows how to generate test data for all types of the class Arbitrary. Arbitrary

instances are provided for many standard Haskell types, but if the programmer has defined their

own types, they must provide their own generator. Arbitrary has two methods; arbitrary and

shrink:

• arbitrary is the method called by QuickCheck when generating test data. arbitrary

operates in the Gen monad, which provides a rich set of combinators for building new test

generators out of existing generators.

• shrink, which does not have to be defined, is used to reduce failing test cases to their

simplest form.

The functions in Binding.List are only meaningful on lists of a minimum size. Non-empty lists can

be easily generated with the NonEmpty modifier, but many operations, such as deletion, require at

least two elements. This was initially implemented with an implication length xs > 1.

47

Unfortunately, QuickCheck’s list generator is biased towards short lists, with the result that much

time is wasted as many test cases are generated but not used. Furthermore, the test cases are still

biased towards short lists; a better test set would use a broader range of lists sizes.

The solution is to declare a newtype for the type of list that we wish to generate. The snippet

newtype List = List [A] deriving Show

instance Arbitrary List where
 arbitrary = liftM List $ choose (2, 100) >>= vector
 shrink (List xs) = [List ys | ys <- shrink xs, P.length ys > 1]

declares a type List, based on the standard list type. The Arbitrary instance for this type creates

lists that have a random length between 2 and 100. We have also implemented shrink, which

enables QuickCheck to reduce failing test cases to the simplest failing case. shrink for List is a

simple wrapper over shrink for regular lists, discarding any results which are too small.

 Position Parameter

Most Binding.List functions take an Int parameter, which points to a position (or offset) in the

list. While QuickCheck will generate test data across the full domain of Int, only valid positions in

the list are suitable for testing. The simple solution is to restrict the generated test data with an

implication. However, so many test cases are thereby discarded that, in addition to the time penalty

noted above, QuickCheck will give up with a message such as

*** Gave up! Passed only 9 tests.

Custom Arbitrary types won’t help here, because the definition of a valid position depends on the

size of the generated list, which isn’t known until run time.

To get around this, we have defined a helper function

-- | Maps @i@ to a position in @xs@.
anywhere :: Int -> [A] -> Int
anywhere i xs = let max = P.length xs - 1
 in if max == 0 then 0 else i `mod` max

Given a random number and list, anywhere will use modular division to generate a random position

within the list. notLast operates similarly, but excludes the end of the list.

 Testing IO Actions

A regular QuickCheck Property evaluates to Bool. This creates a problem for testing IO actions, as

their result cannot be extracted from the IO monad to yield a pure Bool. For this purpose,

QuickCheck defines the PropertyM monad for testing monadic properties. Within PropertyM, the

result of an IO action is obtained by run, and this result is then verified by assert. monadicIO is

used to transform a PropertyM into a Property.

The details of how QuickCheck tests monadic properties are given in [59].

48

=== prop_remove on tests\QuickCheck.hs:44 ===
+++ OK, passed 100 tests.
=== prop_removeLast on tests\QuickCheck.hs:51 ===
+++ OK, passed 100 tests.
=== prop_insert on tests\QuickCheck.hs:57 ===
+++ OK, passed 100 tests.
=== prop_Source on tests\QuickCheck.hs:113 ===
+++ OK, passed 100 tests.
=== prop_Length on tests\QuickCheck.hs:118 ===
+++ OK, passed 100 tests.
=== prop_seek on tests\QuickCheck.hs:123 ===
+++ OK, passed 100 tests.
=== prop_position on tests\QuickCheck.hs:128 ===
+++ OK, passed 100 tests.
=== prop_seekBy on tests\QuickCheck.hs:133 ===
+++ OK, passed 100 tests.
=== prop_next on tests\QuickCheck.hs:141 ===
+++ OK, passed 100 tests.
=== prop_prev on tests\QuickCheck.hs:146 ===
+++ OK, passed 100 tests.

Figure 11: QuickCheck test results

49

4.4 Integration Testing
The binding-gtk and binding-wx packages do not add new functionality; rather, they provide

graphical toolkit bindings for the functionality of binding-core. As such, they are good candidates

for integration testing.

Whereas a unit test verifies that a function operates correctly in isolation, an integration test verifies

that the different components of a system work correctly in aggregate. binding-gtk, for example, is

a glue layer between binding-core and Gtk2Hs; an integration test will confirm that these three

layers are interoperating correctly.

The integration tests consist of two programs for each package:

 Simple Data Binding

simple.hs demonstrates simple data binding; a numeric data source is two-way bound to each of

two text boxes. Thus, any changes made to one box will be reflected in the other.

Figure 12: Simple data binding with Gtk2Hs

Figure 13: Simple data binding with WxHaskell

 Binding Lists

lists.hs demonstrates the more complex scenario of binding to lists of data. When the program

starts, it loads a personnel database from in.txt. This contains a list of the simple Person data type,

in Show format. A navigation control is created to move through the list, and the individual fields are

bound to graphical widgets. When the application exits, the modified database is written to

out.txt.

Figure 14: Binding lists with Gtk2Hs

50

Figure 15: Binding lists with WxHaskell

 Test Execution

It is technically feasible to drive integration tests from a unit test framework. For example, after

executing simple.hs, a unit test might change the value in one text box, and then check whether

the other text box has been correctly updated. However, this would be assuming that

programmatically firing a particular button click event has the same effect as the user clicking the

button, and that the property read by the test is an accurate reflection of the widget’s display. This is

not an adequate approach, as the correctness of such assumptions in the package under test is itself

being tested. Hence, these tests were verified manually. (In a larger project, many integration tests

may be programmatically driven to achieve the advantages of automated testing, while additional

tests are manually executed.)

51

4.5 Test Results
All the unit tests pass successfully, and the integration tests perform as expected. However, that the

tests pass is not sufficient; it must be shown that the tests cover all of the project’s requirements.

 Functional Requirements

Each functional requirement must be satisfied by a function in the library’s API. To prove that the

function operates as intended, it must be tested. The following table lists each functional

requirement, its corresponding API function, and the function’s tests. These could be HUnit and

QuickCheck unit tests, or, for the GUI-oriented requirements, a manual integration test.

Requirement API Tests
1. A one-way data binding binds a

data source to a target.

Binding.Core.bind HUnit: testSource
QuickCheck: prop_Source

2. When the value of the data
source changes, the target will be
automatically updated.

The update function
called by Source’s
writeVar

HUnit: testSource
QuickCheck: prop_Source

3. The binding specifies a means for
computing the source’s value.

bind’s second
parameter

HUnit: testSource
QuickCheck: prop_Source

4. The binding specifies how this
value will be represented by the
target.

bind’s fourth
parameter

HUnit: testSource
QuickCheck: prop_Source

5. Any number of targets can be
bound to a single source.

Repeated
applications of bind
to a Source

simple.hs

2 text boxes are bound to
the same binding source.

6. A two-way data binding can be
created between a binding
source and a widget. In addition
to the features of a one-way
binding, the source will be
updated to reflect user
interaction with the widget.

bindControl in
Binding.Gtk and
Binding.Wx

simple.hs & lists.hs
In both integration tests,
widgets are two-way
bound to a binding source.

7. There must be a specified means
for computing the widget’s value,
and some conversion may be
necessary before applying it to
the source.

bindFromControl’s
third parameter

simple.hs & lists.hs
The correct attribute of
each widget is bound to
the source, including some
conversion between
integers and real numbers.

8. Data binding scenarios frequently
involve lists of data, e.g. a set of
records from a database. The
library should provide an
interface for binding to such a list
of data.

Binding.List.
BindingList

HUnit: testList
QuickCheck: prop_List

lists.hs

A list of Person data is
bound to a set of widgets.

52

9. Arbitrary positions in the list can
be sought to. Whenever the
binding source is moved to a
different position in the list, the
bound widgets are automatically
updated.

seek, and other
navigation functions

HUnit: testSeek
QuickCheck: prop_Seek
Similar tests exist for other
navigation functions.

lists.hs

The navigation controls
can be used to seek to any
position within the list.

 Non-Functional Requirements

Unquantified non-functional requirements cannot be formally proven. However, it should be clearly

demonstrable that they have been satisfied.

1. The API should be simple to use. A binding source is created with a single
call to newVar. One further function call
is sufficient to create a one- or two-way
binding.

2. The framework should be modular and
extensible.

Any mutable reference can be used as a
data source, if given as an instance of
Variable. One- and two-way bindings
can be made to any IO object, and
interfaces such as those provided for
Gtk2Hs and WxHaskell can be easily
written for any other toolkit.

3. The binding framework should not require
the programmer to learn any new
techniques, beyond those normally
required for simple GUI development.

All of the library’s functionality is
exposed as regular IO actions. Data
sources (Variables) mimic the interface
to existing mutable reference types.

53

5 Evaluation
The stated aim of this project was “to critically review past efforts at developing GUI functionality for

Haskell, and investigate how such functionality can be better supported”. The original vision was to

develop some new abstraction that would replace imperative GUI programming in its entirety;

however, an analysis of existing work clearly demonstrates that no such one-size-fits-all solution

exists.

Instead, we have shown that a more pragmatic approach is to retain the existing imperative toolkits,

as a basis on which domain-specific abstractions can be built. Past work on Haskell GUI functionality

has focused on Functional Reactive Programming, which is an effective solution for the domain of

multimedia applications and video games.

The domain of data processing applications, ubiquitous to corporate desktops, has hereunto been

ignored. In redress of this neglect, we have developed a data binding framework. This framework

targets the common requirement of manipulating business data through a graphical interface,

eliminating a significant differentiator between Haskell and “Business Languages” such as C# and

Java.

Although the initial vision of one framework to support all GUI programming has not been realised,

our analysis of the solution space has indeed fulfilled the project’s aim; we have shown the direction

that future work should take to enhance Haskell’s GUI support. Furthermore, we have made

significant progress in the goal of making Haskell a suitable candidate for line-of-business software

development.

5.1 The List in Binding Lists
The binding list’s data is held in a singly linked list of Variables. Two objections may be raised

against this choice:

1. Seeking an element in such a list is O(n), whereas seeking into an array is O(1).

2. Haskell already has mutable arrays [60]; why reinvent them?

Before answering these objections, it may be worth first presenting the argument in favour of the

common list; it is well supported by common libraries, and every functional programmer is

intimately familiar with them.

 Performance

Concern over the performance of seeking into a binding list is clearly a case of premature

optimisation, “the root of all evil” [61]. The seek operation is thousands of times faster than

repainting the GUI to show the result of seeking, and similar orders of magnitude faster than the

human operator who is interacting with said GUI.

In the case of an exceedingly long list, with at least millions of elements, seek time may become an

issue. In that case, profiling the binding list’s performance and memory usage would be in order, to

determine where the actual bottlenecks lie. Without such measurements, assumptions about the

effects of changing a particular data structure on real world performance are little more than idle

speculation.

54

 Reinventing the IOArray Wheel

The standard Haskell libraries provide IOArray, a mutable array in the IO Monad. This would have

absolved us of having to develop our own data structure for binding lists, along with a considerably

aggravated risk of functional defects and poor performance (particularly under load). The standard

libraries are developed by highly skilled and experienced engineers, and reviewed by a broad range

of Haskell users; much more than can be said of our humble development efforts.

The motivation for using a list of Variables is simply that this provides a different opportunity for

code reuse. The Variable interface and Binding.Core provide all the functionality needed to

implement data binding; binding lists only have to generalise this to a list of data sources. The use of

a different data type would have necessitated a considerable amount of plumbing code to translate

between IOArray operations and Variable functions.

Given the choice, reusing Variable was chosen over reusing IOArray, as this leads to simpler, more

consistent code.

55

6 Summary and Conclusions
A summary of the project’s achievements and conclusions leads to some thoughts about the work’s

potential, and how it could be extended.

6.1 Summary
Modern programming languages may be broadly divided into imperative and functional languages.

Almost all commercial software development is done with imperative languages, such as C#, Java,

and PHP. In contrast, functional languages such as Haskell and ML are the domain of academia and

some specialist commercial niches, such as finance.

Interest in functional languages, particularly Haskell, has been growing outside of their traditional

domains. Modern CPUs are increasing the number of cores at a much greater rate than the speed of

each individual core, and programs which can run in multiple simultaneous threads stand to benefit

from a significant speed boost [62]. Traditional imperative programs, modelled on mutable global

state, are notoriously difficult to parallelise [63]; many software designers are turning to functional

languages for a solution, as referential transparency and immutable data eliminate many barriers to

multi-threaded programming. Furthermore, Haskell’s expressive type system (System FC [64]) can

capture many programming errors at compile time; run time errors are much harder to find and

diagnose. Thus, there is a need for functional languages to support programming tasks outside of

their traditional domains.

This project has focused on one such task, the graphical user interface, with Haskell, a purely

functional programming language. All of a Haskell program’s interaction with the environment takes

place in the IO monad, an abstraction which enables IO in the context of lazy evaluation and

referential transparency. While this suffices for simple tasks, such as reading a file from disk,

maintaining a GUI is a much more complex endeavour, and significantly more support is needed.

Two categories of GUI library for Haskell have been reviewed. Gtk2Hs, WxHaskell, and QtHaskell, all

provide Haskell bindings to independently maintained cross-platform graphical toolkits. Although

the bindings make use of Haskell language features to present a more comfortable interface, the

programming paradigm is, like that of the underlying toolkits, imperative. An alternative approach to

supporting GUIs from Haskell is that of Functional Reactive Programming. Implemented in several

different frameworks, this takes a more declarative approach, modelling the user interface as a

network of graphical widgets and event streams.

Neither of these approaches suffices for common application domains, such as interactive data

processing, or any other application which is focused on global state. The toolkit bindings are too

low level, and require reams of C-like imperative code to manage a moderately sized interface. FRP

assumes that widgets need to interact with the environment and a handful of other widgets; it does

not address the need of widgets to interact with global program state. It is clear that new

abstractions are needed.

Rapid Application Development environments (i.e. Microsoft Visual Studio and Embarcadero Delphi)

support data binding, whereby graphical widgets are bound to the application’s data. Editing the

widget’s bound attribute, such as the text field of a text box, will automatically update the bound

data. Similarly, changes to the data are automatically propagated to the bound widget. A data

56

binding framework for Haskell would go a long way towards closing the gap between functional and

imperative languages when targeting the corporate desktop.

Thus, we have created a framework for binding mutable Haskell data to a GUI. The framework is

toolkit agnostic, and interfaces have been provided to Gtk2Hs and WxHaskell. Both one- and two-

way bindings between mutable variables and widgets can be easily created. The framework is

provided with sample programs, and thorough unit tests for both HUnit and QuickCheck.

6.2 Conclusions
We have shown that, after reviewing all significant literature on the subject, there is no single

abstraction or framework capable of supplanting imperative programming for all GUI development.

However, this does not mean that the search for alternatives is futile. Rather, we have demonstrated

how Haskell’s imperative IO monad is an environment in which domain-specific frameworks can be

combined with miscellaneous GUI actions.

Prior work on Functional Reactive Programming focuses on one such domain, that of interacting

graphical elements. We have developed a framework to support the domain most commonly

required by businesses, that of data binding. Thus, it has been demonstrated that a pure functional

language such as Haskell can be quite capable of those tasks commonly considered to be the domain

of imperative languages.

6.3 Future Work
There is much potential to expand the core data binding functionality already developed. The next

stage would be what Microsoft terms “complex data binding” [65]; multiple elements of a binding

list are shown simultaneously, such as in a grid. A further feature, which is tricky to get right even

with highly mature data binding frameworks, would be for data sources to link together. For

example, we may have a list of customers and a list of orders; there is a one-to-many relationship

between customers and orders. Selecting a customer from the customers binding list should bind all

of the customer’s orders to an orders grid.

The other side of the data binding coin is persistence; a data source which knows how to save itself

to and load itself from persistent storage would bring the framework closer to modern data binding

expectations.

The use of object-relational mapping to support these scenarios in the context of object-orientated

programming has been termed “the Vietnam of computer science” [66]. Much of the impedance

mismatch between object-orientated languages and relational databases stems from inheritance

and encapsulation (the bundling of data with behaviour), concepts which do not feature strongly in

functional languages. If functional languages had full support for data binding and persistence,

would they be more suitable for line-of-business applications than object-oriented languages?

Finally, it is worth noting that nothing about the binding-core package is specific to graphics or

user interfaces. Perhaps there is potential for binding data to different targets, such as synchronising

equivalent data held in different stores.

57

7 Appendix A: Noughts and Crosses Source Code

The source code in this appendix was compiled with the following package versions:

Haskell Platform: 2011.2.0.1
Gtk2Hs: 0.12
WxHaskell: 0.12.1.6
QtHaskell: 1.1.4
WxGeneric: 0.6.1
Reactive Banana: 0.4.1.1

7.1 OX.hs

module OX (Square, Token(..), showBoard, Game(..), newGame, move) where

import Data.Array
import Data.List

data Token = None | X | O
 deriving Eq

-- |The coordinates of a square.
type Square = (Int,Int)

-- |A noughts and crosses board.
type Board = Array Square Token

-- |Returns an empty 'Board'.
newBoard :: Board
newBoard = listArray ((1,1),(3,3)) (repeat None)

-- |Puts a 'Token' in a 'Square'.
setSquare :: Board -> Square -> Token -> Board
setSquare board square token =
 if (board ! square) /= None
 then error $ "square " ++ show square ++ " is not empty"
 else board // [(square, token)]

-- |Determine if the 'Board' is in an end state.
-- Returns 'Just' 'Token' if the game has been won, 'Just' 'None' for a draw,
otherwise 'Nothing'.
endGame :: Board -> Maybe Token
endGame board
 | Just X `elem` maybeWins = Just X
 | Just O `elem` maybeWins = Just O
 | None `notElem` elems board = Just None
 | otherwise = Nothing

 where rows :: [[Square]]
 rows = let i = [1..3]
 in [[(x,y) | y <- i] | x <- i] ++ -- rows
 [[(y,x) | y <- i] | x <- i] ++ -- coloumns
 [[(x,x) | x <- i], [(x,4-x) | x <- i]] -- diagonals

58

 rows2tokens :: [[Token]]
 rows2tokens = map (map (board !)) rows

 isWin :: [Token] -> Maybe Token
 isWin tokens
 | all (==X) tokens = Just X
 | all (==O) tokens = Just O
 | otherwise = Nothing

 maybeWins :: [Maybe Token]
 maybeWins = map isWin rows2tokens

-- |The state of a game, i.e. the player who's turn it is, and the current board.
data Game = Game Token Board

newGame :: Game
newGame = Game X newBoard

-- |Puts the player's token on the specified square.
-- Returns 'Just' 'Token' if the game has been won, 'Just' 'None' for a draw,
otherwise 'Nothing'.
move :: Game -> Square -> (Game, Maybe Token)
move (Game player board) square =
 let board' = setSquare board square player
 player' = case player of {X -> O; O -> X}
 in (Game player' board', endGame board')

-- ** Show instances

outersperse :: a -> [a] -> [a]
outersperse x ys = x : intersperse x ys ++ [x]

instance Show Token where
 show X = "X"
 show O = "O"
 show None = " "
 showList tokens = showString $ outersperse '|' $ concatMap show tokens

-- Board cannot be declared an instance of Show, as this would overlap with the
existing instance for Array
showBoard :: Board -> String
showBoard board =
 let border = " +-+-+-+"
 i = [1..3]
 showRow x = show x ++ show [board ! (y,x) | y <- i]
 in intercalate "\n" $ " 1 2 3" : outersperse border (map showRow i)

instance Show Game where
 show (Game player board) = showBoard board ++ "\n\nTurn: " ++ show player

59

7.2 Console.hs

{-# LANGUAGE ScopedTypeVariables #-}
import Control.Exception
import OX

play :: Game -> IO ()
play game = do
 putChar '\n'
 print game
 input <- getLine
 let (game'@(Game _ board), result) = move game $ read $ '(' : input ++
")"
 attempt <- try $ evaluate result
 case attempt of
 Left (error::ErrorCall) -> print error >> play game
 Right result -> case result of
 Nothing -> play game'
 Just token -> putStrLn $ "\n" ++ showBoard
board ++ "\n" ++ if token == None then "Draw" else show token ++ " won!"

main = play newGame

60

7.3 Gtk2HS.hs

import Control.Monad
import Data.IORef
import Graphics.UI.Gtk

import OX

main = do
 --create a new game
 game <- newIORef newGame

 -- create the main window
 initGUI
 window <- windowNew
 set window [windowTitle := "OX"]
 onDestroy window mainQuit

 vbox <- vBoxNew False 0
 set window [containerChild := vbox]

 label <- labelNew $ Just "Move: X"
 boxPackEndDefaults vbox label

 table <- tableNew 3 3 True
 boxPackEndDefaults vbox table

 btns <- replicateM 3 toggleButtonNew

 radios <- replicateM 3 $ do
 group <- vBoxNew False 0

 button <- radioButtonNewWithLabel "" -- radioButtonNew doesn't line up
with radioButtonNewWithLabel
 button `on` toggled $ set button [widgetSensitive := False]

 button_ <- radioButtonNewWithLabel "?"
 set button_ [radioButtonGroup := button]

 mapM_ (boxPackStartDefaults group) [button, button_]
 return (button_, group)

 checks <- replicateM 3 checkButtonNew

 --attach event handlers
 let event square button = button `on` toggled $ do
 g@(Game player _) <- readIORef game
 set button [buttonLabel := show player]
 let (g'@(Game player _), result) = move g square
 case result of
 Nothing -> do --continue game
 writeIORef game g'
 set button [widgetSensitive := False]
 set label [labelLabel := "Move: " ++ show player]

 Just token -> do --end game
 let message = case token of
 X -> "X won!"

61

 O -> "O won!"
 None -> "Draw!"
 messageDialogNew Nothing [] MessageInfo ButtonsOk
message >>= dialogRun
 widgetDestroy window

 zipWithM_ (\b x -> event (x,1) b >> tableAttachDefaults table b (x-1) x 0 1)
btns [1..3]
 zipWithM_ (\(r,g) x -> event (x,2) r >> tableAttachDefaults table g (x-1) x 1
2) radios [1..3]
 zipWithM_ (\c x -> event (x,3) c >> tableAttachDefaults table c (x-1) x 2 3)
checks [1..3]

 --run the UI
 widgetShowAll window
 mainGUI

62

7.4 WxHaskell.hs

import Control.Monad
import Graphics.UI.WX

import OX

main = start $ do
 --create a new game
 game <- varCreate newGame

 -- create the main window
 window <- frame [text := "OX"]
 label <- staticText window [text := "Move: X"]

 btns <- replicateM 3 $ button window [size := sz 40 40]
 radios <- replicateM 3 $ radioBox window Vertical ["", "?"] []
 checks <- replicateM 3 $ checkBox window [text := " "] --reserve space for
X/O in label

 set window [layout := column 5 [grid 1 1 [map widget btns, map widget radios,
map widget checks], floatCenter $ widget label]]

 --attach event handlers
 let event square btn = do
 g@(Game player _) <- varGet game
 set btn [text := show player]
 let (g'@(Game player _), result) = move g square
 case result of
 Nothing -> do --continue game
 varSet game g'
 set btn [enabled := False]
 set label [text := "Move: " ++ show player]

 Just token -> do --end game
 infoDialog window "" $ case token of
 X -> "X won!"
 O -> "O won!"
 None -> "Draw!"
 close window

 attach widgets trigger y = zipWithM_ (\w x -> set w [on trigger ::= event
(x,y)]) widgets [1..3]

 attach btns command 1
 attach radios select 2
 attach checks command 3

 return window

63

7.5 QtHaskell.hs

{-# LANGUAGE RankNTypes, ScopedTypeVariables, EmptyDataDecls #-}
import Control.Monad
import Data.IORef

import Qtc.Classes.Qccs hiding (event)
import Qtc.Classes.Gui hiding (end,move,button)
import Qtc.ClassTypes.Gui
import Qtc.Core.Base
import Qtc.Gui.Base
import Qtc.Gui.QApplication
import Qtc.Gui.QWidget
import Qtc.Gui.QPushButton
import Qtc.Gui.QCheckBox
import Qtc.Gui.QRadioButton
import Qtc.Gui.QDialog
import Qtc.Gui.QGroupBox
import Qtc.Gui.QAbstractButton ()
import Qtc.Gui.QMessageBox
import Qtc.Gui.QLabel
import Qtc.Gui.QVBoxLayout
import Qtc.Gui.QBoxLayout ()
import Qtc.Gui.QGridLayout

import OX

type WidgetCreator = (forall a. QAbstractButton a -> IO ()) -> IO (QWidget ())

-- |Create a button.
data COxQPushButton
type OxPushButton = QPushButtonSc COxQPushButton

oxPushButton :: IO OxPushButton
oxPushButton = qSubClass $ qPushButton " "

button :: WidgetCreator
button e = do
 button <- oxPushButton
 setMaximumSize button (40::Int,40::Int)
 connectSlot button "clicked()" button "click()" e
 qCast_QWidget button

-- |Create a radio button group.
data COxQRadioButton
type OxRadioButton = QRadioButtonSc COxQRadioButton

oxRadioButton :: String -> IO OxRadioButton
oxRadioButton b = qSubClass $ qRadioButton b

radioGroup :: WidgetCreator
radioGroup e = do
 group <- qGroupBox ()

 layout <- qVBoxLayout ()
 setLayout group layout

 button <- oxRadioButton ""

64

 setChecked button True
 connectSlot button "clicked()" button "click()" $ \button -> setEnabled
(button::OxRadioButton) False

 button_ <- oxRadioButton "?"
 connectSlot button_ "clicked()" button_ "click()" e

 mapM_ (addWidget layout) [button, button_]
 qCast_QWidget group

-- |Create a check box.
data COxQCheckBox
type OxCheckBox = QCheckBoxSc COxQCheckBox

oxCheckBox :: IO OxCheckBox
oxCheckBox = qSubClass $ qCheckBox " "

check :: WidgetCreator
check e = do
 check <- oxCheckBox
 connectSlot check "clicked()" check "click()" e
 qCast_QWidget check

main = do
 --create a new game
 game <- newIORef newGame

 -- create the main window
 qApplication ()
 window <- qDialog ()
 setWindowTitle window "OX"

 vbox <- qVBoxLayout ()
 setLayout window vbox

 grid <- qGridLayout ()
 addLayout vbox grid

 label <- qLabel "Move: X"
 addWidget vbox label

 --attach event handlers
 let event square button = do
 g@(Game player _) <- readIORef game
 setText button $ show player
 let (g'@(Game player _), result) = move g square
 case result of
 Nothing -> do --continue game
 writeIORef game g'
 setEnabled button False
 setText label $ "Move: " ++ show player
 Just token -> do --end game
 box <- qMessageBox window
 setText box $ case token of
 X -> "X won!"
 O -> "O won!"
 None -> "Draw!"
 qshow box ()

65

 -- widgetCreator will return a widget with an event attached
 -- widgets creates 3 of them in a row
 widgets (widgetCreator::WidgetCreator) y = forM_ [1..3] $ \x -> do
 w <- widgetCreator $ event (x,y)
 addWidget grid (w, y-1, x-1)

 zipWithM_ widgets [button, radioGroup, check] [1..3]

 -- run the UI
 qshow window ()
 qApplicationExec ()

66

7.6 WxGeneric.hs

{-# LANGUAGE FlexibleInstances, MultiParamTypeClasses, TemplateHaskell,
UndecidableInstances #-}
import Graphics.UI.WX
import Graphics.UI.WxGeneric
import Graphics.UI.SybWidget.MySYB

data Name = Name {forename :: String, surname :: String} deriving Show
data Student = Student {name :: Name, tutor :: Name, id :: Int} deriving Show

anonymous = Name "" ""
student = Student anonymous anonymous 0

$(derive [''Name,''Student])
instance WxGen Name
instance WxGen Student

main = start $ do
 window <- frame [text := "WxGeneric"]
 editor <- genericWidget window student
 set window [layout := widget editor]
 return window

67

7.7 Banana.hs
import Control.Monad
import Data.Maybe
import Graphics.UI.WX hiding (Event)
import Graphics.UI.WXCore hiding (Event)

import Reactive.Banana
import Reactive.Banana.WX

import OX

type State = (Game, Maybe Token)

main = start $ do
 -- create the main window
 window <- frame [text := "OX"]
 label <- staticText window [text := "Move: X"] --overwritten by FRP, here to
ensure correct positioning

 btns <- replicateM 3 $ -> button window [size := sz 40 40]
 radios <- replicateM 3 $ -> radioBox window Vertical ["", "?"] []
 checks <- replicateM 3 $ -> checkBox window [text := " "] --reserve space for
X/O in label

 set window [layout := column 5 [grid 1 1 [map widget btns, map widget radios,
map widget checks], floatCenter $ widget label]]

 network <- compile $ do
 --convert WxHaskell events to FRP events
 let event0s widgets event = forM widgets $ \x -> event0 x event
 events <- liftM concat $ sequence [event0s btns command, event0s radios
select, event0s checks command]

 let
 moves :: Event (State -> State)
 moves = foldl1 union $ zipWith (\e s -> play s <$ e) events [(x,y) | y
<- [1..3], x <- [1..3]]
 where play square (game, _) = move game square

 state :: Discrete State
 state = accumD (newGame, Nothing) moves

 player :: Discrete String
 player = (\(Game player _, _) -> show player) <$> state

 tokens :: [Discrete String]
 tokens = map (\e -> stepperD "" (player <@ e)) events

 --wire up the widget event handlers
 zipWithM_ (\b e -> sink b [text :== e, enabled :== null <$> e])
 (map objectCast btns ++ map objectCast radios ++ map objectCast
checks :: [Control ()])
 tokens

 sink label [text :== ("Move: " ++) <$> player]

 --end game event handler

68

 reactimate $ (end window . fromJust) <$> filterE isJust (changes $ snd <$>
state)

 actuate network

end :: Frame () -> Token -> IO ()
end window result = do
 infoDialog window "" $ case result of
 X -> "X won!"
 O -> "O won!"
 None -> "Draw!"
 close window

69

8 Appendix B: Data Binding Source Code

8.1 binding-core

 src\Binding\Variable.hs

-- | Mutable variables in the IO Monad
module Binding.Variable where

import Data.IORef
import Control.Concurrent.MVar
import Control.Concurrent.STM

class Variable v where
 -- | Create a new variable.
 newVar :: a -> IO (v a)
 -- | Read a variable.
 readVar :: v a -> IO a
 -- | Write a variable.
 writeVar :: v a -> a -> IO ()
 -- | Modify a variable.
 modifyVar :: v a -> (a -> a) -> IO ()
 -- | Modify a variable, and return some value.
 modifyVar' :: v a -> (a -> (a,b)) -> IO b

instance Variable IORef where
 newVar = newIORef
 readVar = readIORef
 writeVar = writeIORef
 modifyVar = modifyIORef
 modifyVar' = atomicModifyIORef

instance Variable MVar where
 newVar = newMVar
 readVar = takeMVar
 writeVar = putMVar
 modifyVar v f = modifyMVar_ v (return . f)
 modifyVar' v f = modifyMVar v (return . f)

instance Variable TVar where
 newVar = newTVarIO

 readVar = readTVarIO

 writeVar v x = atomically $ writeTVar v x

 modifyVar v f = atomically $ do x <- readTVar v
 writeTVar v (f x)

 modifyVar' v f = atomically $ do x <- readTVar v
 let (x', y) = f x
 writeTVar v x'
 return y

instance Variable TMVar where
 newVar = newTMVarIO

 readVar v = atomically $ takeTMVar v

70

 writeVar v x = atomically $ putTMVar v x

 modifyVar v f = atomically $ do x <- takeTMVar v
 putTMVar v (f x)

 modifyVar' v f = atomically $ do x <- takeTMVar v
 let (x', y) = f x
 putTMVar v x'
 return y

 src\Binding\Core.hs

{-# LANGUAGE ExistentialQuantification #-}
module Binding.Core (module Binding.Variable, Bindable, bind, Source) where

import Binding.Variable

-- | A data binding:
-- @a@ is the type of the data source
-- @a -> d@ is a function that extracts data from the source
-- @t@ is the binding target
-- @d -> t -> IO ()@ is a function that applies data to the target
data Binding a = forall d t. Binding (a -> d) t (t -> d -> IO ())

-- | A simple binding source.
data Source v a = Variable v => Source {bindings :: v [Binding a] -- ^ the
source's bindings
 ,var :: v a} -- ^ the bound
variable

-- | Update a single binding.
update' :: a -> Binding a -> IO ()
update' source (Binding extract target apply) = apply target $ extract source

-- | Update a binding source's bindings.
update :: Source v a -> IO ()
update (Source bindings source) = do bindings <- readVar bindings
 a <- readVar source
 mapM_ (update' a) bindings

instance Variable v => Variable (Source v) where
 newVar a = do bindings <- newVar []
 v <- newVar a
 return $ Source bindings v

 readVar = readVar . var

 writeVar s a = writeVar (var s) a >> update s

 modifyVar s f = modifyVar (var s) f >> update s

 modifyVar' s f = do b <- modifyVar' (var s) f
 update s
 return b

-- | Binding sources.
class Variable b => Bindable b where

71

 -- | Create a data binding.
 bind :: b a -- ^ the binding source
 -> (a -> d) -- ^ a function that extracts data from the source
 -> t -- ^ the binding target
 -> (t -> d -> IO ()) -- ^ a function that applies data to the target
 -> IO ()

instance Variable v => Bindable (Source v) where
 bind (Source bindings var) extract target apply =
 do let binding = Binding extract target apply
 --update the new binding
 a <- readVar var
 update' a binding
 --add the new binding to the list
 modifyVar bindings (binding:)

 src\Binding\List.hs

{-# LANGUAGE ExistentialQuantification #-}
module Binding.List (module Binding.Core, BindingList, toBindingList,
fromBindingList, length, position, seek, seekBy, next, prev, remove', remove,
insert', insert) where

import Prelude hiding (length)
import qualified Prelude as P
import Control.Monad

import Binding.Core

-- | Associates a binding source with a list of data sources.
data BindingList v a = Variable v => BindingList {source :: Source v a -- ^ the
list's binding source
 ,list :: v [v a] -- ^ the
bound list
 ,pos :: v Int} -- ^ the
current position
-- [v a] is itself in a Variable, to allow for insertions and deletions.

-- | Create a binding list.
toBindingList :: Variable v => [a] -> IO (BindingList v a)
toBindingList [] = error "empty list"
toBindingList list = do list'<- mapM newVar list >>= newVar
 source <- newVar (head list)
 pos <- newVar 0
 return $ BindingList source list' pos

-- | Update the binding list from the 'source'.
update :: BindingList v a -> IO ()
update (BindingList source list pos) = do list' <- readVar list
 pos' <- readVar pos
 readVar source >>= writeVar (list' !!
pos')

-- | Extract the data from a binding list.
fromBindingList :: Variable v => BindingList v a -> IO [a]
fromBindingList b = do update b
 readVar (list b) >>= mapM readVar

-- | interface to the binding list's 'Source'

72

instance Variable v => Variable (BindingList v) where
 {- WARNING warn "Did you mean to use newBindingList?" -}
 newVar = warn where warn a = toBindingList [a]
 readVar = readVar . source
 writeVar = writeVar . source
 modifyVar = modifyVar . source
 modifyVar' = modifyVar' . source

instance Variable v => Bindable (BindingList v) where
 bind = bind . source

-- | The size of a binding list.
length :: Variable v => BindingList v a -> IO Int
length b = do list <- readVar (list b)
 return $ P.length list

-- | Get the current position.
position :: Variable v => BindingList v a -> IO Int
position b = readVar $ pos b

-- | Bind to a new position in a binding list.
-- Returns the new position; this is convenient for seekBy and friends.
seek:: Variable v => BindingList v a -> Int -> IO Int
seek b new = do pos' <- readVar $ pos b
 if pos' == new then return new else update b >> seek' b new

-- | Unconditional seek. Called after elements have changed position.
seek':: BindingList v a -> Int -> IO Int
seek' (BindingList source list pos) new = do list' <- readVar list
 readVar (list' !! new) >>= writeVar
source
 writeVar pos new
 return new

-- | Bind to a new position in a binding list.
seekBy :: Variable v => (Int -> Int) -> BindingList v a -> IO Int
seekBy f bindingList = do pos <- readVar (pos bindingList)
 seek bindingList $ f pos

-- | Bind to the next item in a binding list.
next :: Variable v => BindingList v a -> IO Int
next = seekBy succ

-- | Bind to the previous item in a binding list.
prev :: Variable v => BindingList v a -> IO Int
prev = seekBy pred

-- | Remove an element from a list.
remove' :: [a] -> Int -> [a]
remove' list pos = let (xs, _:ys) = splitAt pos list
 in xs ++ ys

-- | Remove the current element from the list.
remove :: Variable v => BindingList v a -> IO Int
remove b@(BindingList _ list pos) = do list' <- readVar list
 pos' <- readVar pos
 writeVar list $ remove' list' pos'
 seek' b (if pos' == P.length list' - 1 then
pos' - 1 else pos')

73

-- | Insert an element into a list.
insert' :: [a] -> Int -> a -> [a]
insert' list pos x = let (xs, ys) = splitAt pos list
 in xs ++ [x] ++ ys

-- | Insert an element into the list.
-- The new element is inserted after the current element.
-- This allows appending, but precludes prepending.
insert :: Variable v => BindingList v a -> a -> IO Int
insert b@(BindingList _ list pos) x = do update b
 list' <- readVar list
 pos' <- readVar pos
 x' <- newVar x
 let pos'' = pos' + 1
 writeVar list $ insert' list' pos'' x'
 seek' b pos''

74

 tests\HUnit.hs

{-# LANGUAGE TupleSections #-}
import Test.HUnit

import Control.Monad
import Data.IORef
import System.Exit
import System.Random

import Binding.List as B
import Prelude as P

-- Change these to exercise different variable and data types
type V = IORef
type A = Int

-- *** Test pure helpers ***

-- | Generate a list for testing.
-- Many operations are expected to fail on lists of less than 2 elements.
list' :: IO ([A], Int)
list' = do size <- randomRIO (2,100)
 list <- replicateM size randomIO
 return (list, size)

testRemove' :: Assertion
testRemove' = do (list, size) <- list'
 pos <- randomRIO (0, size-2)
 let actual = remove' list pos
 assertEqual "List hasn't shrunk correctly" (size-1) (P.length
actual)
 assertEqual "Head of list incorrect" (take pos list) (take pos
actual)
 assertEqual "Tail of list incorrect" (drop (pos+1) list) (drop
pos actual)

testRemoveLast' :: Assertion
testRemoveLast' = do (list, size) <- list'
 let actual = remove' list (size-1)
 assertEqual "List hasn't shrunk correctly" (size-1) (P.length
actual)
 assertEqual "List is incorrect" (take (size-1) list) actual

testInsert' :: Assertion
testInsert' = do (list, size) <- list'
 pos <- randomRIO (0, size-1)
 new <- randomIO
 let actual = insert' list pos new
 assertEqual "List hasn't shrunk correctly" (size+1) (P.length
actual)
 assertEqual "Head of list incorrect" (take pos list) (take pos
actual)
 assertEqual "Element not inserted" new (actual !! pos)
 assertEqual "Tail of list incorrect" (drop pos list) (drop
(pos+1) actual)

--- *** Test monadic functions ***

75

testSource :: Assertion
testSource = do --bind a source
 expected <- randomIO
 source <- newVar expected :: IO (Source V A)
 target <- randomIO >>= newVar :: IO (Source V A)
 bind source id target writeVar
 actual <- readVar target
 assertEqual "Initial Bind" expected actual
 --change its value
 expected <- randomIO
 writeVar source expected
 actual <- readVar target
 assertEqual "Value Changed" expected actual

-- | Generate a 'BindingList' for testing.
list :: IO ([A], Int, BindingList V A)
list = do (list, size) <- list'
 liftM (list, size,) (toBindingList list)

-- | Assert that a 'BindingList' holds the expected list.
assertList :: [A] -> BindingList V A -> Assertion
assertList list bl = fromBindingList bl >>= (list @=?)

-- | Assert that a 'BindingList' holds the expected list.
assertPos :: Int -> BindingList V A -> Int -> Assertion
assertPos expected bl reported = do pos <- position bl
 assertEqual "Wrong positon" expected pos
 assertEqual "Wrong positon reported" pos
reported

testList :: Assertion
testList = do (expected, _, bl) <- list
 assertList expected bl

testLength :: Assertion
testLength = do (_, expected, bl) <- list
 B.length bl >>= (expected @=?)

testSeek :: Assertion
testSeek = do (list, size, bl) <- list
 pos <- randomRIO (0,size-1)
 seek bl pos >>= assertPos pos bl
 actual <- readVar bl
 list !! pos @=? actual

testSeekBy :: Assertion
testSeekBy = do (_, size, bl) <- list
 init <- randomRIO (0, size-1)
 offset <- randomRIO (-init, size-init-1)
 let expected = init + offset
 seek bl init
 actual <- seekBy (offset+) bl
 --give a more detailed error message than assertPos
 assertEqual ("Seek from " ++ show init ++ " by " ++ show offset)
expected actual
 assertPos expected bl actual

testNext :: Assertion

76

testNext = do (_, size, bl) <- list
 init <- randomRIO (0, size-2)
 seek bl init
 B.next bl >>= assertPos (init+1) bl

testPrev :: Assertion
testPrev = do (_, size, bl) <- list
 init <- randomRIO (1, size-1)
 seek bl init
 prev bl >>= assertPos (init-1) bl

testRemove :: Assertion
testRemove = do (list, size, bl) <- list
 pos <- randomRIO (0, size-2)
 seek bl pos
 remove bl >>= assertPos pos bl
 assertList (remove' list pos) bl

testRemoveLast :: Assertion
testRemoveLast = do (list, size, bl) <- list
 seek bl (size-1)
 remove bl >>= assertPos (size-2) bl
 assertList (remove' list (size-1)) bl

testInsert :: Assertion
testInsert = do (list, size, bl) <- list
 pos <- randomRIO (0, size-1)
 new <- randomIO
 seek bl pos
 let pos' = pos+1
 insert bl new >>= assertPos pos' bl
 assertList (insert' list pos' new) bl

main = do Counts _ _ e f <- runTestTT $ TestList
 ["Source" ~: testSource
 ,"binding lists" ~: testList
 ,"length" ~: testLength
 ,"seek" ~: testSeek
 ,"seekBy" ~: testSeekBy
 ,"next" ~: testNext
 ,"prev" ~: testPrev
 ,"remove'" ~: testRemove'
 ,"remove" ~: testRemove
 ,"remove' last" ~: testRemoveLast'
 ,"remove last" ~: testRemoveLast
 ,"insert'" ~: testInsert'
 ,"insert" ~: testInsert]
 when (e>0 || f>0) exitFailure

77

 tests\QuickCheck.hs

{-# LANGUAGE TupleSections, TemplateHaskell #-}
import Test.QuickCheck
import Test.QuickCheck.Modifiers
import Test.QuickCheck.Monadic
import Test.QuickCheck.All
import Test.QuickCheck.Test

import Control.Monad
import Data.IORef
import System.Exit

import Binding.List as B
import Prelude as P

-- Change these to exercise different variable and data types
type V = IORef
type A = Char

-- *** Helpers to generate random lists and positions ***

-- | A random list with at least two elements.
newtype List = List [A] deriving Show

instance Arbitrary List where
 arbitrary = liftM List $ choose (2, 100) >>= vector
 shrink (List xs) = [List ys | ys <- shrink xs, P.length ys > 1]

-- | Maps @i@ to a position in @xs@.
anywhere :: Int -> [A] -> Int
anywhere i xs = let max = P.length xs - 1
 in if max == 0 then 0 else i `mod` max

-- | Anywhere in the list except the last element.
notLast :: Int -> [A] -> Int
notLast i = anywhere i . tail

-- | Create a 'BindingList', and 'seek' to @pos@.
list :: [A] -> Int -> IO (BindingList V A)
list xs pos = do bl <- toBindingList xs
 seek bl pos
 return bl

-- *** Test pure functions ***

prop_remove' :: [A] -> Int -> Bool
prop_remove' xs i = let pos = anywhere i xs
 actual = remove' xs pos
 in P.length actual == P.length xs - 1
 && take pos actual == take pos xs
 && drop (pos+1) xs == drop pos actual

prop_removeLast' :: [A] -> Bool
prop_removeLast' xs = let pos = P.length xs - 1
 actual = remove' xs pos
 in P.length actual == pos
 && actual == take pos xs

78

prop_insert' :: [A] -> Int -> A -> Bool
prop_insert' xs i x = let pos = anywhere i xs
 actual = insert' xs pos x
 in P.length actual == P.length xs + 1
 && take pos actual == take pos xs
 && actual !! pos == x
 && drop pos actual == drop (pos+1) xs

-- *** QuickCheck 'Property's for Monadic actions. ***

prop_Source :: (A,A,A) -> Property
prop_Source (a,b,c) = monadicIO $ do
 (x,y) <- run $ do --bind a source
 source <- newVar a :: IO (Source V A)
 target <- newVar c :: IO (Source V A)
 bind source id target writeVar
 x <- readVar target
 --change its value
 writeVar source b
 y <- readVar target
 return (x,y)
 assert (x==a && y==b)

prop_List :: NonEmptyList A -> Property
prop_List (NonEmpty xs) = monadicIO $ do
 ys <- run $ (toBindingList xs :: IO (BindingList V A)) >>= fromBindingList
 assert (ys == xs)

prop_length :: NonEmptyList A -> Property
prop_length (NonEmpty xs) = monadicIO $ do
 l <- run $ (toBindingList xs :: IO (BindingList V A)) >>= B.length
 assert (l == P.length xs)

prop_seek :: NonEmptyList A -> Int -> Property
prop_seek (NonEmpty xs) i = let pos = anywhere i xs in monadicIO $ do
 (new, x) <- run $ do bl <- toBindingList xs :: IO (BindingList V A)
 liftM2 (,) (seek bl pos) (readVar bl)
 assert (new == pos && x == xs !! pos)

prop_position :: NonEmptyList A -> Int -> Property
prop_position (NonEmpty xs) i = let pos = anywhere i xs in monadicIO $ do
 new <- run $ list xs pos >>= position
 assert (new == pos)

prop_seekBy :: List -> Int -> Int -> Property
prop_seekBy (List xs) a b = let size = P.length xs
 init = anywhere a xs
 offset = anywhere b xs - init
 in monadicIO $ do
 (new, x) <- run $ do bl <- list xs init
 liftM2 (,) (seekBy (offset+) bl) (readVar bl)
 assert (new == init + offset && x == xs !! new)

prop_next :: List -> Int -> Property
prop_next (List xs) i = let pos = notLast i xs in monadicIO $ do
 (new, x) <- run $ do bl <- list xs pos
 liftM2 (,) (B.next bl) (readVar bl)
 assert (new == pos + 1 && x == xs !! new)

79

prop_prev :: List -> Int -> Property
prop_prev (List xs) i = let pos = anywhere i xs + 1 in monadicIO $ do
 (new, x) <- run $ do bl <- list xs pos
 liftM2 (,) (prev bl) (readVar bl)
 assert (new == pos - 1 && x == xs !! new)

prop_insert :: List -> Int -> A -> Property
prop_insert (List xs) i x = let pos = anywhere i xs
 new = pos + 1
 in monadicIO $ do
 (pos', ys) <- run $ do bl <- list xs pos
 liftM2 (,) (insert bl x) (fromBindingList bl)
 assert (ys == insert' xs new x && pos' == new)

-- we test removing the last element separately because it's a special case
testRemove :: [A] -> Int -> PropertyM IO (Int, [A])
testRemove xs pos = run $ do bl <- list xs pos
 liftM2 (,) (remove bl) (fromBindingList bl)

prop_remove :: List -> Int -> Property
prop_remove (List xs) i = let pos = notLast i xs in monadicIO $ do
 (pos', ys) <- testRemove xs pos
 assert (ys == remove' xs pos && pos' == pos)

prop_removeLast :: List -> Property
prop_removeLast (List xs) = let pos = P.length xs - 1 in monadicIO $ do
 (pos', ys) <- testRemove xs pos
 assert (ys == remove' xs pos && pos' == pos -1)

-- | Test the 'Property's
main = do passed <- $quickCheckAll
 unless passed exitFailure

80

8.2 binding-gtk

 src\Binding\Gtk.hs

{-# LANGUAGE FlexibleContexts #-}
module Binding.Gtk where

import Control.Monad
import Control.Monad.Trans
import Graphics.UI.Gtk

import Binding.List as B

-- | Bind a 'Source' to a control.
bindToControl :: Bindable b =>
 b a -- ^ the binding source
 -> (a -> d) -- ^ a function that extracts data from the source
 -> c -- ^ the target control
 -> Attr c d -- ^ the attribute of the control to bind to
 -> IO ()
bindToControl source extract control attribute = bind source extract control (\c d
-> set c [attribute := d])

-- | Bind from a control to a 'Source'.
-- The source is updated when the control loses focus.
bindFromControl :: (WidgetClass c, Bindable b) =>
 c -- ^ the control
 -> Attr c d -- ^ the attribute of the control to bind from
 -> (a -> d -> a) -- ^ a function that applies data from the
control to the source
 -> b a -- ^ the binding source
 -> IO (ConnectId c)
bindFromControl control attribute apply source =
 control `on` focusOutEvent $ liftIO $ do d <- get control attribute
 a <- readVar source
 writeVar source (apply a d)
 return False

-- | Create a two-way data binding.
bindControl :: (WidgetClass c, Bindable b) =>
 b a -- ^ the binding source
 -> (a -> d) -- ^ a function that extracts data from the source
 -> c -- ^ the control
 -> Attr c d -- ^ the attribute of the control to bind to
 -> (a -> d -> a) -- ^ a function that applies data from the control to
the source
 -> IO (ConnectId c)
bindControl source extract control attribute apply = do
 bindToControl source extract control attribute
 bindFromControl control attribute apply source

-- | Create a simple two-way data binding for a 'Textual' control.
bindTextEntry :: (Show a, Read a, EntryClass c, WidgetClass c, Bindable b) =>
 b a -- ^ the binding source
 -> c -- ^ the control
 -> IO (ConnectId c)
bindTextEntry source control = do
 bindToControl source show control entryText

81

 control `on` focusOutEvent $ liftIO $ do d <- get control entryText
 writeVar source (read d)
 return False

-- | Create a set of navigation buttons for a binding list.
navigation :: Variable v =>
 BindingList v a -- ^ the binding list
 -> a -- ^ the default value for inserts
 -> IO HButtonBox
navigation bl new = do spin <- spinButtonNewWithRange 0 1 1
 let setRange = B.length bl >>= spinButtonSetRange spin 0 .
fromIntegral . pred
 setRange
 afterValueSpinned spin $ spinButtonGetValueAsInt spin >>=
seek bl >> return ()
 buttons <- forM [("<<", spinButtonSetValue spin 0)
 ,(">>", spinButtonSpin spin SpinEnd 0)
 ,("+", insert bl new >>= spinButtonSetValue
spin . fromIntegral >> setRange)
 ,("-", B.remove bl >>= spinButtonSetValue
spin . fromIntegral >> setRange)]
 $ \(l,c) -> do b <- buttonNewWithLabel l
 on b buttonActivated c
 return b

 let del = last buttons
 del `on` buttonActivated $ do l <- B.length bl
 del `set` [widgetSensitive :=
l > 1]

 (buttons !! 2) `on` buttonActivated $ del `set`
[widgetSensitive := True] --"+"

 box <- hButtonBoxNew
 containerAdd box spin
 mapM_ (containerAdd box) buttons
 return box

82

 demo\simple.hs

import Data.IORef
import Graphics.UI.Gtk

import Binding.Core
import Binding.Gtk

main = do --create widgits
 initGUI
 text1 <- entryNew
 text2 <- entryNew
 --bind them
 source <- newVar 0 :: IO (Source IORef Double)
 bindTextEntry source text1
 bindTextEntry source text2
 --arrange the widgits
 hBox <- hBoxNew True 0
 boxPackStartDefaults hBox text1
 boxPackStartDefaults hBox text2
 --create the main window
 window <- windowNew
 set window [containerChild := hBox, windowTitle := "Data Binding with
Gtk2Hs"]
 onDestroy window mainQuit
 --start the application
 widgetShowAll window
 mainGUI

83

 demo\lists.hs

import Data.IORef
import Control.Monad
import Graphics.UI.Gtk

import Binding.List
import Binding.Gtk

data Person = Person {name::String, age::Int, active::Bool} deriving (Read, Show)

main = do -- read the input
 f <- readFile "in.txt"
 bl <- toBindingList $ read f :: IO (BindingList IORef Person)
 --create widgits
 initGUI
 name' <- entryNew
 age' <- spinButtonNewWithRange 0 120 1
 active' <- checkButtonNew
 --bind them
 nav <- navigation bl $ Person "" 0 False
 bindControl bl name name' entryText (\p n -> p {name = n})
 bindControl bl (fromIntegral . age) age' spinButtonValue (\p a -> p {age
= round a})
 bindControl bl active active' toggleButtonActive (\p a -> p {active =
a})
 --arrange the widgits
 table <- tableNew 3 2 True

 zipWithM_ (\cap row -> do label <- labelNew $ Just cap
 tableAttachDefaults table label 0 1 row
(row+1))
 ["Name:", "Age:", "Active:"] [0..2]

 zipWithM_ (\wid row -> tableAttachDefaults table wid 1 2 row (row+1))
 [toWidget name', toWidget age', toWidget active'] [0..2]

 vBox <- vBoxNew False 0
 boxPackStartDefaults vBox table
 boxPackStartDefaults vBox nav
 -- create the main window
 window <- windowNew
 set window [containerChild := vBox, windowTitle := "Data Binding with
Gtk2Hs"]
 onDestroy window mainQuit
 --start the application
 widgetShowAll window
 mainGUI
 new <- fromBindingList bl
 writeFile "out.txt" $ show new

84

8.3 binding-wx

 src\Binding\Wx.hs

{-# LANGUAGE RankNTypes #-}
module Binding.Wx where

import Control.Monad
import Graphics.UI.WX

import Binding.List as B

-- | Bind a 'Source' to a control.
bindToControl :: Bindable b =>
 b a -- ^ the binding source
 -> (a -> d) -- ^ a function that extracts data from the source
 -> c -- ^ the target control
 -> Attr c d -- ^ the attribute of the control to bind to
 -> IO ()
bindToControl source extract control attribute = bind source extract control (\c d
-> set c [attribute := d])

-- | Bind from a control to a 'Source'.
-- The source is updated when the control loses focus.
bindFromControl :: (Bindable b, Reactive c) =>
 c -- ^ the control
 -> Attr c d -- ^ the attribute of the control to bind from
 -> (a -> d -> a) -- ^ a function that applies data from the
control to the source
 -> b a -- ^ the binding source
 -> IO ()
bindFromControl control attribute apply source =
 set control [on focus := \f -> unless f $ do d <- get control attribute
 a <- readVar source
 writeVar source (apply a d)
 propagateEvent]

-- | Create a two-way data binding.
bindControl :: (Bindable b, Reactive c) =>
 b a -- ^ the binding source
 -> (a -> d) -- ^ a function that extracts data from the source
 -> c -- ^ the control
 -> Attr c d -- ^ the attribute of the control to bind to
 -> (a -> d -> a) -- ^ a function that applies data from the control to
the source
 -> IO ()
bindControl source extract control attribute apply = do
 bindToControl source extract control attribute
 bindFromControl control attribute apply source

-- | Create a simple two-way data binding for a 'Textual' control.
bindTextual :: (Show a, Read a, Bindable b, Textual c, Reactive c) =>
 b a -- ^ the binding source
 -> c -- ^ the control
 -> IO ()
bindTextual source control = do
 bindToControl source show control text
 set control [on focus := \f -> unless f $ do d <- get control text

85

 writeVar source (read d)
 propagateEvent]

-- | Create a set of navigation buttons for a binding list.
navigation owner bl new = do spin <- spinCtrl owner 0 1 [on select ::= \s -> get s
selection >>= seek bl >> return ()]
 let setRange = B.length bl >>= spinCtrlSetRange spin
0 . pred
 setRange
 let go i = spin `set` [selection := i] >> seek bl i
 buttons <- forM [("<<", go 0 >> return ())
 ,(">>", B.length bl >>= go . pred >>
return ())
 ,("+", insert bl new >>= go >>
setRange)
 ,("-", remove bl >>= go >> setRange)]
 $ \(t,c) -> button owner [text := t,
on command := c]

 let del = last buttons
 del `set` [on command :~ (>> do l <- B.length bl
 del `set` [enabled :=
l > 1])]

 (buttons !! 2) `set` [on command :~ (>> del `set`
[enabled := True])] --"+"

 return $ row 0 $ widget spin : map widget buttons

86

 demo\simple.hs

import Data.IORef
import Graphics.UI.WX

import Binding.Core
import Binding.Wx

main = start $ do --create widgits
 window <- frame [text := "Data Binding with Gtk2Hs"]
 text1 <- entry window []
 text2 <- entry window []
 --bind them
 source <- newVar 0 :: IO (Source IORef Double)
 bindTextual source text1
 bindTextual source text2
 --start the application
 set window [layout := row 0 [widget text1, widget text2]]

 demo\lists.hs

import Control.Monad
import Data.IORef
import Data.List
import Graphics.UI.WX

import Binding.List
import Binding.Wx

data Person = Person {name::String, age::Int, active::Bool} deriving (Read, Show)

main = do -- read the input
 f <- readFile "in.txt"
 bl <- toBindingList $ read f :: IO (BindingList IORef Person)
 start $ do --create widgits
 window <- frame [text := "Data Binding with WxHaskell"]
 name' <- entry window []
 age' <- spinCtrl window 0 120 []
 active' <- checkBox window []
 --bind them
 nav <- navigation window bl $ Person "" 0 False
 bindControl bl name name' text (\p n -> p {name = n})
 bindControl bl (fromIntegral . age) age' selection (\p a -> p
{age = a})
 bindControl bl active active' checked (\p a -> p {active =
a})
 --arrange the widgits
 let labels = map (floatRight . label) ["Name:", "Age:",
"Active:"]
 let widgets = map floatLeft [widget name', widget age',
widget active']
 --start the application
 set window [layout := column 10 [grid 10 10 $ transpose
[labels, widgets], nav]
 ,on closing := fromBindingList bl >>= \l ->
writeFile "out.txt" (show l) >> propagateEvent]

87

9 Appendix C: Data Binding Documentation
Running Haddock [14] over the source in Appendix B: Data Binding Source Code will produce nicely

formatted HTML documentation.

The text of Haddock’s documentation is reproduced here for reference.

9.1 Binding.Variable

class Variable v where

Methods

newVar :: a -> IO (v a)

 Create a new variable.

readVar :: v a -> IO a

 Read a variable.

writeVar :: v a -> a -> IO ()

 Write a variable.

modifyVar :: v a -> (a -> a) -> IO ()

 Modify a variable.

modifyVar' :: v a -> (a -> (a, b)) -> IO b

 Modify a variable, and return some value.

Instances

Variable TVar
Variable IORef
Variable MVar
Variable TMVar
Variable v => Variable (Source v)
Variable v => Variable (BindingList v) interface to the binding
list's Source

88

9.2 Binding.Core

class Variable b => Bindable b where

Binding sources.

Methods

bind

:: b a the binding source
-> (a -> d) a function that extracts data from the source
-> t the binding target
-> (t -> d -> IO ()) a function that applies data to the target
-> IO ()

Create a data binding.

Instances

Variable v => Bindable (Source v)
Variable v => Bindable (BindingList v)

data Source v a

A simple binding source.

Instances

Variable v => Variable (Source v)
Variable v => Bindable (Source v)

89

9.3 Binding.List

data BindingList v a

Associates a binding source with a list of data sources.

Instances

Variable v => Variable (BindingList v) interface to the binding list's
Source
Variable v => Bindable (BindingList v)

toBindingList :: Variable v => [a] -> IO (BindingList v a)

Create a binding list.

fromBindingList :: Variable v => BindingList v a -> IO [a]

Extract the data from a binding list.

length :: Variable v => BindingList v a -> IO Int

The size of a binding list.

position :: Variable v => BindingList v a -> IO Int

Get the current position.

seek :: Variable v => BindingList v a -> Int -> IO Int

Bind to a new position in a binding list. Returns the new position; this is
convenient for seekBy and friends.

seekBy :: Variable v => (Int -> Int) -> BindingList v a -> IO Int

Bind to a new position in a binding list.

next :: Variable v => BindingList v a -> IO Int

Bind to the next item in a binding list.

prev :: Variable v => BindingList v a -> IO Int

Bind to the previous item in a binding list.

remove' :: [a] -> Int -> [a]

Remove an element from a list.

remove :: Variable v => BindingList v a -> IO Int

Remove the current element from the list.

insert' :: [a] -> Int -> a -> [a]

Insert an element into a list.

90

insert :: Variable v => BindingList v a -> a -> IO Int

Insert an element into the list. The new element is inserted after the
current element. This allows appending, but precludes prepending.

91

9.4 Binding.Gtk
bindToControl

:: Bindable b
=> b a the binding source
-> (a -> d) a function that extracts data from the source
-> c the target control
-> Attr c d the attribute of the control to bind to
-> IO ()

Bind a Source to a control.

bindFromControl

:: (WidgetClass c, Bindable b)
=> c the control
-> Attr c d the attribute of the control to bind from
-> (a -> d -> a) a function that applies data from the control to the
source
-> b a the binding source
-> IO (ConnectId c)

Bind from a control to a Source. The source is updated when the control
loses focus.

bindControl

:: (WidgetClass c, Bindable b)
=> b a the binding source
-> (a -> d) a function that extracts data from the source
-> c the control
-> Attr c d the attribute of the control to bind to
-> (a -> d -> a) a function that applies data from the control to the
source
-> IO (ConnectId c)

Create a two-way data binding.

bindTextEntry

:: (Show a, Read a, EntryClass c, WidgetClass c, Bindable b)
=> b a the binding source
-> c the control
-> IO (ConnectId c)

Create a simple two-way data binding for a Textual control.

navigation

:: Variable v
=> BindingList v a the binding list
-> a the default value for inserts
-> IO HButtonBox

Create a set of navigation buttons for a binding list.

92

9.5 Binding.Wx
bindToControl

:: Bindable b
=> b a the binding source
-> (a -> d) a function that extracts data from the source
-> c the target control
-> Attr c d the attribute of the control to bind to
-> IO ()

Bind a Source to a control.

bindFromControl

:: (Bindable b, Reactive c)
=> c the control
-> Attr c d the attribute of the control to bind from
-> (a -> d -> a) a function that applies data from the control to the
source
-> b a the binding source
-> IO ()

Bind from a control to a Source. The source is updated when the control
loses focus.

bindControl

:: (Bindable b, Reactive c)
=> b a the binding source
-> (a -> d) a function that extracts data from the source
-> c the control
-> Attr c d the attribute of the control to bind to
-> (a -> d -> a) a function that applies data from the control to the
source
-> IO ()

Create a two-way data binding.

bindTextual

:: (Show a, Read a, Bindable b, Textual c, Reactive c)
=> b a the binding source
-> c the control
-> IO ()

Create a simple two-way data binding for a Textual control.

navigation

:: Variable v
=> Window w the buttons' owner
-> BindingList v a the binding list
-> a the default value for inserts
-> IO Layout

Create a set of navigation buttons for a binding list. WxHaskell cannot change a
spin control's range after it has been created, hence the maximum value will be
incorrect following an insert or delete.

93

10 Bibliography

[1] Simon Peyton Jones, "Tackling the Awkward Squad," in Engineering theories of software

construction. Marktoberdorf: IOS Press, 2001.

[2] Brad A. Myers, "Why are human-computer interfaces difficult to design and implement?,"

Computer Science Department, Carnegie-Mellon University, Pittsburgh, CMU-CS-93-183, July

1993.

[3] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler, "A History of Haskell: Being

LazyWith Class," , San Diego, 2007.

[4] Simon Marlow. Haskell 2010 Language Report. [Online].

http://haskell.org/haskellwiki/Language_and_library_specification

[5] Konstantin Läufer, "Type Classes with Existential Types," Journal of Functional Programming,

vol. 6, no. 3, pp. 485-518, 1996.

[6] Conor Mcbride and Ross Paterson, "Applicative Programming with Effects," Journal of

Functional Programming, vol. 18, no. 1, pp. 1-13, January 2008.

[7] John Hughes, "Generalising Monads to Arrows ," Science of Computer Programming, vol. 37,

no. 1-3, pp. 67-111, May 2000.

[8] Ross Paterson, "Arrows and Computation," in The Fun of Programming, Jeremy Gibbons and

Oege de Moor, Eds. Basingstoke, UK: Palgrave Macmillan, 2003, ch. 10.

[9] Mark P. Jones. Hugs 98. [Online]. http://www.haskell.org/hugs/

[10] York Haskell Compiler. [Online]. http://www.haskell.org/haskellwiki/Yhc

[11] Utrecht University, Department of Information and Computing Sciences. Utrecht Haskell

Compiler. [Online]. http://www.cs.uu.nl/wiki/UHC

[12] The Glasgow Haskell Compiler. [Online]. http://www.haskell.org/ghc/

[13] Hackage. [Online]. http://hackage.haskell.org/

[14] Haddock. [Online]. http://www.haskell.org/haddock/

[15] The Haskell Platform. [Online]. http://hackage.haskell.org/platform/

[16] GTK+. [Online]. http://www.gtk.org/

[17] Glade. [Online]. http://glade.gnome.org/

[18] Gtk2Hs. [Online]. http://www.haskell.org/gtk2hs/

http://haskell.org/haskellwiki/Language_and_library_specification
http://www.haskell.org/hugs/
http://www.haskell.org/haskellwiki/Yhc
http://www.cs.uu.nl/wiki/UHC
http://www.haskell.org/ghc/
http://hackage.haskell.org/
http://www.haskell.org/haddock/
http://hackage.haskell.org/platform/
http://www.gtk.org/
http://glade.gnome.org/
http://www.haskell.org/gtk2hs/

94

[19] wxWidgets. [Online]. http://www.wxwidgets.org/

[20] Julian Smart, Kevin Hock, and Stefan Csomor, Cross-platform GUI programming with

wxWidgets. United States of America: Prentice Hall, 2006.

[21] Daan Leijen, "wxHaskell: a portable and concise GUI library for haskell," in Proceedings of the

2004 ACM SIGPLAN workshop on Haskell, Snowbird, 2004, pp. 57-68.

[22] Thomas van Noort. Building GUIs in Haskell. [Online].

http://www.cs.ru.nl/~thomas/publications/noot07-building-guis-in.pdf

[23] Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy, "Composable Memory

Transactions," in ACM Conference on Principles and Practice of Parallel Programming, Chicago,

June 2005.

[24] Syed K. Shahzad, Michael Granitzer, and Klause Tochterman, "Designing User Interfaces

through Ontological User Model: Functional Programming Approach," in Fourth International

Conference on Computer Sciences and Convergence Information Technology, Seoul, 2009, pp.

99-104.

[25] Qt. [Online]. http://qt.nokia.com/

[26] Matthias Kalle Dalheimer, Programming with Qt, 2nd ed., Ariane Hesse, Ed. United States of

America: O'Reilley, 2002.

[27] Johan Thelin, Foundations of Qt development, Jason Gilmore, Ed. New York, United States of

America: Apress, 2007.

[28] David Harley. qtHaskell. [Online]. http://qthaskell.berlios.de/

[29] Wolfgang Jeltsch. (2008, October) Qt-style C++ in Haskell. [Online].

http://softbase.org/hqk/qoo/qoo.pdf

[30] Wolfgang Jeltsch. HQK. [Online]. http://www.haskell.org/haskellwiki/HQK

[31] Magnus Carlsson and Thomas Hallgren, "FUDGETS: a graphical user interface in a lazy

functional language," in Proceedings of the conference on Functional programming languages

and computer architecture, Copenhagen, 1993, pp. 321-330.

[32] Conal Elliott and Paul Hudak, "Functional Reactive Animation," in Proceedings of the Second

ACM SIGPLAN International Conference on Functional programming, vol. 32, Amsterdam,

August 1997, pp. 263-273.

[33] Zhanyong Wan and Paul Hudak, "Functional Reactive Programming from First Principles," in

Proceedings of the ACM SIGPLAN Conference on Programming Language Design and

Implementation, Vancouver, 2000, pp. 242-252.

http://www.wxwidgets.org/
http://www.cs.ru.nl/~thomas/publications/noot07-building-guis-in.pdf
http://qt.nokia.com/
http://qthaskell.berlios.de/
http://softbase.org/hqk/qoo/qoo.pdf
http://www.haskell.org/haskellwiki/HQK

95

[34] Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson, "Arrows, Robots, and

Functional Reactive Programming," Lecture Notes in Computer Science, vol. 2638, pp. 159-187,

August 2002.

[35] Henrik Nilsson, Antony Courtney, and John Peterson, "Functional Reactive Programming,

Continued," in Proceedings of the 2002 ACM SIGPLAN Haskell Workshop, Pittsburgh, 2002, pp.

51-64.

[36] Antony Courtney, Henrik Nilsson, and John Peterson, "The Yampa Arcade," in Proceedings of

the 2003 ACM SIGPLAN workshop on Haskell, New York, 2003, pp. 7-18.

[37] Antony Courtney and Conal Elliott, "Genuinely Functional User Interfaces," in Proceedings of

the ACM SIGPLAN Workshop on Haskell, Firenze, September 2001, pp. 41-69.

[38] Antony Courtney, "Functionally Modeled User Interfaces," in Interactive systems: design,

specification, and verification: 10th international workshop, Funchal, 2003, pp. 107-123.

[39] Bart Robinson. (2004, May) WxFruit: A Practical GUI Toolkit for Functional Reactive

Programming. [Online].

http://web.archive.org/web/20071224143245/http://zoo.cs.yale.edu/classes/cs490/03-

04b/bartholomew.robinson/wxfruit.pdf

[40] John Peterson, Antony Courtney, and Bart Robinson, "Can GUI Programming Be Liberated

From The IO Monad," in Proceedings of the 2004 ACM SIGPLAN workshop on Haskell,

Snowbird, 2004.

[41] Remi Turk. (2007, March) Juicy Fruit. [Online].

http://www.cs.uu.nl/wiki/pub/Afp0607/DomainSpecificLanguages/fruit.pdf

[42] Conal Elliott, "Push-Pull Functional Reactive Programming," in Proceedings of the Second ACM

SIGPLAN Symposium on Haskell, Edinburgh, 2009, pp. 25-36.

[43] F. Warren Burton, "Indeterminate behavior with determinate semantics in parallel programs,"

in Proceedings of the fourth international conference on Functional programming languages

and computer architecture, New York, 1989, pp. 340-346.

[44] F. Warren Burton, "Encapsulating non-determinacy in an abstract data type with determinate

semantics," Journal of Functional Programming, vol. 1, no. 1, pp. 3-20, 1991.

[45] Conal Elliot. (2007) Applicative Data-Driven Computation. [Online].

http://conal.net/papers/data-driven/paper.pdf

[46] Wolfgang Jeltsch, "Improving Push-based FRP," in Ninth Symposium on Trends in Functional

Programming, America, Netherlands, 2008, p. Chapter 14.

http://web.archive.org/web/20071224143245/http:/zoo.cs.yale.edu/classes/cs490/03-04b/bartholomew.robinson/wxfruit.pdf
http://web.archive.org/web/20071224143245/http:/zoo.cs.yale.edu/classes/cs490/03-04b/bartholomew.robinson/wxfruit.pdf
http://www.cs.uu.nl/wiki/pub/Afp0607/DomainSpecificLanguages/fruit.pdf
http://conal.net/papers/data-driven/paper.pdf

96

[47] Wolfgang Jeltsch, "Signals, Not Generators!," in Tenth Symposium on Trends in Functional

Programming, Komárno, 2009, p. Chapter 22.

[48] Wolfgang Jeltsch. (2008, May) Declarative Programming Of Interactive Systems With

Grapefruit. [Online]. http://www.informatik.tu-cottbus.de/~jeltsch/research/uustc-20080529-

slides.pdf

[49] Heinrich Apfelmus. Reactive Banana. [Online]. http://www.haskell.org/haskellwiki/Reactive-

banana

[50] Mike Potel. (1996) MVP: Model-View-Presenter, The Taligent Programming Model for C++ and

Java. [Online]. http://www.wildcrest.com/Potel/Portfolio/mvp.pdf

[51] Trygve M. H. Reenskaug. (1979) MVC. [Online].

http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html

[52] Leksah. [Online]. http://leksah.org/

[53] JP Moresmau, Thomas ten Cate, and Leif Frenzel. EclipseFP. [Online].

http://eclipsefp.sourceforge.net/

[54] Thomas ten Cate. (2009, August) EclipseFP GSoC. [Online].

http://eclipsefp.wordpress.com/2009/08/25/endgame/

[55] Johan Tibell. (2010, August) Results from the State of Haskell, 2010 Survey. [Online].

http://blog.johantibell.com/2010/08/results-from-state-of-haskell-2010.html

[56] Gtk2Hs Trac. [Online]. http://hackage.haskell.org/trac/gtk2hs/ticket/1203

[57] Dean Herington. HUnit. [Online]. http://hunit.sourceforge.net/

[58] Koen Claessen and John Hughes, "QuickCheck: a lightweight tool for random testing of Haskell

programs," SIGPLAN, vol. 35, no. 9, pp. 268-279, September 2000.

[59] Koen Claessen and John Hughes, "Testing monadic code with QuickCheck," SIGPLAN, vol. 37,

no. 12, pp. 47-59, December 2002.

[60] GHC Library Reference. IOArray. [Online].

http://www.haskell.org/ghc/docs/latest/html/libraries/array/Data-Array-IO.html

[61] Donald Knuth, "Structured Programming with go to Statements," ACM Computing Surveys, vol.

6, no. 4, pp. 261-301, December 1974.

[62] Herb Sutter, "The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software,"

Dr. Dobb's Journal, vol. 30, no. 3, March 2005.

http://www.informatik.tu-cottbus.de/~jeltsch/research/uustc-20080529-slides.pdf
http://www.informatik.tu-cottbus.de/~jeltsch/research/uustc-20080529-slides.pdf
http://www.haskell.org/haskellwiki/Reactive-banana
http://www.haskell.org/haskellwiki/Reactive-banana
http://www.wildcrest.com/Potel/Portfolio/mvp.pdf
http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html
http://leksah.org/
http://eclipsefp.sourceforge.net/
http://eclipsefp.wordpress.com/2009/08/25/endgame/
http://blog.johantibell.com/2010/08/results-from-state-of-haskell-2010.html
http://hackage.haskell.org/trac/gtk2hs/ticket/1203
http://hunit.sourceforge.net/
http://www.haskell.org/ghc/docs/latest/html/libraries/array/Data-Array-IO.html

97

[63] David A. Patterson and John L. Hennessy, "The Difficulty of Creating Parallel Processing

Programs," in Computer Organization and Design: The Hardware/Software Interface.: Morgan

Kaufmann, 2008, ch. 7.2, pp. 634-638.

[64] Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and Kevin Donnelly, "System

F with Type Equality Coercions," in Proceedings of the 2007 ACM SIGPLAN International

Workshop on Types in Languages Design and Implementation, Nice, 2007, pp. 53-66.

[65] Microsoft. Data Binding and Windows Forms. [Online]. http://msdn.microsoft.com/en-

us/library/c8aebh9k.aspx

[66] Ted Neward. (2006, June) The Vietnam of Computer Science. [Online].

http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+Computer+Science.aspx

http://msdn.microsoft.com/en-us/library/c8aebh9k.aspx
http://msdn.microsoft.com/en-us/library/c8aebh9k.aspx
http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+Computer+Science.aspx

	Abstract
	Acknowledgement
	1 Introduction
	1.1 Imperative Programming
	1.1.1 Object Orientation

	1.2 Functional Programming
	1.2.1 Pure Functions and IO

	1.3 Graphical User Interfaces
	1.3.1 Graphical User Interfaces in Haskell

	1.4 Project Aims

	2 Overview of Haskell and Graphical User Interfaces
	2.1 Haskell Language Concepts
	2.1.1 Values
	2.1.2 Variables
	2.1.3 Types
	2.1.4 Algebraic Data Types
	2.1.5 Polymorphic Types
	2.1.6 Type Annotations
	2.1.7 Functions
	2.1.8 Currying and Partial Application
	2.1.9 Type Classes
	2.1.10 Existential Types
	2.1.11 Functors
	2.1.12 Applicative Functors
	2.1.13 Arrows
	2.1.14 Arrow Syntax
	2.1.15 Monads
	2.1.16 do Notation
	2.1.17 Modules

	2.2 The IO Monad
	2.2.1 IORef

	2.3 Implementations of Haskell
	2.3.1 The Glasgow Haskell Compiler
	2.3.2 Packages
	2.3.3 Hackage and the Haskell Platform

	2.4 Noughts and Crosses Example
	2.5 GUI Toolkits
	2.5.1 Gtk2Hs
	2.5.1.1 GTK+
	2.5.1.2 Layout
	2.5.1.3 Glade
	2.5.1.4 Gtk2Hs
	2.5.1.5 Attributes
	2.5.1.6 Events and Signals
	2.5.1.7 The Game

	2.5.2 WxHaskell
	2.5.2.1 WxWidgets
	2.5.2.2 Layout
	2.5.2.3 WxHaskell
	2.5.2.4 Variables
	2.5.2.5 Attributes
	2.5.2.6 Events
	2.5.2.7 The Game
	2.5.2.8 WxGeneric

	2.5.3 QtHaskell
	2.5.3.1 Qt
	2.5.3.2 Signals and Slots
	2.5.3.3 Layout
	2.5.3.4 QtHaskell
	2.5.3.5 Slots and Signals: C++ in Haskell
	2.5.3.6 The Game
	2.5.3.7 Imports

	2.6 Functional Reactive Programming
	2.6.1 Fudgets
	2.6.2 Fran
	2.6.2.1 Behaviour
	2.6.2.2 Event
	2.6.2.3 Event Stream
	2.6.2.4 Reactive Behaviour

	2.6.3 Yampa
	2.6.3.1 Signals
	2.6.3.2 Signal Functions

	2.6.4 Fruit
	2.6.5 WxFruit
	2.6.5.1 User Defined Widgets

	2.6.6 WxFroot
	2.6.7 Reactive
	2.6.7.1 Push-Pull Evaluation
	2.6.7.1.1 Reactive Value
	2.6.7.1.2 Time Function

	2.6.8 Phooey
	2.6.9 Grapefruit
	2.6.9.1 Data Flow System
	2.6.9.2 Grapefruit

	2.6.10 Reactive Banana
	2.6.10.1 The Game

	3 Analysis and Design
	3.1 Background Analysis
	3.1.1 Abstractions for User Interfaces

	3.2 Requirements Specification
	3.2.1 Overview
	3.2.2 Data Binding
	3.2.2.1 Back to the IO Monad

	3.2.3 Functional Requirements
	3.2.3.1 One-Way Data Binding
	3.2.3.2 Two-Way Data Binding
	3.2.3.3 Binding Lists

	3.2.4 Non-Functional Requirements
	3.2.5 Data Analysis
	3.2.5.1 Data Source
	3.2.5.2 Binding List
	3.2.5.3 Target
	3.2.5.4 Binding
	3.2.5.5 Source Updates
	3.2.5.6 Target Updates

	3.3 Design
	3.3.1 Overview
	3.3.1.1 The Model View Presenter Pattern
	3.3.1.2 The Observer Pattern
	3.3.1.3 Two-Way Binding

	3.3.2 Components
	3.3.2.1 Mutable Variables
	3.3.2.2 Binding Source
	3.3.2.3 Binding List
	3.3.2.4 Binding Interface
	3.3.2.5 Binding
	3.3.2.6 Updating
	3.3.2.7 Binding to Controls

	3.3.3 Packaging

	4 Implementation and Testing
	4.1 Problems and Solutions
	4.1.1 Barking up the Wrong Tree
	4.1.1.1 The Right Tree

	4.1.2 Technical Issues
	4.1.2.1 Integrated Development Environment
	4.1.2.2 Windows
	4.1.2.3 Gtk2Hs and WxHaskell

	4.2 Testing
	4.3 Unit Testing
	4.3.1 HUnit
	4.3.2 QuickCheck
	4.3.2.1 Modifiers
	4.3.2.2 Implications
	4.3.2.3 Arbitrary
	4.3.2.4 Position Parameter
	4.3.2.5 Testing IO Actions

	4.4 Integration Testing
	4.4.1 Simple Data Binding
	4.4.2 Binding Lists
	4.4.3 Test Execution

	4.5 Test Results
	4.5.1 Functional Requirements
	4.5.2 Non-Functional Requirements

	5 Evaluation
	5.1 The List in Binding Lists
	5.1.1 Performance
	5.1.2 Reinventing the IOArray Wheel

	6 Summary and Conclusions
	6.1 Summary
	6.2 Conclusions
	6.3 Future Work

	7 Appendix A: Noughts and Crosses Source Code
	7.1 OX.hs
	7.2 Console.hs
	7.3 Gtk2HS.hs
	7.4 WxHaskell.hs
	7.5 QtHaskell.hs
	7.6 WxGeneric.hs
	7.7 Banana.hs

	8 Appendix B: Data Binding Source Code
	8.1 binding-core
	8.1.1 src\Binding\Variable.hs
	8.1.2 src\Binding\Core.hs
	8.1.3 src\Binding\List.hs
	8.1.4 tests\HUnit.hs
	8.1.5 tests\QuickCheck.hs

	8.2 binding-gtk
	8.2.1 src\Binding\Gtk.hs
	8.2.2 demo\simple.hs
	8.2.3 demo\lists.hs

	8.3 binding-wx
	8.3.1 src\Binding\Wx.hs
	8.3.2 demo\simple.hs
	8.3.3 demo\lists.hs

	9 Appendix C: Data Binding Documentation
	9.1 Binding.Variable
	9.2 Binding.Core
	9.3 Binding.List
	9.4 Binding.Gtk
	9.5 Binding.Wx

	10 Bibliography

