

Simics® Simulator

Educational Workshop Two

Building an accelerator model
Version 1.0

Copyright © Intel Corporation

Simics Simulator Educational Workshop 02 – Model Building 2

1 Introduction

This Intel® Simics® simulator educational workshop goes through Simics model building.

The workshop is built around a simple Mandelbrot fractal computation engine and shows

how this is used in successively more complex system setups. The first step uses just the

compute block in isolation, while in the end, a complete accelerator is connected over

PCIe to a Simics Quick-Start Platform (QSP) model. The accelerator can be used to

perform computations in parallel as seen from the virtual system, as well as running in

parallel on the host to optimize simulation performance.

The workshop is intended to be worked through in order – later steps often depend on

the results from previous steps.

1.1 Host type
This workshop is written assuming you are working on a Linux host, but all steps should

work the same on a Windows host.

1.2 Conventions
The following conventions are used in this workshop instruction:

Actions from the shell on the host (the machine that runs Simics) are indicated by $. The

commands to type are in bold:

$ ls

Commands for the Simics simulator command line are indicated by simics>:

simics> help

When the Simics simulator is running, the prompt changes to running>. Most command-

line commands can be used while the simulator is running:

running> ptime

Actions from the shell on the target (the simulated machine) are also indicated by $ or #.

The instructions will indicate that this is to be entered on the target system. The target

system prompt is only used while Simics is running, so it should be fairly clear when the

target console is used and when the host shell is used.

lspci

Simics Simulator Educational Workshop 02 – Model Building 3

Output from commands (in any environment) are shown as a box with slightly smaller

text, and in regular font. Typically, the command used to generate the output is not

shown in the box:

Status of sim [class sim]
=========================

Environment:
 Hide Console Windows : No

Simulation Engine:
 Page Sharing : Disabled
 Multithreading enabled : Enabled
 Thread limit : Unlimited
 Worker threads limit : 1
 Simulation threads limit : 0
 CPU module load mode : normal
 Image memory usage : Limited to 22.24 GB
 Image memory limit hit : 0 times
...

The Simics simulator scripts used to start simulation runs are all named with a prefix

number (for example, 001-). Most of the time, the workshop instructions only refer to the

scripts by their number. It is typically possible to tab-complete the full file name once the

number has been entered on the console.

1.3 Translating the instructions to Windows hosts
In general, the Simics simulator tries to hide the differences between Windows and Linux

host once the simulator is running. However, outside command-line work will be

different. Here are the most noticeable differences.

On Windows, use “simics.bat” to start a new Simics simulator sessions instead of

“./simics”:

C:\...> simics.bat -v

Note that the Simics simulator core allows the use of Linux-style paths on Windows

hosts. Thus, you can start Simics on Windows using Linux-style script names that you

copy from the instructions in this workshop. For example:

C:\...> simics.bat ./simics targets/workshop-02/006-accelerator-in-
qsp.simics

Tab completion from CMD will produce \-separated paths, and these also work.

Tab-completing paths from the simulator command line will also produce native

Windows paths.

On Windows, make is present as a script in the project bin directory:

C:\...> bin\make

Simics Simulator Educational Workshop 02 – Model Building 4

The project-setup script is in the project bin on both host types. It takes the same

arguments. The path to invoke it contains a backslash instead of forward-slash:

C:\...> bin\project-setup

1.4 Overview of the target setup

The target system used in this workshop is the Simics Quick-Start Platform (QSP),

extended with a custom Mandelbrot accelerator PCI-express (PCIe) add-in card. The

QSP runs the standard Clear Linux* image, and the disk image provided contains both a

device driver and user-level application that drives the hardware accelerator.

The system overall looks like this:

The standard QSP hardware is on the left, with the accelerator on the right. When

running, the accelerator is logically part of the QSP overall platform since it is inserted as

a virtual PCIe card in a virtual PCIe slot inside the QSP virtual platform.

The target graphics console is not used in this workshop.

The target serial console is used to interact with the target Linux.

The Mandelbrot extra display is used to see the results computed by the accelerator.

Simics Simulator Educational Workshop 02 – Model Building 5

1.5 Accelerator design

The accelerator looks like this in more detail:

The control unit contains the main control registers for the accelerator, as well as the

PCIe interface. It manages computation jobs in the compute units via a set of signals to

and from the compute units.

Each compute unit has a few memory-mapped control registers, as well as control

signals towards the control unit. They access the on-accelerator RAM via the “memory”

memory map (also available via BAR3) to read descriptors and write results.

The display unit displays the results to an external display, using the results and color

table in on-accelerator RAM.

When connected to PCIe, the control registers for the control, compute, and display

units are mapped through BAR0. The local RAM is mapped as a memory map through

BAR3. BAR1 and BAR2 are used to manage the MSI-X interrupts from the accelerator.

The complete PCIe interface logic is part of the control unit.

The entire accelerator can also be used without a PCIe connection and without external

software, driving it from the Simics simulator command line interface and test scripts.

1.6 Work descriptors
The compute units work from a descriptor held in local memory.

PCIe

Accelerator

Memory map
for BAR3

Control

PCIe BAR3PCIe Config

Control
registers

Compute
Control

registers

MSI-X interrupts

PCIe
Config

PCIe BAR0

Display
engine

Control
registers

Control
signals

Compute
Control

registers RAM

Descriptors

Results

Color table

RAM mapping

MSI-X
interrupts

Memory map
for BAR0

Registers

Registers

Registers

Registers

Software

Simics Simulator Educational Workshop 02 – Model Building 6

OFFSET SIZE MEANING

0x00 4 Bottom (fixed-point)

0x04 4 Left (fixed-point)

0x08 4 Top (fixed-point)

0x0c 4 Right (fixed-point)

0x10 4 Width (pixels)

0x14 4 Height (pixels)

0x18 4 Maximum iterations (really just a 16-bit number)

0x1c 4 Reserved to align the next field

0x20 8 Address of results area

The floating-point values used to encode the drawing area are stored using a 32-bit fixed-

point format. The encoding covers the range -2.0 to +2.0, using the formula:

 Descriptor_value = uint32((floating_point_value * 0x4000_0000) + 0x8000_0000)

The results are stored as an array of 16-bit integers, one per pixel, storing the iteration

count for that particular pixel (up to max iterations).

The addresses used by the compute units and other devices are all expressed as offsets

in the local memory map (for BAR3). It does not matter where the accelerator memory

spaces are mapped in the rest of the system, all addresses are strictly local as used by the

hardware.

Simics Simulator Educational Workshop 02 – Model Building 7

2 Basic Preparations

2.1 Installing the Simics software and setting up a project
This workshop assumes that you have:

• Installed the public release of the Intel Simics simulator, including all its packages.

• Created a Simics project using the Simics Package Manager. This location will be

referred to as [project] for the rest of this workshop.

o (The default location used by the Simics Package Manager is ~/simics-

projects/my-simics-project-1/, but you can use any location.)

It is also recommended that you have:

• Activated virtualization for simulation acceleration (VMP), as that makes the

simulation run quite a bit faster for many use cases.

• Worked through the getting started tutorial in the Simics simulator

documentation to get an idea for basic interaction with Simics.

On a Windows host, make sure to install a MinGW gcc in order to be able to build Simics

models.

2.2 Build the compute device model from source code
To ascertain that your project works for model building, copy the source code for the

m_compute device model to your project and run its unit tests.

1. Go to the host shell, in your Simics project. You can do this from a shell you start

yourself or use the Simics Package Manager functionality to start a new shell.

2. Use project-setup to copy the m-compute module to your project:

$ bin/project-setup --copy-module m-compute

This will copy the given device source code to your project.

3. Check that the module appeared in [project]/modules/.

$ ls modules

The output should look like this:

$ ls modules/
m-compute

4. Build the module:

$ make

Note that on Windows host, you have to do “bin\make” due to how the make program

is located by the Simics simulator build infrastructure.

Simics Simulator Educational Workshop 02 – Model Building 8

The build process will show the build steps. It will look something like this:

=== Building module m-compute ===
GEN module_id.c
DEP module_id.d
DML-DEP m-compute.dmldep
DEP m-compute-dml.d
PYC module_load.pyc
DMLC m-compute-dml.c
CC m-compute-dml.o
CC module_id.o
CCLD m-compute.so

2.3 Find the scripts in the simulator installation

Many exercises in this workshop involve looking at the source code of Simics command-

line and Python scripts. These scripts are located in the Simics simulator installation and

are not found in the Simics project – except for trampoline scripts that call the .simics

files in the installation.

To inspect the files, use an editor to open the files from within the installation. To find the

installation location of the [simics]/targets/workshop-02/ directory, use a script that

reveals the location of the installation.

5. From the shell in your Simics project, start a new Simics simulation with the script

000-find-simics-installation.simics from your local project:

$./simics targets/workshop-02/000-find-simics-installation.simics

When the script runs, it will print the location, something like this:

$./simics targets/workshop-02/000-find-simics-installation.simics
Intel Simics 6 (build 6122 linux64) Copyright 2010-2021 Intel Corporation

Use of this software is subject to appropriate license.
Type 'copyright' for details on copyright and 'help' for on-line documentation.

You can find the script files used in Workshop 02 here:

/disk1/simics-6-install/simics-training-6.0.pre25/targets/workshop-02

This technique works since the [project]/targets/workshop-02/000-find-

simics-installation.simics file in your project is a trampoline that points at the

actual installation location. That trampoline was set up when the project was created

(and it will be updated each time bin/project-setup is run).

6. Check the actual sets of scripts that were run when the simulator was started:

simics> command-file-history -v

To see how the trampoline script in the local project is run first, then it starts the

same-name file in the installation, and finally both scripts exit.

Simics Simulator Educational Workshop 02 – Model Building 9

2.4 Set up the default number output format

The simulator command line maintains a global preference for how to display numeric

values, known as the output radix. The output-radix command is used to specify the

base radix that used for display as well as controlling the grouping of digitals for numbers

7. To set the output to hexadecimal with 4-digit grouping:

simics> output-radix 16 4

8. Test it by entering some numbers:

simics> 0xdeadbeef

Which should result in an output with digit grouping applied:

0xdead_beef

9. Try a decimal number:

simics> 100000

Which should be converted to a hexadecimal number:

0x0001_86a0

10. Note that the output radix setting doesn’t affect output from inline Python.

simics> @10000

Should display as:

10000

11. Not all commands use the default number format for their output. For example,

addresses tend to be printed in hexadecimal and time in decimal formats regardless

of the default settings. Simics maintains a digit grouping setting for each base.

Check the digit grouping settings:

simics> digit-grouping

The output is something like this (your settings might vary):

┌─────┬──────┐
│Radix│Digits│
├─────┼──────┤
│ 2│ 8│
│ 8│ 0│
│ 10│ 3│
│ 16│ 4│
└─────┴──────┘

12. Test the format of decimal numbers using the dec command (which prints its

argument in decimal):

simics> dec 1000000

With a digit grouping of three for base 10, this should look like:

"1_000_000"

Simics Simulator Educational Workshop 02 – Model Building 10

13. Set base 10 as the default format, with a grouping of three:

simics> output-radix 10 3

14. Test the formatting:

simics> 0xdeadbeef

Which should result in:

3_735_928_559

15. To use the same current output base and digit groupings in your next Simics session,

use the command save-preferences:

simics> save-preferences

It makes sense to leave the default at 10 for the time being, but if you want to see

most numbers in hexadecimal, you can change that.

16. Check the preference values:

simics> list-preferences

Resulting in:

[...]
 output_radix: 10
 output_grouping: [8, 0, 3, 4]
[...]

17. Quit this Simics session.

simics> quit

2.5 Open the Simics simulator documentation
The Simics simulator comes with extensive documentation. It can be opened from inside

the Simics Package Manager view of your project. It can also be opened from the host

shell in the project.

18. From the shell in your Simics project, bring up the documentation using the

documentation script (documentation.bat on a Windows host):

$./documentation &

This will open a web browser with the documentation. Keep this window around.

It is a good idea to open interesting parts of the documentation in their own tabs in

the browser, that makes it easier to get back to them.

Simics Simulator Educational Workshop 02 – Model Building 11

2.6 Important reference points in the documentation

19. The Model Builder User’s Guide. This document contains introductory and overview

information about how to build Simics models.

20. The Device Modeling Language 1.4 Reference Manual. This is the main source of

information about the Device Modeling Language (DML) and the libraries and

standard templates provided.

Simics Simulator Educational Workshop 02 – Model Building 12

21. The API Reference Manual. This manual provides information on the standard

interfaces used to build Simics models. Both between the models and the simulator

cores and models and other models.

22. The Simics Reference Manual. This manual contains information on executable

tools used in the model-building process, as well as some frameworks like the model

test framework.

Simics Simulator Educational Workshop 02 – Model Building 13

3 Quickly Test the Complete Setup

Start by running the complete system with software and everything, to see how it all fits

together.

3.1 Start the Simics simulator

1. Start a new simulation session using the script 006-:

$./simics targets/workshop-02/006-accelerator-in-qsp.simics

When the Simics simulator has started, you see a number of windows:

• The host shell you started simics from.

• The target system serial console (qsp.mb.sb.com[0])

• The target system graphics console (qsp.mb.gpu.vga)

• The Mandelbrot accelerator display graphics console (qsp.macc.display)

• The target console control window

• The simple Simics Control window

It will look something like this:

3.2 Boot the target system

2. Run the simulation:

simics> r

Simics Simulator Educational Workshop 02 – Model Building 14

The graphics console will show the UEFI splash screen and then the target Linux

login prompt. The serial console will (eventually) show “root” logged in. There will be

some messages about ACPI errors during the boot. They are harmless.

3. Wait for the target system serial console to show that root has logged in.

3.3 Activate device driver and display a Mandelbrot

4. Go to the target system serial console, and list the available files:

ls

5. Use insmod to load the driver file m-acc-pcie-driver.ko.

insmod m-acc-pcie-driver.ko

6. Run the m-app program to display a first Mandelbrot fractal. The first argument to

the program is the file to use to specify what to draw, the second argument is the

level of parallelism in the rendering, the third the verbosity, and the fourth the path to

the device node for the accelerator on the PCI bus. The last argument is crucial as it

lets the program memory-map both the register and memory BARs.

./m-app mandel1.txt 1 1 /sys/bus/pci/devices/0000\:02\:00.0/

The result should look something like this:

Simics Simulator Educational Workshop 02 – Model Building 15

3.4 Investigate the PCIe setup

7. Check the PCI devices in the system using lspci:

lspci

Towards the end of the lists there should be listing showing:

02:00.0 Processing accelerators: Intel Corporation Device 0d5f (rev 02)

The device is not identified by name, since it is not part of the PCI hardware ID list

that is part of the target Linux system (see /usr/share/hwdata/pci.ids).

8. Check that the accelerator PCI ID is the same. Go to the Simics simulator command

line in the shell window, and list the registers of the PCI configuration bank of

qsp.macc.control. Set the output format to hexadecimal to make the values easier

to read:

running> output-radix 16
running> print-device-regs qsp.macc.control.bank.pci_config

Which shows something like:

running> print-device-regs qsp.macc.control.bank.pci_config
Offset Name Size Value | Offset Name Size Value
--+--
0x0000 vendor_id 2 0x8086 | 0x0072 msix_control 2 0x8001
0x0002 device_id 2 0x0d5f | 0x0074 msix_table 4 0x0001
0x0004 command 2 0x0407 | 0x0078 msix_pba 4 0x0002
0x0006 status 2 0x0010 | 0x0080 exp_capability_header 2 0x0010
0x0008 revision_id 1 0x0002 | 0x0082 exp_capabilities 2 0x0002
…

Note the value of the device_id, vendor_id, and revision_id registers matching

the output from lspci on the target system.

3.5 Look inside the accelerator subsystem
Use the command line to inspect the contents of the accelerator subsystem.

9. The list-objects command can be used to show the hierarchical setup of the

subsystem. The -tree option shows a tree, and namespace= shows only a part of the

system. Hiding the port objects with -hide-port-objects makes the output focus

on the most important objects of the simulation

running> list-objects namespace=qsp.macc -tree -hide-port-objects

Simics Simulator Educational Workshop 02 – Model Building 16

The output should look like this:

┐
├ compute[0..7]
├ console
├ control
├ display
├ gcon ┐
│ ├ abs_mouse
│ ├ con ┐
│ │ ├ frontend
│ │ ├ tcp
│ │ └ unix_socket
│ ├ device
│ ├ keyboard
│ └ mouse
├ local_memory
├ pci
├ ram ┐
│ └ image
└ register_memory

10. To also see the register banks and ports of the objects:

running> list-objects -tree namespace = qsp.macc

11. To get more information about the type and other properties of a particular object,

use the help command on the object. For example:

running> help qsp.macc.control

3.6 Create your own Mandelbrot specification
The target application renders fractals from a “work order” file. To draw a custom

Mandelbrot fractal, create your own such file and upload it to the target system, using the

Simics Agent back-door system.

12. Check what a file looks like. In the target serial console, check the contents of

mandel1.txt on the target system:

more mandel1.txt

13. In a text editor, create a new file in your Simics project. Call it

[project]/mandel4.txt.

14. Copy and paste the contents of mandel1.txt from the target system console into

mandel4.txt.

The first two numbers are the width and height of the area to plot, in pixels. The last

number is the maximum number of iterations to use before considering that a point

escapes the set.

The floating-point numbers on the second line are bottom, left, top, right. You need

to make the width/height ratio of the plot area specification match that of the pixel

size to get a nice-looking picture.

Simics Simulator Educational Workshop 02 – Model Building 17

15. Modify the contents of mandel4.txt to indicate a different area. For example:

1000 1000 256
0.14 -0.75 0.16 -0.73

16. Go to the Simics simulator command line prompt. Start the Simics Agent manager:

running> start-agent-manager

17. Create a new connection to the target system:

running> agent_manager.connect-to-agent

You should see a printout like:

matic0 connected to cl-qsp0 (0x1b90f02e4ca081fb)

The connect operations works since the target-side agent software is already

running on the target system (it is started on boot in the default QSP setup).

18. Check for the running agent. Go to the target system serial console:

ps -x | grep agent

There should be a /usr/bin/simics-agent process running.

19. Go back to the Simics simulator command line and use the Simics Agent upload

command to upload the mandel4.txt file to /root/ on the target. The connection to

the target is called matic0, as indicated by the connection message above.

running> matic0.upload mandel4.txt /root/

20. In the target serial console, check that the file mandel4.txt appeared:

ls

21. On the simulator command line, raise the log level of the qsp.macc subsystem to 2 to

get basic information about what the model is doing.

running> log-level qsp.macc 2 -r

22. Run the m-app program on the file, using verbosity 2 to see the maximum amount of

information from the application:

./m-app mandel4.txt 1 2 /sys/bus/pci/devices/0000\:02\:00.0/

Simics Simulator Educational Workshop 02 – Model Building 18

You should see a new fractal displayed in the accelerator display window:

23. On the simulator command line, a number of info log messages will be printed that

show the steps taken in the hardware model. Check that the descriptor seen by the

hardware is the same as that specified by the mandel4.txt file, by looking at the log

message printed when the computation is started:

…
[qsp.macc.compute[0].port.control_in info] Received request to start compute job
[qsp.macc.compute[0] info] Work descriptor read. Area: (0.140000, -0.750000) -
(0.160000, -0.730000) (1000, 1000) iter: 256 pixels @ 0x3000
[qsp.macc.compute[0] info] Compute operation time: 0.0100000000 s
…

24. Exit this simulation session.

running> exit

Simics Simulator Educational Workshop 02 – Model Building 19

4 Run the Compute Unit on its Own

This section zooms in on a single compute unit. The goal is to understand how to interact

with a device model from the Simics simulator command line, to test its basic

functionality and interfaces to the outside world.

The overall connectivity and design of the compute unit looks like this:

The external interface of the compute unit contains the following:

• Some control registers, that are accessed via memory operations. One register

holds the address of the descriptor to work on, and the other register reports the

current operational status of the compute unit.

• An outbound connection to the local memory in the accelerator, for reading

descriptors and writing results.

• An inbound signal that tells it to start computing. This signal is handled not as a

Simics simulator signal interface but using a custom interface together with the

clear done handling.

• An outbound signal that indicates that the operation is done (has completed).

This is modeled as a Simics simulator signal interface. It state is supposed to be

raised as long as the done flag in the status register is set to 1.

• An inbound signal to clear the done flag (and lower the outbound done signal).

This is modeled by a function call in the same interface as the start signal.

• An outbound connection to the queue used by this object for retrieving time and

posting events.

• A Simics simulator attribute to control the compute time per pixel. In the basic

model, this is a fixed time, which might be slightly unrealistic. Overall, it provides

the ability to model throughput approximately.

• A Simics simulator notifier to tell scripts that the operation is done. This can be

used to run the simulation until a compute job is done, for example.

The custom interface used to control the compute unit is defined as its own Simics

simulator module. This interface definition has to be used by the control unit and other

code when communicating with the compute unit.

Compute unit

Control registers

Local memory

Done

Control in

Time per pixel

Memory operations

Signal

Memory operations

Configuration

Descriptor layout

“Notify done” Model-to-tool

Mandelbrot algorithm
code

Control logic

Custom compute unit control
interface

Start

Clear done

“Queue” Object handling events

Simics Simulator Educational Workshop 02 – Model Building 20

Inside the compute unit, there is the core compute code, the control logic for how

compute operations are started, and the definition of the memory layout of the

descriptor.

4.1 Inspect the custom interface

To inspect the definition of the custom control interface, you need to open its definition.

1. Go to the host shell in the Simics project, and copy the interface module into the local

project:

$ bin/project-setup --copy-module m-compute-control-interface

2. Rebuild the code:

$ make

The interface module build creates a Python wrapper for the interface and provides

metadata so that the simulator core knows that it exists.

3. Open the file [project]/ modules/m-compute-control-interface/m-compute-

control-interface.dml in an editor.

4. The definition of the interface is wrapped inside a struct definition. The definition

tells us that the device implementing the interface needs to implement two

functions:

void start_operation(conf_object_t*)

And:

void clear_done(conf_object_t*)

The interface functions can also be called from Python, since the interface is

automatically wrapped into Python during compilation.

4.2 Start a Simics simulation session with the compute unit

5. Start a new simulation session using script 001-:

$./simics targets/workshop-02/001-try-m-compute.simics

4.3 Inspect the start-up scripts

6. Open the start script in an editor, it is found at [simics]/targets/workshop-

02/001-try-m-compute.simics. See above for how to locate the Simics simulator

installation. All it does is call one Python file that is used to set up the experimental

setup.

It also contains a large “commented out” section of code that essentially goes

through the commands of this lab.

7. Open that Python script file, [simics]/targets/workshop-02/001-m-compute-

setup.py. This file creates a set of pre_conf_objects to describe the setup, and

then calls SIM_add_configuration() to create all the objects at once. This is the

Simics Simulator Educational Workshop 02 – Model Building 21

standard way to create small sets of objects in the Simics simulator. In particular for

unit testing.

4.4 Inspect the configuration

8. List the objects in the simulation configuration:

simics> list-objects

The objects you see are a mix of the standard infrastructure objects found in all

simulations (bp, breakpoints, default_cell0, default_sync_domain, sim, prefs,

params), and the small set of objects (clock, compute, ram, ram_image,

local_memory) created from the script.

9. Use help on the compute object:

simics> help compute

The output starts like this:

simics> help compute
Class m_compute

 Provided By
 m-compute

 Description
 Compute unit for the mandelbrot hardware accelerator
...

This illustrates an important aspect of Simics naming. The object named compute is

an object in the Simics simulator configuration. It is created from the class

m_compute (with an underscore). Multiple objects can be created from each class

(obviously), with arbitrary names. The class m_compute is provided by the module m-

compute (with a dash – module names are preferably named using dashes). The

module is automatically loaded into the simulation session when an object of the

class is created. Modules can contain multiple classes, in general.

10. Check the current configuration of the object using its info namespace command

(such commands can be defined for all classes in the Simics simulator to provide a

user-friendly interface to high-level information about objects):

simics> compute.info

11. Look at the control registers of the compute object:

simics> print-device-regs compute

If the device had had multiple register banks, this would print all the registers from all

banks. In this case, there is just a single bank holding two registers. Both are currently

zero as no address has been set and no operation has been performed.

12. Check the mappings in the local_memory memory space:

simics> local_memory.map

Simics Simulator Educational Workshop 02 – Model Building 22

Memory spaces are how all memory transactions in the Simics simulator reach their

destination. In this case, there is one mapping for the local memory (“ram”) and one

for the register bank of the compute unit.

13. Check the configuration attributes of the compute unit:

simics> list-attributes compute

14. Help can also be used on an individual attribute (in command-line commands, an

object attribute is accessed via ->):

simics> help compute->local_memory

15. List the interfaces of the compute object – this how other parts of the simulation

communicate with the compute unit.

simics> list-interfaces compute

You will see two “ports” listed: the unified control interface (control_in) and the

register bank (ctrl). A register bank is technically also a port of a model since it

receives memory operations.

4.5 Set up a descriptor
To get the compute unit to do anything, it is necessary to set up a compute job descriptor

in memory. This can be done manually, setting one value after the other from the

command line. To speed things up, there is a Python script available that provides a utility

function that creates descriptors and poking them into target system memory.

16. Run the Python script [simics]/targets/workshop-02/001-m-compute-

descriptor-generator.py to define the utility function.

simics> run-python-file "%simics%/targets/workshop-02/001-m-compute-
descriptor-generator.py"

The %simics% specifier in the string ask the Simics simulator to look for a file

matching the rest of the string in the Simics project, as well as in all installed Simics

packages.

17. To see where %simics% searches for files, use the list-simics-search-paths

command:

simics> list-simics-search-paths

The first entry is your Simics project, and then you see all installed packages in the

order in which they are searched.

18. Before building a descriptor, make sure that the target area in local memory is

empty. Use the namespaced x command on the local_memory object. To find the

arguments of the command, use help:

simics> help local_memory.x

19. Display 40 bytes (the size of a descriptor) from offset 0x1000:

simics> local_memory.x 0x1000 40

Simics Simulator Educational Workshop 02 – Model Building 23

20. Call the Python function create_m_compute_descriptor() with some easily

recognizable Mandelbrot parameters. The first argument to the function is the local

memory object to write the descriptor to, the second argument is the address of the

descriptor, the third argument is the address of the results, and then follow bottom,

left, top, right, width, height, and max_iter.

simics> @create_m_compute_descriptor(conf.local_memory, 0x1000, 0x2000,
-1.0, -1.0, 1.0, 1.0, 100, 100, 200)

“@” at the beginning of a line makes the Simics simulator interpret the rest of the line

as Python code. “conf.NNN” is the Python reference to the Simics configuration

object called NNN.

21. Display the descriptor area again. Group values in groups of 32 bits, and with little-

endian interpretation:

simics> local_memory.x 0x1000 40 group-by = 32 -l

This should show that the memory now contains a descriptor:

p:0x00001000 40000000 40000000 c0000000 c0000000
p:0x00001010 00000064 00000064 000000c8 deadbeef
p:0x00001020 00002000 00000000

22. Check the “bottom” value. This indicates the y coordinate of the bottom of the area

to plot. Read the value from memory using a read command:

simics> local_memory.read 0x1000 4 -l

23. Use this as part of an expression decoding the encoding:

simics> ((local_memory.read 0x1000 4 -l) - 0x8000_0000) / 0x4000_0000

24. Check that the area used for the results is all zeroes:

simics> local_memory.x 0x2000 group-by = 16 -l 64

4.6 Start a compute job
Configure the compute unit to use the new descriptor, and instruct it to do the compute

job.

25. Raise the log-level of the compute unit to 3 (which includes internal debug

messages):

simics> log-level compute 3

26. Configure logs to display when they happen in virtual picoseconds:

simics> log-setup -pico-seconds -group

27. Use the write-device-reg command to write the descriptor_addr register of the

compute unit:

simics> write-device-reg compute.bank.ctrl.descriptor_addr 0x1000

Note that registers that do not have side effects do normally log anything on

accesses; to trace register reads and writes, use the dedicated trace-io command.

Simics Simulator Educational Workshop 02 – Model Building 24

28. To make the compute unit perform the compute operation, it needs to be started

using the “start signal”. This is part of the custom control interface that is exposed in

the control_in port.

Check the metadata on the control_in port:

simics> help compute.port.control_in

The output indicates that the port implements three interfaces. control_in is

interface used in the hardware model. conf_object and log_object are standard

framework interfaces that are present on all Simics objects. Note that a port object is

a full Simics object from the perspective of the framework.

 Description
 control input from the control unit

 Interfaces Implemented
 conf_object, log_object, m_compute_control

The general form of calling an interface in an object in the simulation from the

command line using inline Python is this:

@conf.<object_name>.iface.<interface_name>.<function_name>(<arguments>)

Since a port object is an object, the same pattern is used, just with the full name of

the port object:

@conf.<object_name>.port.<port_name>.iface.<interface_name>.<function_name>(<arguments>)

29. From the simulator command line, inline Python to call start_operation() in the

control_in port of the compute unit:

simics>
@conf.compute.port.control_in.iface.m_compute_control.start_operation()

Note that it is not necessary to have an object to use as the “originator” for an

operation like this. The code in the device model will get called just as if the call came

from another object, and it has no way to know where the call came from.

When the signal is raised, several log messages are printed:

simics> @conf.compute.port.control_in.iface.m_compute_control.start_operation()
[compute.port.control_in info control] {0 ps} Received request to start compute job
[compute info compute] {0 ps} start_compute_job called
[compute info compute] {0 ps} Work descriptor read. Area: (-1.000000, -1.000000) -
(1.000000, 1.000000) (100, 100) iter: 200 pixels @ 0x2000
[compute info compute] {0 ps} Compute operation time: 0.0001000000 s
[compute info compute] {0 ps} Starting computation inline in main thread
None

The first part of the log message shows [object type group] – the object that

issues the log (in this case either the compute object or its

compute.port.control_in port object). The type is info in these examples,

indicating informational messages. The group, finally, indicates the log group for the

message. This can be used to turn on and off logging for just certain aspects of a

model. They are defined by loggroup statements in the device model source code,

and some are provided by the standard device templates and modeling libraries.

Simics Simulator Educational Workshop 02 – Model Building 25

After that comes the time specification, {0 ps}. All the logs here were printed within

the same picosecond of virtual time. All happened at once from the perspective of

the rest of the simulation, essentially.

30. The logs above indicate that the compute operation is supposed to take 100

microseconds. The delay is implemented by posting an event 100 microseconds into

the future – on queue assigned to the compute object. In the Simics simulator, event

queues are distributed and handled by processors or clock objects, not by the

simulation kernel. This means that there are typically several event queues in a single

simulation, and each object is configured with a default queue to use for posting

events. This configuration is performed using the queue attribute present in all

objects.

Read the queue attribute of the compute object:

simics> compute->queue

This should indicate the “clock” object.

31. In device code, the SIM_object_clock() API call is typically used to retrieve the

queue for an object. Note that “clock” and “queue” are used interchangeably and not

quite consistently in the API.

Try the API using inline Python on the command line:

simics> @SIM_object_clock(conf.compute)

32. Check the current time of the clock object:

simics> ptime clock

The current time is zero since the simulation has not been run forward yet.

33. Check the event queues of the clock object:

simics> peq clock

This shows a single event posted 100k cycles into the future (since 100

microseconds is 100k cycles at 1GHz):

┌───────┬───────┬──────────────────────────┐
│ Cycle │ Object│ Description │
├───────┼───────┼──────────────────────────┤
│100_000│compute│compute_operation_complete│
└───────┴───────┴──────────────────────────┘

34. Check the contents of the results memory at this point:

simics> local_memory.x 0x2000 group-by = 16 -l 64

Note that the results have already been written to memory. They were computed

immediately on operation start. However, software is not supposed to look at them

until the compute unit indicates that the results are ready.

Simics Simulator Educational Workshop 02 – Model Building 26

35. Check the value of the status register:

simics> print-device-reg-info compute.bank.ctrl.status

The “processing” bit it set, indicating that work is in progress, from the perspective

of the software using the hardware. Even though the results are already present in

the simulated memory.

36. Run the simulation forward for 100 microseconds, to reach the end of the compute

operation:

simics> run 100 us

Log messages will be printed indicating that the operation completes (this is based

on rendering 100x100 pixels; if you used other dimensions, the time will be different).

[compute info compute] {100000000 ps} Compute operation nominally finished
[compute info control] {100000000 ps} Setting done flag
[compute info control] {100000000 ps} No connected object to signal completion to

37. Check the current time in the simulation:

simics> ptime clock

38. Check the event queue:

simics> peq clock

It should be empty since the event has triggered and no new events have been

posted.

39. Check the value of the status register:

simics> print-device-reg-info compute.bank.ctrl.status

It shows that the operation is done. The number of computed pixels is also reflected

in the count field.

simics> print-device-reg-info compute.bank.ctrl.status
Compute status [compute.bank.ctrl:status]
==

 Bits : 64
 Offset : 0x8
 Value : 9_223_372_036_854_785_808 (0x8000_0000_0000_2710)

Bit Fields:
 done[63..63] : 1 "Compute completed"
 processing[62..62] : 0 "Compute in progress"
 unused[61..32] : 000000000000000000000000000000 "unused"
 count[31..0] : 00000000000000000010011100010000 "Processed pixel count"

40. It is possible access the value of a field using the register name and the field name.

For example, to read out the value of the count field of the status register:

simics> read-device-reg compute.bank.ctrl.status count

This should return the value 10000.

Simics Simulator Educational Workshop 02 – Model Building 27

41. To clear the done flag, write a “1” bit to the done flag, using a whole-register value of

0x8000_0000_0000_0000:

simics> write-device-reg compute.bank.ctrl.status 0x8000_0000_0000_0000

The device will complain that zero is being written to the count field – in the form of a

spec_viol log message. This means that the “software” is not following the

documented behavior of the register, by trying to change the value of a read-only

field.

4.7 Check the status register implementation
Check the implementation of the status register to see where the spec-viol log

message comes from.

42. Open the file [project]/modules/m-compute/m_compute.dml.

43. Search the code for “register status”. The result should look something like this,

depending on your editor:

The log comes from read_only template that has been applied to the count field. A

field declared as read_only will log if a value different from the current value of the

field is written to it (and ignore the written value in any case). Given this definition,

the “proper” way to clear the register is to write back the value you read from it.

44. The done field got cleared despite the warning about count. Check the new state of

the register:

simics> print-device-reg-info compute.bank.ctrl.status

Simics Simulator Educational Workshop 02 – Model Building 28

This concludes this section. You have seen how to drive an individual device from the

simulator command line, and how to inspect the device state and system state.

Using this kind of interaction, it is easy to explore the implementation of a device

model without a full system context.

4.8 Test some error cases

Investigate how the model deals with some types of bad inputs.

45. Set up a new descriptor in memory, in a different location and with different

contents:

simics> @create_m_compute_descriptor(conf.local_memory, 0x10000,
0x11000, -0.4, -0.4, 0.4, 0.4, 150, 150, 200)

46. Check the contents:

simics> local_memory.x 0x10000 group-by = 32 -l 40

47. Change the descriptor address register to point at address zero, where the

descriptor is not located:

simics> write-device-reg compute.bank.ctrl.descriptor_addr 0x0000

48. Tell the device to start the computation:

simics>
@conf.compute.port.control_in.iface.m_compute_control.start_operation()

Luckily, an all zero descriptor results in no work being performed, not a crash. This

kind of “likely” mistake might be worth a specific check in the model, along with a

spec-violation log message.

49. Check the event queue:

simics> peq clock

Zero time is converted to “on the next cycle”.

50. Try to fix the error by updating the descriptor address:

simics> write-device-reg compute.bank.ctrl.descriptor_addr 0x10000

51. ...and starting a new run:

simics>
@conf.compute.port.control_in.iface.m_compute_control.start_operation()

The device will complain, since the previous operation has not yet completed.

[compute.port.start info control] {100000000 ps} start.signal - Signal raised
[compute.port.start info control] {100000000 ps} Received signal to start compute job
[compute.port.start spec-viol control] {100000000 ps} Operation start request while
operation in progress

52. Run 1 cycle to trigger the event and complete the operation:

simics> run 1 cycle

Simics Simulator Educational Workshop 02 – Model Building 29

53. Start a new run:

simics>
@conf.compute.port.control_in.iface.m_compute_control.start_operation()

Check the log messages to make sure this run was indeed using the valid descriptor

address and valid descriptor contents.

54. Try to write the status register:

simics> write-device-reg compute.bank.ctrl.status 0

This time, the processing field will complain that a read-only field is being written,

and the done field will complain that writing zero to it has no effect. Such information

can be quite useful to someone writing a device driver for the hardware.

4.9 Detect the end of the operation using notifiers

In the Simics simulator, notifiers are used to signal that something has happened in a

device model or other part of the simulated system or simulator itself. They are most

commonly used as model-to-simulator channels to implement user-facing features (they

can also be used for some instances of model-to-model communication).

55. Run until the job completes, using the notifier built into the model to signal

completion. List all available notifiers:

simics> list-notifiers

56. m-compute-complete is triggered by the compute unit when the computation is

completed. Run until it triggers:

simics> bp.notifier.run-until m-compute-complete

This command uses the Simics simulator breakpoint manager to run the simulation

forward until the notifier is triggered.

57. When the simulation stops, the operation has completed. Check the current time:

simics> ptime clock

58. Clear the done flag using the control interface, imitating how the control unit would

do it:

simics>
@conf.compute.port.control_in.iface.m_compute_control.clear_done()

59. Check the status register contents:

simics> print-device-reg-info compute.bank.ctrl.status

60. Exit this simulation session.

simics> exit

4.10 Run unit tests on the compute unit
The interactive session in the previous section shows how an individual device model can

be run on its own inside of a Simics simulator configuration, with a few other objects

Simics Simulator Educational Workshop 02 – Model Building 30

around it to provide the necessary context. This ability is also used for unit testing device

models. Each device model should come with a dedicated unit test suite that tests the

model on its own, without the need for a system context. Unit tests should make use of as

few other “real” device classes as possible to keep their dependencies minimal.

The Simics Model Builder User Guide contains more information about unit testing in

Chapter 16. The Simics Reference Manual Chapter 7 describes the overall test

framework. Python utilities used in writing tests are described in the API Reference

Manual in Chapter 10.7.

61. In a file browser, open [project]/modules/m-compute/test/. This directory

contains the test suite for the m-compute module.

There are three types of files here:

• SUITEINFO declares that this directory contains a test.

• m_compute_common.py contains the common setup code used to create the

device under test and the stubs devices/fake objects needed to run tests.

• s-*.py are the actual tests. Each file contains a set of tests that logically belong

together.

When you create a new Simics device model, you get a skeleton implementation of

the tests for it.

Open the file s-m-compute.py. This is the main test file that tests the basic behavior

of the compute unit. There are quite a few steps in the test.

Checks for errors in tests are done using the stest Python framework, including all

aspects of the execution, from values in registers and memory to log messages

printed from device models (or the absence thereof).

62. Go to the Simics project directory in your host shell.

63. Run the tests for the m-compute module using the test-runner tool.

First, list the tests it knows about:

$ bin/test-runner --tests

Simics Simulator Educational Workshop 02 – Model Building 31

It will show the suite for m-compute, and each s- Python file is considered its own

test:

Suite: modules/m-compute/test
 s-info-status
 s-m-compute-extra
 s-m-compute

64. Run the tests with verbose output, to see how each test is run in turn:

$ bin/test-runner -v

The test log file is saved in the project, at

[project]/logs/test/[host-type]/modules/m-compute/test/test.log

65. For example, on a Linux host, display the contents of the log file:

$ more logs/test/linux64/modules/m-compute/test/test.log

This shows the log messages printed during the test.

Note that the tests do not quite use the same setup as the interactive session –

special test memory is used to make it easier to detect issues like reading from

memory that was not previously written to. There is also a fake signal receiver to

receive the outbound signal that was not set up at all in the interactive session, as

well as a simple receiver for notifications.

4.11 Introduce device misbehavior, fail unit test
To test the unit tests, introduce an intentional error into the device model.

66. If it is not already open, open the file

[project]/modules/m_compute/m_compute.dml in an editor.

67. Search the code for “do_clear_done”.

68. Edit the method do_clear_done() to return immediately instead of doing the work

of actually clearing the done flag:

method do_clear_done() {
 return; // intentional error
 log info, 2, control: "Clearing done flag";
 operation_done.signal_done_clear();
 ctrl.status.done.val = 0;
}

69. Build the device model:

$ make

70. Run the tests:

$ bin/test-runner

Which will report an error:

..f
[...]modules/m_compute/test/test.log:21: test s-m-compute in modules/m_compute/test
failed (*** failed (exit-status 2) ***)
Ran 3 tests in 1 suites in 0.882581 seconds.
Failures: 1 Timeouts: 0

Simics Simulator Educational Workshop 02 – Model Building 32

71. Check the log file. Either open the log file in an editor (use the full path provided in

the test output) or use more from the shell in the same way as above.

The error behind the test failure is reported like this:

Expected 100 = 0x64
Got 9223372036854775908 = 0x8000000000000064
*** Python script 's-m-compute.py' failed: Python error in PyEval_Evalcode():
…
 "Failed to clear done flag")
…

Basically, a failed test triggers a Python traceback in order to display the point of

failure even if tests are run through multiple Python files.

72. Edit the method do_clear_done() in the model source code to remove the bad

return statement.

73. Build the device model and test it in one go, using the test target:

$ make test

This both rebuilds any changed code, and reruns all known tests.

Simics Simulator Educational Workshop 02 – Model Building 33

5 Display Results using Python

It makes sense to convert the output of the compute unit to a displayed image early on in

the development process – without having to build the model of the display unit and its

software interface. Instead, a Python script can be used to visualize the results of the

computation, sending pixels to a standard Simics framework graphics console.

The Python code will read the results in simulator memory, convert an iteration value into

a color, and then put a colored pixel into the console.

5.1 Compute a result

1. Start a new Simics simulation using script 002-:

$./simics targets/workshop-02/002-try-m-compute-with-display.simics

2. List all objects in the simulation:

simics> list-objects

Note the presence of the graphics console object called con.

3. Raise the log level:

simics> log-level 2

4. Set up a descriptor:

simics> @create_m_compute_descriptor(conf.local_memory, 0x1000, 0x2000,
0.5, -0.6, 0.7, -0.4, 1000, 1000, 256)

5. Start the operation in the same way as before:

simics> write-device-reg compute.bank.ctrl.descriptor_addr 0x1000
simics>
@conf.compute.port.control_in.iface.m_compute_control.start_operation()

6. Run until the results are computed:

simics> bp.notifier.run-until m-compute-complete

7. Display the results in the graphics console, by calling the Python code. It needs to

know the console object, the local memory object, the starting address of the results

in the local memory, the pixel dimensions of the result, and the maximum iteration

count:

simics> @display_m_result(conf.con, conf.local_memory, 0x2000, 1000,
1000, 256)

This should result in the console window showing a Mandelbrot fractal.

In addition, the code will print some basic statistics about the results. The graphics

console will emit a few log messages about being resized.

8. Note that the Simics simulator graphics console might show the results as greyed

out, as a result of the default behavior of the graphics consoles to grey out their

Simics Simulator Educational Workshop 02 – Model Building 34

display when the simulator is stopped. Thus, to see the full color, start the simulation

and leave it running.

simics> r

5.2 Copy the Python display code
The Python display code is currently located in a script in the Simics simulator

installation, at [simics]/targets/workshop-02/002-display-result.py. To modify it, it

should be copied into your Simics project, into targets/workshop-02/. The copy can be

performed using the simulator command line.

9. Since you have a Simics session running, use the command-line command lookup-

file to put the path to the script into the CLI variable $s:

running> $s = (lookup-file "%simics%/targets/workshop-02/002-display-
result.py")

10. Check the result:

running> $s

11. The destination in the Simics project can be produced by using lookup-file with

just the name of the target directory:

running> $p = (lookup-file "%simics%/targets/workshop-02")

12. Check the result:

running> $p

13. Use Python shutil to copy the file (works on all hosts):

running> @import shutil
running> @shutil.copy(simenv.s, simenv.p)

simenv.V is the way to access a command-line variable named V from Python.

5.3 Inspect and modify the display code
A core part of the Python code is to determine how to color the fractal. This code is a

Python prototype for the code used in the m-app application.

14. Open the file [project]/targets/workshop-02/002-display-result.py in an

editor.

15. Search for “def colorize”. This will find the definition of the function that converts

an iteration count into a 0x00RRGGBB 24-bit color value.

16. Rename the existing function to colorize_2.

Simics Simulator Educational Workshop 02 – Model Building 35

17. Add a new function colorize, which implements a simple gradient from black to

bright yellow, like this:

def colorize(v,min,max):
 # From black (0x000000) to light yellow (0xffff80)
 s1=min
 s2=max
 c1=[0x00,0x00,0x00]
 c2=[0xff,0xff,0x80]
 if(v < s2):
 return rgb_from_list(color_interpolate(c1,c2,(v-s1)/(s2-s1)))
 return 0x000000

18. Reload the display code from the project:

running> run-python-file targets/workshop-02/002-display-result.py

19. Redraw the result:

running> @display_m_result(conf.con, conf.local_memory, 0x2000, 1000,
1000, 256)

The new display is less colorful:

 vs

The key point is that it is possible to change and reload Python code during a Simics

simulation session, which is very handy for experimenting with parts of the system

without having to rebuild anything.

20. To keep experimenting with the color logic, also try some more zoomed-in versions

of the fractal. Keep the simulator running; there is no real need to stop to display the

result.

For example:

running> @create_m_compute_descriptor(conf.local_memory, 0x1000,
0x2000, 0.60032495,-0.55318505,0.60032505,-0.55318495, 1000, 1000, 256)
running>
@conf.compute.port.control_in.iface.m_compute_control.start_operation()
running> @display_m_result(conf.con, conf.local_memory, 0x2000, 1000,
1000, 256)

Simics Simulator Educational Workshop 02 – Model Building 36

Edit and reload the Python file. Rerun the display:

running> run-python-file targets/workshop-02/002-display-result.py
running> @display_m_result(conf.con, conf.local_memory, 0x2000, 1000,
1000, 256)

21. Exit this simulation session.

simics> exit

Simics Simulator Educational Workshop 02 – Model Building 37

6 Integrate the Control Unit with the Compute Unit

The control unit is used to start compute operations in multiple compute units. It

provides a single interface to the outside that indicates that an operation has completed.

The setup shows how device models communicate in the Simics simulator framework.

The configuration looks like this, for the case of two compute units being controlled by a

single control unit:

The active devices (control and compute units) use the clock to post events.

All the control registers are mapped in the register memory map. This is unlike the

previous setup where a single memory map pointed at both the control registers and the

memory.

The compute units access the on-accelerator RAM through the “local memory” memory

map. The control unit does not need to have references to the memory maps for the

simple case, but they are used in the PCIe case and are set up in any case.

The control unit has a connection to control port on each compute unit, to start

operations and clear the done flag.

The control unit has a global status register with a done flag reflecting the state of all the

compute units. The done flag is set after all compute units signal that they are done.

Clearing the global done flag makes the control unit clear the done flag of all connected

compute units.

The graphics console is a separate object that is not actually connected to anything else

in the configuration. It driven from Python, like in the previous cases.

6.1 Copy the control unit code to the project

1. Use project-setup to copy the m-control module to your project:

$ bin/project-setup --copy-module m-control

Control

10

Local memory
memory map

Control
registers

Compute 0

Control
registers

Compute 1

Control
registers

RAM

Descriptors

Results

RAM mapping

Register
memory map

Compute unit 0

Control unit

Compute unit 1

Done

Control in

Done

Control in

C
o

n
tro

l

D
o

n
e

C
o

n
tro

l

D
o

n
e

Graphics
console

Clock

Simics Simulator Educational Workshop 02 – Model Building 38

2. Build all the modules in the project:

$ make

6.2 Start the simulation and create objects

3. Start a new simulation session using script 003-:

$./simics targets/workshop-02/003-control-unit.simics

4. List the objects in the simulation configuration:

simics> list-objects

There is no model in place (yet), so all that is listed are the standard objects that all

Simics simulator sessions contain as part of the simulation framework.

5. Open the Python file [simics]/targets/workshop-02/003-control-unit-

setup.py in an editor. You can find its location using this command-line command:

simics> lookup-file "%simics%/targets/workshop-02/003-control-unit-
setup.py"

The system creation is contained inside a Python function. The first argument to the

function is the name of the subsystem, and the second argument is the number of

compute units to create as part of the subsystem.

6. Create a new accelerator subsystem using the Python function:

simics> @create_N_compute_accelerator("macc",2)

7. Inspect the newly created set of models:

simics> list-objects namespace = macc

There are two compute units, a control unit, plus the local memory and a (new)

memory space containing the registers for all the devices.

8. The accelerator objects are now inside the namespace macc, instead of being at the

top level of the name hierarchy (in the same way that they were in a namespace in

Section 3 when using the complete setup).

simics> list-objects namespace=macc
┌──────────────┬────────────────────┐
│ Class │ Object │
├──────────────┼────────────────────┤
│<clock> │macc.clock │
│<m_compute> │macc.compute[0] │
│<m_compute> │macc.compute[1] │
│<graphcon> │macc.con │
│<m_control> │macc.control │
│<memory-space>│macc.local_memory │
│<ram> │macc.ram │
│<recorder> │macc.rec │
│<memory-space>│macc.register_memory│
└──────────────┴────────────────────┘

9. Create a second accelerator subsystem called macc8 with 8 units:

simics> @create_N_compute_accelerator("macc8",8)

Simics Simulator Educational Workshop 02 – Model Building 39

The Simics framework can contain an arbitrary set of models, including multiple

copies of the same device or multiple subsystems of the same content. As long as

names are unique, everything will work nicely.

10. Inspect the newly created set of models:

simics> list-objects namespace = macc8

6.3 Inspecting device-to-device connection in the DML code
The connections between the compute and control units are coded in DML as connect

objects from the side that needs to call into the interface, and as port objects on the side

that is called.

11. Open the file [project]/modules/m-control/m_control.dml in an editor, to get the

source code of the control unit.

12. Search for “port done” to find the control unit input port that receives completion

signals from the compute units.

13. Open the file [project]/modules/m-compute/m_compute.dml in an editor, to get the

source code of the compute unit.

14. Search for “connect operation_done” to find the compute unit connect that points

at the control unit port.

15. Put the two pieces of code side by side.

The connect declaration results in an attribute being added that is used to point at a

port or other object. The declaration interface signal in the connect declaration

indicates that the connected object should implement the signal interface.

The declaration port done creates an array of ports based on a local template called

level_checked_signal. Each connect will point to one of these ports.

Simics Simulator Educational Workshop 02 – Model Building 40

16. Scroll back up a bit to find the declaration of template level_checked_signal:

The declaration “implement signal” indicates that the port based on this template

implements the signal interface. This aligns with the declaration in the connect.

17. Go to the Simics simulator command line.

List the attributes of the object macc.compute[1] (the second compute unit in the

first accelerator subsystem created):

simics> list-attributes "macc.compute[1]"

Note how the attribute operation_done is set to point at

macc.control.port.done[1]. This connection is set up by the setup script, but

could also be configured and changed interactively from the command line.

There is nothing on the control unit side that knows about this incoming connection-

it just receives signal calls on the port, and such calls can come from other devices or

from the command line or from script code.

18. By giving the name of a specific attribute to list-attributes, you get more information

about it:

simics> list-attributes "macc.compute[1]" operation_done

The help text is derived from the “param desc” declaration in the connect, plus

autogenerated text indicating the required interface(s) of the connect.

19. Test the error checking with an intentionally bad change to the operation_done

attribute. The standard sim object does not implement the signal interface.

simics> macc.compute[1]->operation_done = sim

20. Check that the attribute still has the same value as before:

simics> macc.compute[1]->operation_done

Simics Simulator Educational Workshop 02 – Model Building 41

21. To find the inbound ports of the control unit, use list-objects:

simics> list-objects namespace = macc.control

22. To view the ports and banks of the control unit as a tree:

simics> list-objects namespace = macc.control -tree

23. Use help on the done[1] port:

simics> help macc.control.port.done[1]

This shows that the port implements the signal interface, as required by the

macc.compute[1].operation_done attribute you inspected above.

6.4 Check the definition of the signal interface

24. To quickly find the definition of standard Simics simulation interfaces and simulator

API calls, the api-help command is pretty handy. Note that it currently does not

know about interfaces defined outside of the Simics base product. Use tab

completion to find the information about the signal interface:

simics> api-help signal<TAB>

This should expand to:

simics> api-help signal_interface_t

25. Press <RETURN>.

simics> api-help signal_interface_t

This prints a help text explaining how the interface works, as well as the definition of

the functions in the interface.

...

SHORT DESCRIPTION

#include <simics/devs/signal.h> // in C/C++
import "simics/devs/signal.dml"; // in DML

typedef struct signal_interface {
 void (*signal_raise)(conf_object_t *NOTNULL obj);
 void (*signal_lower)(conf_object_t *NOTNULL obj);
} signal_interface_t;

// available in Python

26. If you do not quite know the name of what you are looking for, use the api-search

command.

simics> api-search signal

This will show all api-help entries that contain the given string in their name or the

help text.

27. The simulator documentation that you opened earlier contains the same information

about the signal interface. Go to the documentation you have open in a browser

window.

Simics Simulator Educational Workshop 02 – Model Building 42

28. Enter “signal” into the search box.

A list of results will appear. Select the entry called “signal” from the API Reference

Manual:

29. Go back to the source code and the template level_checked_signal.

Note how it defines implementations for signal_raise() and signal_lower()

inside the implements signal block. When something calls the signal interface in

the port macc.control.port.done[N], these methods are called.

The methods check the rules of the signal interface (you are not allowed to call raise

or lower multiple times in a row) then call the on_signal_raise() and

on_signal_lower() to perform the actual model actions corresponding to signal

raising and lowering. These two methods are declared default, indicating that they

can be overridden by objects using this template:

 method on_signal_raise () default {
 log info, 2: "Default implementation called that does nothing";
 }

 // Same for signal_lower.
 method on_signal_lower () default {
 log info, 2: "Default implementation called that does nothing";
 }

30. Check the code for port done again. It includes the template with an is statement.

port done[i<max_compute_units] is level_checked_signal {
 param desc = "Completion signal from compute units";
 ...

It then implements specific versions of on_signal_raise() and on_signal_lower()

to do the appropriate work in the model.

Check that on_signal_raise() does indeed get called. Use inline Python to call the

interface function of the port. To see the log messages, raise the log level to 3.

31. Raise the log level to 3 for macc.control:

simics> log-level macc.control 3

Simics Simulator Educational Workshop 02 – Model Building 43

32. Call the method:

simics> @conf.macc.control.port.done[1].iface.signal.signal_raise()

The output indicates that a bit is being set in the done register.

33. Check that this is indeed the case:

simics> print-device-reg-info macc.control.bank.ctrl.done

It is a bit interesting that this happened when no operation was in progress. On the

other hand, is this something the hardware model should check for? It is a judgement

call how much checking to include in a device model.

34. Try raising the signal again:

simics> @conf.macc.control.port.done[1].iface.signal.signal_raise()

In this case, the model complains with a spec-violation.

35. Lower the signal to return the system state to where it was previously.

simics> @conf.macc.control.port.done[1].iface.signal.signal_lower()

6.5 Inspect the connection from the control unit to the compute units

36. Since the control unit controls multiple compute units, it uses arrays of connections.

Go to the editor where m_control.dml is open, and search for “connect

compute_unit_control”.

The declaration looks like this:

connect compute_unit_control[i<max_compute_units] {
 param desc = "Connection to the compute unit control ports";
 …
 interface m_compute_control;

37. This declaration results in an attribute called compute_unit_start being added to

the control unit model. The attribute value is expected to be a list of objects.

38. Check the current value of the attribute in the current configuration:

simics> macc.control->compute_unit_control

It is a list of eight elements, the first two of which point at compute units 0 and 1. The

rest of the items are NIL, indicating that there is nothing connected to those slots.

39. The control unit also has an attribute indicating the total number of connected

compute units. This attribute is used as the master in iterations inside the device

model, and the model expects its value to be consistent with the list.

Look at the configuration attributes of the control unit:

simics> list-attributes macc.control

40. Another way to inspect the configuration of a model is to invoke its info command.

Ideally, all device models should implement a custom info command to allow a quick

and easy-to-read inspection of the device configuration. Adding such commands is

Simics Simulator Educational Workshop 02 – Model Building 44

good practice, but the framework cannot enforce that. Thus, some models might

have empty or misleading info commands.

The control unit model does have a useful info command:

simics> macc.control.info

41. Check the setup in the other subsystem, macc8:

simics> macc8.control.info

Here, all the slots are filled with references to compute units.

42. The configuration setup code is responsible for making sure that the configuration is

consistent. Go to the 003-control-unit-setup.py file (that you already opened

above). Scroll down to the loop starting with “for i in range(N_units):”

For each created compute unit, the code needs to:

• Connect the control unit to the compute unit

• Connect the compute unit to the control unit

• Add the unit to the memory map

It also has to set up the compute unit configuration in the control unit correctly.

Getting this right is actually very easy in code, since the number of compute units is a

variable.

6.6 Inspect register memory mappings
The integrated setup adds the register memory map to the configuration.

43. Check the memory map of the macc subsystem, using the namespaced map

command.

simics> macc.register_memory.map

The output should look like this:

┌──────┬─────────────────────────┬──┬──────┬──────┬──────┬────┬─────┬────┐
│ Base│Object │Fn│Offset│Length│Target│Prio│Align│Swap│
├──────┼─────────────────────────┼──┼──────┼──────┼──────┼────┼─────┼────┤
│0x0000│macc.control.bank.ctrl │ │0x0000│0x0080│ │ 0│ 8│ │
│0x0080│macc.compute[0].bank.ctrl│ │0x0000│0x0010│ │ 0│ 8│ │
│0x00c0│macc.compute[1].bank.ctrl│ │0x0000│0x0010│ │ 0│ 8│ │
└──────┴─────────────────────────┴──┴──────┴──────┴──────┴────┴─────┴────┘

Note that the mapped objects are all register banks. The Base column indicates

where it is mapped. Offset should be zero in most cases. The Length indicates the

length of the mapping – note that there is empty space between the mapped

devices. Ignore the rest of the columns for now.

44. Another way to view the memory map is using the memory-map command:

simics> memory-map macc.register_memory

45. Check the memory map of the macc8 subsystem:

simics> macc8.register_memory.map

Simics Simulator Educational Workshop 02 – Model Building 45

46. Look at the registers of the macc.control device’s ctrl register bank:

simics> print-device-regs macc.control.bank.ctrl

At offset zero, there is an eight-byte register holding the number of attached

compute units. At offset 32, there is another register holding a bitmap representing

the same information.

6.7 An excursion into endianness

47. Read the register at offset zero, using a read operation to the memory map. You

need to specify the offset, side of the read, and the interpretation of the bytes read

(little endian in this case). Set the output radix to hexadecimal to make it easier to

see the individual bytes:

simics> output-radix 16
simics> macc.register_memory.read address = 0 8 -l

Note about endianness.

Internally in a device model, the value of a register is typically saved as a single

integer variable. This could be said to have no inherent endianness.

Endianness is applied when a device register is read from software or from the

command line. At that point, an array in the memory operation is filled in with a

sequence of byte values corresponding to either a little-endian or big-endian

representation of the value, as determined by a param in the DML code. This is

typically set for the entire device but can be set per bank if needed.

The read command then converts this byte array back to an integer value for

presentation. This is where the -l and -b flags come in. Unlike the named register

read commands, the read command only sees a sequence of bytes in memory and

needs help to interpret them correctly.

48. Read the register using big-endian byte ordering (intentionally mis-interpreting the

byte array):

simics> macc.register_memory.read address = 0 8 -b

49. Inspect the raw bytes using the x command:

simics> macc.register_memory.x address = 0 8

The result of the above should look something like this (all output in hex):

simics> macc.register_memory.read address = 0 8 -l
0x0002 (LE)
simics> macc.register_memory.read address = 0 8 -b
0x0200_0000_0000_0000 (BE)
simics> macc.register_memory.x address = 0 8
p:0x00000000 0200 0000 0000 0000

50. When reading the register using its name, the integer value is returned without any

need to specify the endianness since that is given by the register metadata. Try

reading the register using its name instead:

simics> read-device-reg macc.control.bank.ctrl.compute_units

Simics Simulator Educational Workshop 02 – Model Building 46

6.8 Run a parallel compute job

Use the two-way parallel subsystem macc to compute a fractal, using two compute units

to render it. This means setting up two descriptors, one for each compute unit, and

having them write the results to two adjacent blocks of memory. By splitting the work

vertically, it is trivial to combine the output of multiple compute units.

Consider the previously used descriptor plotting:

• 1000 pixels high

• 1000 pixels wide

• Bottom = 0.5

• Top = 0.7

• Left = -0.6

• Right = -0.4

• Results at 0x2000

The first descriptor would be:

• 500 pixels high

• 1000 pixels wide

• Bottom = 0.6 (this is the top half)

• Top = 0.7

• Left = -0.6, right = -0.4 (same as above)

• Results at 0x2000

• The descriptor can be located at the location used before, 0x1000

And the second:

• 500 pixels high

• 1000 pixels wide

• Bottom = 0.5

• Top = 0.6 (equal to bottom above)

• Left = -0.6, right = -0.4 (same as above)

• Results at 0x2000 + the amount of space taken by the above rendering. Which is

500 pixels by 1000 pixels by 16 bits, or exactly 1 million bytes.

• This is a separate descriptor, located at 0x1100

Doing this kind of work from the command line is a way to prototype the design of the

software needed to use the accelerator. Later, when eventually writing the target

software, the design will have been tested in a quick-turn-around interactive environment

with much better error reporting than running actual software on the target system.

51. Raise the log-level on the macc subsystem to see what happens behind the scenes.

simics> log-level macc 2 -r

52. Create the top-half descriptor:

simics> @create_m_compute_descriptor(conf.macc.local_memory, 0x1000,
0x2000, 0.6, -0.6, 0.7, -0.4, 1000, 500, 256)

Simics Simulator Educational Workshop 02 – Model Building 47

53. Create the bottom-half descriptor:

simics> @create_m_compute_descriptor(conf.macc.local_memory, 0x1100,
0x2000 + 1_000_000, 0.5, -0.6, 0.6, -0.4, 1000, 500, 256)

54. Set the descriptor pointer for compute unit zero, through the register memory map.

Find the address locally in the bank:

simics> print-device-regs "macc.compute[0].bank.ctrl"

55. Write to offset zero, adding in the mapping address of compute unit 0 (which is 0x80,

as seen above from the memory-map command):

simics> macc.register_memory.write 0x80 0x1000 8 -l

56. Do the same for compute unit one, which is mapped from 0xc0:

simics> macc.register_memory.write 0xc0 0x1100 8 -l

57. Check that the descriptor registers have indeed been set:

simics> print-device-regs "macc.compute[0].bank.ctrl"
simics> print-device-regs "macc.compute[1].bank.ctrl"

58. To start an operation, write the start register of the control unit. This will in turn start

the work in each compute unit using the control interface. The value to write to the

start register is the number of units to use for the job, which could be less than the

maximum. The start register is found at offset 0x08.

simics> macc.register_memory.write 0x08 2 8 -l

Log messages will be printed indicating that the compute units have been activated.

59. Check the status register of the control unit:

simics> print-device-reg-info macc.control.bank.ctrl.status

The processing field is set and the done field is not, indicating an operation in

progress.

60. Check the events posted:

simics> peq

Check that there are two completion events posted, one for each compute unit.

61. Run until the computation has completed, using a notifier. The control unit uses the

same notifier name as the compute unit. To wait for it from the control unit

specifically, provide an object in addition to the notifier name to the run-until

command:

simics> bp.notifier.run-until object = macc.control name = m-compute-
complete

When the simulation stops, the log messages should indicate that the computation

in each compute unit completed, and after that that the control unit received signals

indicating that the compute units are in “done” state.

Simics Simulator Educational Workshop 02 – Model Building 48

62. Check the current time in the simulation. Note that there is one clock inside each of

the accelerator subsystems created. Check both using -all to ptime:

simics> ptime -all

Despite having nothing to do, the clock in the macc8 subsystem has moved forward.

This is expected, as the Simics simulation framework makes sure to run all clocks in

the system (with a maximum difference equivalent to the current time quantum).

63. Check the contents of the done register in the control unit. This is a bit mask that

tracks the completion status of each compute unit used.

simics> print-device-reg-info macc.control.bank.ctrl.done

64. Check the status register of the control unit:

simics> print-device-reg-info macc.control.bank.ctrl.status

The done bit is set and the processing bit is zeroed.

65. Check the status register of compute unit zero:

simics> print-device-reg-info "macc.compute[0].bank.ctrl.status"

The register also has its done bit set.

66. Clear the done state for the whole accelerator subsystem by writing a 1 to the done

bit. There is no count value to worry about:

simics> macc.register_memory.write 0x10 0x8000_0000_0000_0000 8 -l

The log messages indicate that the control unit reaches out to the compute units via

the clear_done signal to clear all their “done” state. They also lower their respective

done signals towards the control unit.

67. The done register should now be all zero. Check it:

simics> print-device-reg-info macc.control.bank.ctrl.done

68. Also check the status register of compute unit zero:

simics> print-device-reg-info "macc.compute[0].bank.ctrl.status"

This has also been cleared (as should be obvious from the log messages).

6.9 Display the results

The above focused on the control flow between the control unit and the compute units.

Next, check that the results are correct by displaying them. The display code used

previously is already loaded by the start scripts.

69. Run the simulation to avoid the greying out of the console that the Simics simulator

applies any time the simulation is stopped. To see the full-color version, make sure to

run the simulation.

simics> r

Note that the virtual time proceeds very quickly since there is nothing happening in

the simulation. This is harmless.

Simics Simulator Educational Workshop 02 – Model Building 49

70. Call display_m_result() like above – but note that the objects have changed name

since they have been put into the macc namespace:

running> @display_m_result(conf.macc.con, conf.macc.local_memory,
0x2000, 1000, 1000, 256)

71. Check the current time a few times:

running> ptime -all

6.10 Error handling/specification violations
With the simulation running, test the error handling of the control unit registers. Bad use

of registers should result in specification violation log messages from the model.

72. Clear the done state of the status register again (it is already cleared):

running> macc.register_memory.write 0x10 0x8000_0000_0000_0000 8 -l

73. Write to the read-only compute unit count register:

running> macc.register_memory.write 0x00 0xffff 8 -l

74. Write an invalid value to the start register:

running> macc.register_memory.write 0x08 0xffff 8 -l

75. To see where these log messages come from in the code, go back to the

m_control.dml file that should still be open in an editor. Search for the last message

printed, “Invalid value”.

You should find this code:

 if ((unitcount==0) ||
 (unitcount > connected_compute_unit_count.val)) {
 log spec_viol, 1, control :
 "Invalid value for compute start: requested %d (expected 1 to %d).",
 unitcount, connected_compute_unit_count.val;
 return;
 }

Such checks for input from the software are good modeling practice. They also help

protect the model functionality from bad inputs, making the model more robust.

76. Exit this simulation session.

simics> exit

Simics Simulator Educational Workshop 02 – Model Building 50

7 Package the Accelerator as a Component

To easily create the accelerator subsystem and facilitate its connections to other part of

the simulated system, a Simics simulator component is used.

Logically, a component represents a subsystem (set of objects) and its high-level

connections to the rest of the system. An instance of a component is created using a

custom command-line command. It is connected to other components using

component-level command-line connect commands. Thus, the component for the

accelerator subsystem can be treated as a virtual PCIe card that is connected to a virtual

PCIe slot on the virtual quick-start platform. Components are also configurable with

component-level configurations, such as the number of compute units in the accelerator.

Physically, the implementation of a component is a Simics simulator class written in

Python, using the components framework. The code in the component creates objects

and the internal connections between them in a way very similar to the Python scripts

used previously in this workshop. The component is present in the simulation

configuration as an object that provides a namespace for the objects in the subsystem.

There is also code in the components that take action when one component is connected

to another component and sets up the references between the objects inside the

components. Component connectors are not involved when the connected objects

communicate during the simulation.

Components are mostly used when setting up a new target system, but they can also be

used at run time to do things like create a new USB disk to connect to running target

system. Like everything in the Simics simulator, components can be created and

connected during run time, and their connections can be changed (where that makes

sense).

Component creation can be done in two ways. Typically, when setting up a system, all

components are created in non-instantiated form first and connected together. This

essentially creates a component-level template for the system to create. Then, once all

components are in place, the instantiate-components command is used to cause all the

objects to be created. Essentially, the code in the components creates a set of pre-

configuration objects which are then sent to SIM_add_configuration() when the

instantiate-components command is called. The commands creating non-instantiated

components are called create-X, where X is the name of the component. There are also

commands called new-X, which instantiate the component immediately.

The component for the accelerator subsystem looks like the below, with the internal

connections simplified compared to previous illustrations. It has two connectors, one to

PCIe to connect to the QSP, and one to a graphics console.

Simics Simulator Educational Workshop 02 – Model Building 51

The component also introduces the display unit model, driving the graphics console

“from hardware” instead of drawing from a script as was done previously. The display unit

has a set of control registers and needs a software driver just like all the other hardware

units.

7.1 Copy the component source code to the project
To have access to the source code, copy it to the project and open it in an editor.

1. Copy the component source code to the project. It counts as a device.

$ bin/project-setup --copy-module m-accelerator-comp

2. Open the file [project]/ modules/m-accelerator-comp/m_accelerator_comp.py

in an editor, to get the source code of the component.

3. Build all the modules in the project, including the component.

$ make

7.2 Test the component stand-alone

4. Start a new simulation from script 004-:

$./simics targets/workshop-02/004-use-component.simics

5. List the objects in the simulation configuration:

simics> list-objects

6. Check the help on the component-creation command for the accelerator:

simics> help new-m-accelerator-comp

7. Create a new accelerator called macc, with 8 compute units:

simics> new-m-accelerator-comp macc compute_units = 8

Accelerator component

Compute
Compute

PCIe connector

Control

Compute

Display unit

Console connector

Control registers

PCIe Config

MSI-X

Control registers

PCIe BAR3:
local memory

Control registers

PCIe BAR0:
register map

Clock

Time per pixel

RAM

RAM size

Compute unit count

Use local clock

Graphics
console

Control unit

Compute units

Display unit

RAM

Quick-Start Platform (QSP)

Descriptors

Results

Color table

Simics Simulator Educational Workshop 02 – Model Building 52

Note that the simple GUI control window updated to show an icon for the

accelerator. The system information is coded into the component.

8. Use the status command to check the configuration attributes of the component:

simics> macc.status

9. Use the info command to inspect the contents of the component:

simics> macc.info

This command shows the “slots” of the component, i.e., the objects contained in it.

simics> macc.info
Information about macc [class m_accelerator_comp]
===

Slots:
 cell : macc.cell
 clock : macc.clock
 compute[0] : macc.compute[0]
 compute[1] : macc.compute[1]
 compute[2] : macc.compute[2]
 compute[3] : macc.compute[3]
 compute[4] : macc.compute[4]
 compute[5] : macc.compute[5]
 compute[6] : macc.compute[6]
 compute[7] : macc.compute[7]
 console : macc.console
 control : macc.control
 display : macc.display
 local_memory : macc.local_memory
 ram : macc.ram
 register_memory : macc.register_memory

Connectors:
 console : graphics-console down hotplug

It also shows a single connector – to a graphics console. There is no PCIe connector

since no PCIe support was requested when setting up the component.

10. Inspect the objects of the component using the list-objects command. Hide the port

objects to keep the output reasonably short:

simics> list-objects -tree namespace = macc -hide-port-objects

Simics Simulator Educational Workshop 02 – Model Building 53

The output looks like this:

simics> list-objects -tree namespace = macc -hide-port-objects
┐
├ cell ┐
│ └ ps
├ clock ┐
│ └ vtime ┐
│ ├ cycles
│ └ ps
├ compute[0..7]
├ console
├ control
├ display
├ local_memory
├ ram ┐
│ └ image
└ register_memory

Note the object called console – it is the component connector used to connect

from the accelerator subsystem to the graphics console. Each connector has a

corresponding object in the object hierarchy.

11. Create a graphics console for the connector to connect to:

simics> new-gfx-console-comp gcon

12. Check the contents of the gcon component:

simics> gcon.info

This has a connector called device, of type graphics-console, and direction up. This

matches the console connector of the accelerator, which has the same type but the

direction down. Thus, these two connectors are connectable.

13. Connect them together:

simics> connect macc.console gcon.device

The console will update its contents and size to correspond to the default “empty”

state of the display unit. The display unit drives and update to the console object on

connection.

7.3 Look at the component source code
Now that you have seen the component in action, have a look at its source code.

14. Go to the file [project]/ modules/m-accelerator-comp/m_accelerator_comp.py

that you should have opened in an editor.

15. Look at the component declaration. It is a Python class that inherits from the

StandardComponent class.

class m_accelerator_comp(StandardConnectorComponent):
 """Component for the mandelbrot accelerator subsystem."""
 _class_desc = "mandelbrot accelerator component"
 _help_categories = ()

Simics Simulator Educational Workshop 02 – Model Building 54

16. Scroll down to find the component configuration arguments. They are declared as

subclasses inside the component class. For example:

 class compute_units(SimpleConfigAttribute(2,"i")):
 """Number of compute units in this accelerator instance."""
 ...

17. The core functionality of the component is contained in the add_objects() method.

 def add_objects(self):
 ...
 # Memory
 ram = self.add_pre_obj('ram', 'ram')
 ram_image = self.add_pre_obj('ram.image', 'image')
 ram_image.attr.size = self.ram_size.val
 ram.attr.image = ram_image
 local_memory.attr.map = [[0x0000, ram, 0, 0, self.ram_size.val]]
 ...

Note how similar this code is to the code used in scripts to set up ad-hoc Simics

simulation configurations. It uses a wrapping around pre-conf objects that is specific

to components (add_pre_obj) and that automatically puts the created object into

the component namespace. There is no call to SIM_add_configuration(), as that is

taken care of by the components framework.

There is no assignment to the queue attribute of objects either, as that is also

handled by the component system. If the component is set up with a local clock that

will be used, otherwise the component system will find a clock to use (typically the

first processor of the machine that the accelerator is connected to over PCIe),

18. The connections to other components are set up in the setup() method, found

towards the start of the file.

 def setup(self):
 super().setup()
 ...
 ## Add connector to the graphics console
 self.add_connector('console',
 connectors.GfxDownConnector('display', 'console'))
 ...

The connections are added using add_connector(), using pre-defined connector

types (modelers can also define their own connector types). All that is needed is to

provide a name for the connector itself ('console') and indicate the actual object

that is the target of the connection ('display').

19. To see some basic documentation on a component connector, use Python help.

simics> @help (connectors.GfxDownConnector)

Simics Simulator Educational Workshop 02 – Model Building 55

7.4 Run a compute job

Set up descriptors in the same way as in Section 6.8.

20. Create the top-half descriptor. Note that the name of the local_memory object is the

same as above, since the component was created with the same name as the

subsystem.

simics> @create_m_compute_descriptor(conf.macc.local_memory, 0x1000,
0x2000, 0.6, -0.6, 0.7, -0.4, 1000, 500, 256)

21. Create the bottom-half descriptor:

simics> @create_m_compute_descriptor(conf.macc.local_memory, 0x1100,
0x2000 + 1_000_000, 0.5, -0.6, 0.6, -0.4, 1000, 500, 256)

22. Write the descriptor registers using their names (for variety):

simics> write-device-reg macc.compute[0].bank.ctrl.descriptor_addr
0x1000
simics> write-device-reg macc.compute[1].bank.ctrl.descriptor_addr
0x1100

23. Start the operation:

simics> write-device-reg macc.control.bank.ctrl.start 2

24. Raise the log level to see what happens:

simics> log-level macc 2

25. Run the simulation forward:

simics> r

The operation will complete very quickly, leave the simulation running.

7.5 Display results using the display unit
To display the results using the display unit, it is necessary to first set up a color table

(mapping iteration values computed by the compute units to RGB color values). Then,

the display unit needs to be configured with information about the size of the results and

where in memory the results are found.

Finally, a redraw request will pick up the results of the compute, convert each pixel to an

RGB value, and send it to the console. Technically, the model actually maintains an

internal buffer that contains the complete display state, since the graphics console

model does not have that responsibility.

26. List the control registers of the display unit:

running> print-device-regs macc.display

Simics Simulator Educational Workshop 02 – Model Building 56

27. Check where it is mapped in the register space of the accelerator subsystem:

running> macc.register_memory.map

The control registers for the display are mapped from offset 0x300 and forward.

This is useful to write the target software, but for now the interactive exploration will

use named register accesses.

28. Set the size of the display:

running> write-device-reg macc.display.bank.regs.width 1000
running> write-device-reg macc.display.bank.regs.height 1000

29. Set the number of iterations used (256):

running> write-device-reg macc.display.bank.regs.max_iter 256

30. Set the address of the results (0x2000):

running> write-device-reg macc.display.bank.regs.iter_data_addr 0x2000

31. At this point, a color table is needed. The color table will need to cover 257 values

(from zero to the maximum iteration count), each for 4 bytes. Which requires just

about 1KiB of RAM. Given that there is a huge memory bank on the accelerator, this

can be jammed in between the descriptors and the results area.

Check where a table containing 257 entries, and starting at 0x1200 would end up:

running> hex 0x1200 + 4 * 257

The value is below 0x2000, so a color table at 0x1200 makes sense.

32. Set the color table pointer register:

running> write-device-reg macc.display.bank.regs.color_table_addr
0x1200

33. Check the configuration of the display unit using its status command:

running> macc.display.status

34. To create the color table, use a ready-made Python helper script. Load the Python

file (it is located in the installation, you can take a look at it if you want to):

running> run-python-file "%simics%/targets/workshop-02/004-build-color-
table.py"

35. Use the Python function create_color_table() to create a color table. It takes four

arguments: the memory space to write the result to, the address of the table, the

maximum iteration value, and the Python coloring function to use. There are two

coloring functions provided, colorize_1 and colorize_2.

Use colorize_1:

running> @create_color_table(conf.macc.local_memory, 0x1200, 256,
colorize_1)

Simics Simulator Educational Workshop 02 – Model Building 57

36. Check the resulting table in memory (using little-endian display makes it easier to

read, as each word will then be rendered as #00RRGGBB):

running> macc.local_memory.x 0x1200 group-by = 32 -l 1028

37. Finally, update the display. Write 1 to the update register:

running> write-device-reg macc.display.bank.regs.update 1

This should result in a fairly subdued picture.

38. Try the other available coloring function:

running> @create_color_table(conf.macc.local_memory, 0x1200, 256,
colorize_2)
running> write-device-reg macc.display.bank.regs.update 1

This is a bit more colorful.

39. The Simics simulator graphics console can save the displayed image as a PNG file,

using the screenshot command on the console object. Try it:

running> gcon.con.screenshot m1.png

40. Go to a file browser, locate your Simics project, and open the image. Exactly how

depends on how your Linux or Windows host is configured. Here is one example,

including zooming in to see the colored pixels at the edge of the fractal:

Simics Simulator Educational Workshop 02 – Model Building 58

41. Exit this simulation session.

running> exit

7.6 Connect the accelerator using PCIe
The accelerator is designed to be connected to the QSP virtual platform over PCIe. This

is all automated in the 006- script that you tried back in section 3. It can also be done

manually.

42. Run the script 006- with the parameter add_accelerator set to FALSE. This will skip

the accelerator setup and leave you with a standard QSP setup.

$./simics targets/workshop-02/006-accelerator-in-qsp.simics
add_accelerator=FALSE

43. Check that there is no accelerator present:

simics> list-objects namespace = qsp

44. Create a new uninstantiated accelerator component, with no clock but with PCIe

enabled. Use $system to get name of the top-level QSP machine, like it is done in typical

setup scripts:

simics> create-m-accelerator-comp $system.macc compute_units = 8
use_pcie = TRUE use_clock=FALSE

45. Connect the accelerator to the QSP using PCIe. This requires some knowledge

about the hardware in the QSP. The QSP is a traditional personal computer (PC)

where there is a north bridge close to the processors, and a south bridge that holds

slower input and output devices. In this case, the PCIe connectors on the north

bridge should be used.

Check the available connections on the “north bridge” component in the QSP

machine:

simics> $system.mb.nb.info

46. The slot used by the defaults of script 006- is pcie_slot[1]. The slot used affects

the PCI bus number and thus the /sys/bus file system path required by the m-app

program. Try a different slot instead, pcie_slot[2]:

simics> connect qsp.macc.pci "qsp.mb.nb.pcie_slot[2]"

47. Create a new uninstantiated graphics console component:

simics> create-gfx-console-comp $system.macc.gcon

48. Connect the accelerator and the graphics console:

simics> connect qsp.macc.console qsp.macc.gcon.device

49. Instantiate the components:

simics> instantiate-components

Simics Simulator Educational Workshop 02 – Model Building 59

50. In case the new graphics console is not visible, use the show command:

simics> qsp.macc.gcon.con.show

51. Check the accelerator connections:

simics> qsp.macc.status

It should be connected to the console and PCIe, like this:

simics> qsp.macc.status
Status of qsp.macc [class m_accelerator_comp]

...

Connections:
 console : qsp.macc.gcon:device
 pci : qsp.mb.nb:pcie_slot[2]

52. Check the connections from the north bridge:

simics> qsp.mb.nb.status

You should see the pci connector on the qsp.macc component being connected to

the pcie_slot[2] connector.

53. Run the simulation to boot the target system:

simics> r

54. Once the target system has booted, check where the accelerators ended up from

the perspective of the target software. Use the known vendor and device ID as a

filter to lspci.

Go to the target system serial console and enter:

lspci -d 8086:0d5f

This should show the device on bus 03, instead of bus 02 as in the introduction.

55. Stop the simulation.

running> stop

7.7 Dig deeper into the PCIe modeling

Time to look a bit deeper at how PCIe works in the Simics simulator. Unfortunately, the

PCIe slot connector names has no direct relationship to the models of the PCIe ports in

the north bridge, or the software-exposed bus numbers. They all follow from the

hardware design the model is based on, and that is not one-to-one. Instead of guessing at

names it is better to follow the trace from the accelerator through the model.

The control unit in the accelerator subsystem implements the PCIe functionality for the

accelerator – configuration bank, mapping of BARs, etc.

56. To find the actual PCIe “bus” that the accelerator is connected to, check the value of

the pci_bus attribute on the control unit:

simics> list-attributes qsp.macc.control substr = pci_bus

Simics Simulator Educational Workshop 02 – Model Building 60

The value should be qsp.mb.nb.pcie_p3.downstream_port.

57. List the objects inside the downstream port:

simics> list-objects -tree namespace =
qsp.mb.nb.pcie_p3.downstream_port

58. The cfg_space holds the configuration banks of the objects on the bus. Use the map

command to see the devices on the port:

simics> qsp.mb.nb.pcie_p3.downstream_port.cfg_space.map

The configuration register bank is mapped using a “function number”. This is a

convention used with PCI and PCIe in the Simics framework.

simics> qsp.mb.nb.pcie_p3.downstream_port.cfg_space.map
┌───────────┬──────────────────┬───┬──────┬───────────┬──────┬────┬─────┬────┐
│ Base│Object │ Fn│Offset│ Length│Target│Prio│Align│Swap│
├───────────┼──────────────────┼───┼──────┼───────────┼──────┼────┼─────┼────┤
│ 0x0000│qsp.macc.control │255│0x0000│0x0001_0000│ │ 0│ 8│ │
├───────────┼──────────────────┼───┼──────┼───────────┼──────┼────┼─────┼────┤

…

The length, 0x1_0000 bytes (4192), indicate that this is a PCIe extended

configuration space. Old PCI just used 256 bytes.

59. Since the target system is booted, software has set up the memory mappings of the

device using the PCIe Base Address Registers (BARs). Check out the mappings in

the PCIe port’s mem_space (used for PCI “memory” accesses):

simics> qsp.mb.nb.pcie_p3.downstream_port.mem_space.map

60. Compare this to the values written to the BAR registers:

simics> output-radix 16
simics> print-device-regs qsp.macc.control.bank.pci_config pattern =
"base_address*"

The mapped addresses align with the addresses in the BARs.

Simics Simulator Educational Workshop 02 – Model Building 61

simics> qsp.mb.nb.pcie_p3.downstream_port.mem_space.map
┌───────────┬───────────────────┬──┬──────┬───────────┬──────┬────┬─────┬────┐
│ Base│Object │Fn│Offset│ Length│Target│Prio│Align│Swap│
├───────────┼───────────────────┼──┼──────┼───────────┼──────┼────┼─────┼────┤
│0xf000_0000│qsp.macc.local_ │ │0x0000│0x0400_0000│ │ 0│ │ │
│ │memory │ │ │ │ │ │ │ │
├───────────┼───────────────────┼──┼──────┼───────────┼──────┼────┼─────┼────┤
│0xf400_0000│qsp.macc.control. │ │0x0000│ 0x0100│ │ 0│ 8│ │
│ │bank.dev_msix_pba │ │ │ │ │ │ │ │
├───────────┼───────────────────┼──┼──────┼───────────┼──────┼────┼─────┼────┤
│0xf400_1000│qsp.macc.control. │ │0x0000│ 0x0100│ │ 0│ 8│ │
│ │bank.dev_msix_table│ │ │ │ │ │ │ │
├───────────┼───────────────────┼──┼──────┼───────────┼──────┼────┼─────┼────┤
│0xf400_2000│qsp.macc.register_ │ │0x0000│ 0x1000│ │ 0│ │ │
│ │memory │ │ │ │ │ │ │ │
└───────────┴───────────────────┴──┴──────┴───────────┴──────┴────┴─────┴────┘
…
simics> print-device-regs qsp.macc.control.bank.pci_config pattern = "base_address*"
Offset Name Size Value

0x0010 base_address_0 4 0xf400_2000
0x0014 base_address_1 4 0xf400_1000
0x0018 base_address_2 4 0xf400_0000
0x001c base_address_3 4 0xf000_0000
0x0020 base_address_4 4 0x0000
0x0024 base_address_5 4 0x0000

61. The next question is how these addresses are mapped from the perspective of the

processors in the system. All the processors in the simulated system are found using

the list-processors command:

simics> list-processors

62. Pick the first processor listed, and check its info command:

simics> qsp.mb.cpu0.core[0][0].info

The object of interest is the “physical memory” of the processor. This is the memory

space where all memory operations from the processor are sent. It uses physical

addresses, not the virtual or logical addresses used in software.

63. List the memory map of the processor’s physical memory:

simics> qsp.mb.cpu0.mem[0][0].map

This contains a mapping for the APIC connected to the core, and then a default

mapping. Any access not hitting the APIC will go to qsp.mb.phys_mem, which is

common to all the processors in the system.

64. List the memory map of the common memory:

simics> qsp.mb.phys_mem.map

This shows several RAM mappings, plus a default mapping onwards.

Simics Simulator Educational Workshop 02 – Model Building 62

65. Follow the trail into the PCI mapping:

simics> qsp.mb.nb.pci_bus.port.mem.map

Here there is a mapping for the pcie_p3.downstream_port.port.mem:

┌───────────┬───────────┬──────┬───────────┬───────┬──────────┬────┬─────┬────┐
│ Base│Object │ Fn│ Offset│ Length│Target │Prio│Align│Swap│
├───────────┼───────────┼──────┼───────────┼───────┼──────────┼────┼─────┼────┤
…
├───────────┼───────────┼──────┼───────────┼───────┼──────────┼────┼─────┼────┤
│0xf000_0000│qsp.mb.nb. │ │0xf000_0000│0x0410_│ │ 3│ │ │
│ │pcie_p3. │ │ │ 0000│ │ │ │ │
│ │downstream_│ │ │ │ │ │ │ │
│ │port.port. │ │ │ │ │ │ │ │
│ │mem │ │ │ │ │ │ │ │
├───────────┼───────────┼──────┼───────────┼───────┼──────────┼────┼─────┼────┤
…

This mapping has Offset=Base, which means that memory accesses will retain the

full address when passed on. Thus, the memory addresses shown by

qsp.mb.nb.pcie_p3.downstream_port.mem_space.map map directly to what comes

out of the processor.

66. Write to the first mapped address (0xf000_0000), from the processor’s memory

map. This is equivalent to issuing an access to physical address 0xf000_0000 from

code in the processor.

simics> qsp.mb.cpu0.mem[0][0].write 0xf000_0000 0xcafef00d 4 -l

67. Check that the local memory was updated:

simics> qsp.macc.local_memory.x 0x00 group-by = 32 -l

7.8 Drive the target software using the Simics simulator command line
Next, it is time to test that the accelerator works as intended. Instead of typing the

commands on the target console, use <con>.input commands from the Simics CLI to

direct input to the target system. Note that each line has to end with \n to actually press

enter on the target system to get the command executed. The serial console is

represented by the object qsp.serconsole.con.

68. Run the simulation again, so that it can respond to command-line commands:

simics> r

69. Insert the driver:

running> qsp.serconsole.con.input "insmod m-acc-pcie-driver.ko\n"

70. Check the results using dmesg:

running> qsp.serconsole.con.input "dmesg | tail -20\n"

71. Set up a memory access breakpoint to accesses to the local_memory on the

accelerator. Cover the whole RAM, to make no assumptions about the software

behavior. This means starting at offset zero and going on for 0x400_0000 bytes.

Check the memory map first to see where the offset comes from:

Simics Simulator Educational Workshop 02 – Model Building 63

running> qsp.macc.local_memory.map
running> bp.memory.break qsp.macc.local_memory 0x0 0x400_0000 -w

72. Next, use the application to display a fractal. Remember to use bus 03 instead of 02 in

the device argument to the bus! Note that the backslash characters in the path to the

device must be escaped so that they come out right:

running> qsp.serconsole.con.input "./m-app mandel3.txt 1 1
/sys/bus/pci/devices/0000\\:03\\:00.0/\n"

73. The simulator will stop on the first memory access from software. The message

should look something like this:

[qsp.macc.local_memory] Breakpoint 3: qsp.macc.local_memory 'w' access to p:0x100 len=4
val=0x101010

The number written looks a lot like a color value. Could this be the start of the color

table?

74. Check this hunch by removing the breakpoint and instead setting up a trace on the

memory instead. This will log memory accesses that hit the defined area, but will not

stop the execution.

simics> bp.delete -all
simics> bp.memory.trace qsp.macc.local_memory 0x000 0x04000000 -w

75. Run the simulation:

simics> r

The result is a fairly long trace of memory accesses.

76. Pause the simulation once the fractal is displayed.

running> stop

77. Scroll back up and look at the memory accesses. There are a long series of 4-byte

accesses starting at address 0x100 and going on to 0x8d0.

Compute the distance:

simics> (0x8d0 - 0x100) / 4

This agrees with the output from the serial console, which indicates that the maxiter

value for this particular Mandelbrot specification was 500. Having 501 values in the

color table makes sense, since the range of iteration values go from zero to maxiter

(where obviously zero is kind of silly, but it simplifies the indexing code).

78. Next, a set of writes to offset 0x2000 to 0x2020 represents the descriptor. Note the

unnecessary write to address 0x201c, the padding word.

79. Finally, there is a single very large write. This is the accelerator model saving the

results from its internal buffers to the simulated memory in one single step.

80. To get a better idea for the software interaction with the devices as well as the

memory, add a memory trace on the register memory:

simics> bp.memory.trace qsp.macc.register_memory 0x0000 0x0400 -w

Simics Simulator Educational Workshop 02 – Model Building 64

81. The timing of each memory access can also shed light on the software behavior, and

what takes time. Trace messages follow the log-setup settings. Set up basic time-

stamping, which will print the following for each message: the current processor or

clock at the time the operation happened, its current instruction pointer/program

counter, and the current cycle count.

simics> log-setup -time-stamp

82. Set up some logging in the accelerator:

simics> log-level qsp.macc 2

83. Run the simulation:

simics> r

84. Repeat the previous command on the serial console by sending Up arrow followed

by Enter. This can be done using the -e flag to the input command, which provides

for Emacs-style keystroke sequences:

running> qsp.serconsole.con.input -e "Up Enter"

85. After the display unit logs that it is displaying the picture, stop the simulation.

simics> stop

86. Scroll back up to the color table setup, and note how it the writes happen with an

interval of between 200 and 300 cycles. There is probably room for improvement

there, but it does not really matter compared to the time spent waiting for the

accelerator to complete. For example, here are some cycle numbers from one run:

[bp.memory trace] {qsp.mb.cpu0.core[1][0] 0x401208 93347821313132} [trace:4]
qsp.macc.local_memory 'w' access to p:0x818 len=4 val=0xffac5c
[bp.memory trace] {qsp.mb.cpu0.core[1][0] 0x401208 93347821313395} [trace:4]
qsp.macc.local_memory 'w' access to p:0x81c len=4 val=0xffae5d
[bp.memory trace] {qsp.mb.cpu0.core[1][0] 0x401208 93347821313658} [trace:4]
qsp.macc.local_memory 'w' access to p:0x820 len=4 val=0xffb05e

87. Find the write that starts the compute operation:

[bp.memory trace] {…} […] qsp.macc.register_memory 'w' access to p:0x8 len=4 val=0x1

After this write, several log messages have the same clock cycle count, ending with

the large write of results to memory. Everything happens at the same instance in

virtual time, since that is how the model has been designed.

Using time-stamped logs is a good way to understand the simulation flow and

operation timing.

88. Exit the simulation. This concludes the component lab.

simics> exit

Simics Simulator Educational Workshop 02 – Model Building 65

8 Test Performance in Virtual and Real Time

The accelerator performance can be measured in both virtual and real time. Virtual time

measures the performance as seen from the target system, where the main variable is

the use of parallelism as well as the size of the data to draw. Real time measures how

quickly the simulator can complete each simulation job, primarily affected by how the

compute unit model is implemented.

8.1 Set up checkpoint
To test performance, it is necessary to run from a booted system with the kernel driver

installed and the application available. To avoid having to boot the system each time,

save a checkpoint after the boot and use this for further testing.

1. Start the Simics simulator using the script 007-:

$./simics targets/workshop-02/007-prep-system-benchmarking.simics

2. Run the simulation. The script will take care of booting the target system, testing the

application, and saving a checkpoint automatically. You can inspect the script in the

installation to see what it does.

simics> r

The script will stop the simulator once the checkpoint has been saved. It will print the

name and path of the checkpoint, for reference.

3. List the checkpoints that the Simics simulator knows about – basically, checkpoints

in the current project.

simics> list-checkpoints

There should be a checkpoint with the name printed from the script, and with a

comment explaining what it is:

simics> list-checkpoints
…
ws02-setup-for-benchmarking.ckpt
 Target system booted to prompt, driver installed, ready to run benchmarks for
 mandelbrot accelerator.

4. Exit this simulation session.

simics> exit

5. From the host shell, check the contents of the checkpoint.

$ ls -lh ws02-setup-for-benchmarking.ckpt/

The biggest file is the memory image, representing the changes to RAM from the

UEFI and Linux boot, as well as operations after the boot like running the m-app

application.

Simics Simulator Educational Workshop 02 – Model Building 66

8.2 Run baseline performance test

The baseline test is running with no parallelism in the target software use of the

hardware, no threading in the compute unit model, no stall optimization in the control unit

(see below), and with all target-visible hardware delays set to defaults.

6. Start the Simics simulator using the script 008-, with default settings:

$./simics targets/workshop-02/008-system-benchmarking.simics

7. Run the simulation:

simics> r

This will automatically run the m-app on the target, rendering the bench1.txt file.

The test file contains 100 images, at an iteration level of 200. The test is run three

times in a row, to provide a more meaningful average.

After each run of the software run complete, it will print the virtual and real time

consumed. Something like this:

Run 1/3
 Host time (real time) (s) : 125.74
 Virtual time (target time) (s) : 0.9721

Run 2/3
 Host time (real time) (s) : 124.22
 Virtual time (target time) (s) : 0.9615

Run 3/3
 Host time (real time) (s) : 125.66
 Virtual time (target time) (s) : 0.96082

Averages:

 Host time (real time) (s) : 125.21
 Virtual time (target time) (s) : 0.9648

Stopping simulation

If this test completes in less than a minute of real time, it might be a good idea to

switch to a heavier benchmark. To do that, add the argument

“test_file=bench2.txt” or even “test_file=bench3.txt” to the command line.

8. Note down the virtual and real time execution for this experiment, to have something

to compare later runs to. The precise results will vary with the host.

9. Exit this simulation session.

simics> exit

8.3 Look at the benchmarking script

10. Use an editor to open the script 008-system-benchmarking.simics, as found in the

Simics installation (not in your project). See Section 2.3 above for how to locate the

installation.

Simics Simulator Educational Workshop 02 – Model Building 67

11. Note how the input data file (test_file) to use, level of target compute parallelism,

and the number of repetitions of the test to run are declared as parameters to the

script.

decl {
! Start from checkpoint, run benchmarks

 param test_file : string = "bench1.txt"
 ! Test file to use on target system

 param parallelism : int = 1
 ! Parallelism to use in the run (1-8 unless you changed something)

 param repeats : int = 3
 ! Number of times to repeat test

 param checkpoint_name : string = "ws02-setup-for-benchmarking.ckpt"
 ! Name of checkpoint
}

12. The software on the target is run from the target serial console. The reason for this is

mostly to show that something is happening. The commands could also be run using

the Simics agent, but then the run would be very quiet.

This is done by this code:

 foreach $i in (range $repeats) {
 @print(f"\nRun {simenv.i+1}/{simenv.repeats}")

 # Test file, one-way parallel, level 2 verbose, and the pci node
 bp.console_string.wait-then-write $sercon " # " $cmd

13. The script picks up the start and end of a software run not by looking at the target

serial console, but by using magic instructions. These magic instructions have been

compiled into the target software, to signal points of interest. Where possible, this is

a good way to only measure interesting parts of a workload. On real hardware, magic

instructions are no-ops and thus they can be inserted into code that will run both on a

simulator and on real hardware.

 # Pick up start of core run
 # Target software has been specially prepared with magic instructions
 bp.magic.wait-for number=3

14. The script picks up the current host time using Python, and the current virtual time

by running a CLI command from Python:

 @start_rt = time.time()
 @start_vt = cli.global_cmds.ptime(_t=True)

8.4 Look at the application code hooks

15. Use an editor to open the file [simics]/targets/workshop-02/target-source/m-

app/m-app.c.

16. Search for MAGIC in the code to see the hooks for the benchmarking system.

Simics Simulator Educational Workshop 02 – Model Building 68

17. Note how MAGIC(1) and MAGIC(2) are used to bracket the computation and

rendering of a single image:

void do_one_mandelbrot(work_desc_t *desc,
 int parallelism) {

 // Allow Simics to catch the start of each image
 MAGIC(1);
 …

18. Note how MAGIC(3) and MAGIC(4) are used to bracket the entire work of reading a

work file:

int do_mandelbrot_from_file(FILE *workfile_fp, int parallelism) {
 …
 // Hook for measuring time
 MAGIC(3);

 …
 // Hook for measuring time
 MAGIC(4);

19. There is also a MAGIC(0) early in the main() function. MAGIC(0) is used by convention

to be the generic “magic breakpoint”. If bp.magic.break is used without any

argument, it will break on magic zero.

8.5 Measure performance when using multiple compute units
After looking at the architecture of the benchmark system, it is time to test some more

variants to see how much time they take.

20. Start the Simics simulator using the script 008- with parallelism set to 8:

$./simics targets/workshop-02/008-system-benchmarking.simics
parallelism=8

This will result in a command line command on the target that is set up to tell the

application program to run with all eight compute units in use.

21. Run the simulation:

simics> r

22. When the simulation stops, compare the run time in virtual time and real time to the

previous experiment.

Note that the virtual time is much smaller, almost inversely proportional to the

parallelism used. The lower virtual time also makes the real time much smaller since

there is less virtual time to run through.

While the same amount of compute work is being done, it seems that the target

software waiting for the computation to complete is a significant part of the overall

simulation time cost.

23. Exit this simulation session.

simics> exit

Simics Simulator Educational Workshop 02 – Model Building 69

24. Start the Simics simulator using the script 008- with parallelism set to 4, to get a

point in between 1 and 8:

$./simics targets/workshop-02/008-system-benchmarking.simics
parallelism=4

25. Run the simulation:

simics> r

26. When the simulation stops, compare the run time in virtual time and real time to the

previous experiment.

27. Exit this simulation session.

simics> exit

8.6 Rebuild compute unit with threading

28. Open the source code for compute unit: [project]/modules/m-

compute/m_compute.dml.

29. Change the value of the parameter threaded_compute to true:

param threaded_compute = true;

30. Search the rest of the code for the identifier threaded_compute to see what this

does. There are quite a few hits, showing how to synchronize between the threaded

job and the main simulation thread, as well as how the threaded work is started.

Read the comments in the code to understand what is done and why; that is

intended as the primary source of this information.

31. From the host shell, rebuild the device model and rerun all tests:

$ make test

The threaded implementation is very careful to avoid changing the semantics visible

to the rest of the system. Thus, the same test should work.

8.7 Measure performance with the threaded model
The threaded model has its biggest effect on runs with parallelism in the workload. To get

an idea for the effectiveness of the threading, rerun the 8-way parallel test from above

and compare the run time in real time.

32. Start the Simics simulator using the script 008- with parallelism set to 8:

$./simics targets/workshop-02/008-system-benchmarking.simics
parallelism=8

33. Run the simulation:

simics> r

34. When the simulation stops, compare the run time in virtual time and real time to the

previous experiment. The virtual time should be the very close to the previous runs

with 8-way parallelism.

Simics Simulator Educational Workshop 02 – Model Building 70

The real time execution is expected to be quite a bit smaller, but not eight times. The

only part that is threaded is the compute work, and the simulation is doing many

other things that are not affected by the parallel computation (Amdahl’s law in

action). The expectation is that the execution time in real time is reduced by a factor

of two to three.

35. Exit this simulation session.

simics> exit

8.8 Maximize the effect of the threaded model
The effect of threading a workload is always dependent on the relationship between

serial and parallel components, and how much work can be run concurrently. The

“bench1.txt” test is maybe a bit light on the amount of work available for concurrent

execution. Simulation performance is almost always dependent on the nature of the

workload. Use the much heavier test case “bench3.txt” to see if this is case here. The

amount of compute work required is roughly 20x bigger (4x the number of images, 5x

the number iterations in each image).

36. Start the Simics simulator using the script 008- with parallelism set to 8 and using

the bench3.txt test file:

$./simics targets/workshop-02/008-system-benchmarking.simics
parallelism=8 test_file="bench3.txt"

37. Check that it is running with the threaded model before continuing! The output

should look like this:

Accelerator parallelism : 8
Time per pixel (ps) : 10000
Model threading : True
Stall on status poll (ps) : 0

38. Run the simulation:

simics> r

39. When the simulation stops, note that this run took a lot longer. Virtual time increases

by approximately 4x, since there are 4 times as many images to render. The virtual

rendering time per image is not affected by the increased maximum iteration count,

which might be considered an unrealistic hardware model – adding that to the virtual

time computation is a possibility.

40. Exit this simulation session.

simics> exit

41. Turn of threading: Open the source code for compute unit: [project]/modules/m-

compute/m_compute.dml.

Simics Simulator Educational Workshop 02 – Model Building 71

42. Change the value of the parameter threaded_compute to false:

param threaded_compute = false;

Why not make the threading controllable via a runtime attribute? That does make

some sense for experiments like this – but also there is some additional code that is

added to the model when compiled for threading that could theoretically disturb the

execution. Thus, in to keep things really “clean”, it makes sense to rebuild when

making changes like this to the model.

In practice, an attribute that affects the nature of the computation would work fine

for this code base. You can add that yourself, should not be very hard.

43. From the host shell, rebuild the device model and rerun all tests:

$ make test

44. Start the Simics simulator using the script 008- with parallelism set to 8 and using

the bench3.txt test file:

$./simics targets/workshop-02/008-system-benchmarking.simics
parallelism=8 test_file="bench3.txt"

45. Check that it is running with the model that is not threaded before continuing! The

script should print this information:

Accelerator parallelism : 8
Time per pixel (ps) : 10000
Model threading : False
Stall on status poll (ps) : 0

46. Run the simulation:

simics> r

47. This run can take a very significant amount of time. The expectation is that the virtual

time is the same as for the previous run, but that the real time is four times or more

longer. The threading of the device model has a larger effect on the real-time

execution time when there is more work that can be done in parallel to the main

simulation thread.

48. Exit this simulation session.

simics> exit

Simics Simulator Educational Workshop 02 – Model Building 72

9 Improve Performance for Software Poll Loops

The m-app application uses polling to detect the end of a compute run. The code sits in a

tight loop reading the status register of the accelerator. Such code is fairly common

when driving hardware that is expected to return “soon” – for very long operations,

interrupts are more common. However, calling the driver to wait for an interrupt is a little

bit complicated and time consuming. Thus, the m-app program uses polling.

However, such polling can pose a performance issue for a virtual platform. The core of

the issue is that doing a memory read to a device model to check the status of the flag is

much more expensive than running regular instructions that do not touch devices. Thus,

each iteration of the poll loop will only consume a small amount of virtual time but require

a large amount of real time.

It looks something like this, with the simulation cost of “100” being mostly indicative.

In practice, the simulation time when using m-app is dominated by the polling due to this

effect.

This is a simulation performance problem that can be alleviated in the simulator itself by

making reads to the polled register take more virtual time. This will reduce the number of

times the loop needs to iterate before detecting the change in the register, thus reducing

the amount of simulation time spent running roughly the same virtual time. In the Simics

simulator, this is implemented by using the SIM_stall() call to insert a wait in the

Read register

Compare

Loop if not done

Exit loop

1

1

1

Virtual
time

Simulation
cost

100

1

1

Simics Simulator Educational Workshop 02 – Model Building 73

execution of the target code. Using stalling, the above scenario would look like the below

when using a 100k virtual processor cycle stall time:

In this section, you will analyze the performance of the simulation to find the register that

is being polled using standard performance and target system analysis tools.

9.1 Analyze the simulation performance

1. Start the Simics simulator using the script 008-, using default settings:

$./simics targets/workshop-02/008-system-benchmarking.simics

2. Run the simulation until the m-app program has started on the target system. This is

achieved by looking for magic instruction number 3, which is used to mark the

beginning of the actual work of the program (as discussed above in section 8.4):

simics> bp.magic.run-until number = 3

3. Wait until the run stops.

4. Start the system-perfmeter tool using normal mode, additionally counting device

accesses (using the flag -io). This provides sufficient information for this analysis,

while not producing an overwhelming amount of output:

simics> system-perfmeter mode = normal -io -window

5. Run the simulation for half a virtual second:

simics> r 500 ms

As the simulation runs, the system-perfmeter tool will print one line every real-time

second. In particular, note the columns called Slowdown and i I/O (meaning

instructions per device access).

6. When the simulation stops, a performance summary will be printed by the system-

perfmeter tool. The important lines for this exercise are Slowdown and Steps per

I/O. They will look something like this (numbers will vary depending on the speed of

the host and small differences in the target system state):

Read register

Compare

Loop if not done

Exit loop

1

1

1

Simulation
cost

100

1

1

1

Virtual
time

100000(Stall)

Simics Simulator Educational Workshop 02 – Model Building 74

SystemPerf: Performance summary:

SystemPerf: Target: 4 CPUs in 1 cells [4]
…
SystemPerf: Slowdown: 134
…
SystemPerf: Steps per I/O: 15.06
…

A slowdown of 134 is not very good, even though the system is doing a lot

computation on the host. The steps per IO number indicates that the processor runs

about 15 instructions for each device access, on average. For best performance,

device accesses should not happen much more often than one in 10k instructions or

more. A low number typically indicates that software is running a polling loop

somewhere.

7. To figure out which device is being polled, use the io-stats command:

simics> io-stats

It indicates that basically all devices accesses are hitting the control device. The

output would look something like the below. Note that it counts steps vs device

accesses slightly differently from the system perfmeter.

simics> io-stats
Total io-accesses : 59396436
Total steps : 20500958891 (in average an io access each 345)
Total non-idle steps: 20500958891 (in average an io access each 345)

Most frequently accessed device classes (Total):

Accesses Class Percent
59391612 m_control.ctrl 100.0%

Most frequently accessed device objects (Total):

Accesses Object Class Percent
59391612 qsp.macc.control.bank.ctrl m_control.ctrl 100.0%

8. The command only shows the control unit in this case, since almost all accesses go

there. To see more devices, use a 0% cutoff to the command:

simics> io-stats cutoff = 0

This will show a few more devices, which just makes it even clearer that accesses to

the control unit totally dominate the device access count.

9. To find the precise register, you need to use the bank coverage instrumentation tool.

To do this, start a new simulation from the same script to get back to the same initial

situation.

simics> exit

9.2 Pin-point polling register

10. Start the Simics simulator using the script 008- with the same settings as above:

$./simics targets/workshop-02/008-system-benchmarking.simics

Simics Simulator Educational Workshop 02 – Model Building 75

11. Run the simulation until the application has started, just like above:

simics> bp.magic.run-until number = 3

12. Create a new bank coverage tool, targeting only the register bank indicated by io-

stats in previous experiment:

simics> new-bank-coverage-tool banks = qsp.macc.control.bank.ctrl

The bank coverage tool collects access count information for one or more banks. It is

used for both ascertaining the register use coverage from software, and to

investigate how often particular registers are accessed from software.

13. Run the simulation for half a virtual second, just like above:

simics> r 500 ms

14. When the simulation stops, list the register access counts for the ctrl bank in the

control unit:

simics> coverage_tool0.access-count bank = qsp.macc.control.bank.ctrl

The result is should indicate the register that is being accessed all the time:

┌─────┬──────┬──────┬────┬──────────┐
│Row #│ Name │Offset│Size│ Count │
├─────┼──────┼──────┼────┼──────────┤
│ 1│start │0x0008│ 8│ 52│
│ 2│status│0x0010│ 8│59_391_559│
├─────┼──────┼──────┼────┼──────────┤
│Sum │ │ │ │59_391_611│
└─────┴──────┴──────┴────┴──────────┘

15. Exit the simulation session.

simics> exit

9.3 Optimize polling performance
You should have the code for the control unit in your Simics project already. If not, go

back to the point where you build it the first time.

16. Open the source code: [project]/modules/m-control/m_control.dml.

17. Search it for the identifier stall_on_status_read.

This will find a few snippets of implementation that make the device stall any

processor that reads from the ctrl.status register.

The attribute status_reg_stall_time contains the time to stall after each hardware

access, allowing it to be configured at runtime.

18. Change the value of the parameter stall_on_status_read to true:

// Enable use of stall performance optimization
param stall_on_status_read = true;

19. From the host shell, rebuild the device model:

$ make m-control

Simics Simulator Educational Workshop 02 – Model Building 76

20. Rerun the unit tests, to make sure this did not change the behavior of the model in a

visible way:

$ make test

9.4 Test and measure the effect of stalling
Measure the performance after the change. Note that the Simics simulator framework

can open a checkpoint taken using a different implementation of the same system as

long as the changes are backwards compatible – there is no need to rebuild the

checkpoint. The newly compiled version of m-control will be used along with the state

from the checkpoint (this works since no attributes were removed, only a single one

added).

21. Start the Simics simulator like above:

$./simics targets/workshop-02/008-system-benchmarking.simics

Note that the startup printouts indicate a non-zero value for Stall on status poll,

where it previously was always zero:

Accelerator parallelism : 1
Time per pixel (ps) : 10000
Model threading : False
Stall on status poll (ps) : 50000000

22. Run the simulation until the application has started, just like above:

simics> bp.magic.run-until number = 3

23. Start the system-perfmeter tool:

simics> system-perfmeter mode = normal -io -window

24. Run the simulation for half a virtual second, just like above:

simics> r 500 ms

25. Wait for the simulation to stop and check the results. Note how system-perfmeter

indicates a significantly lower slow-down, and much higher steps per I/O. Something

like this:

…
SystemPerf: Slowdown: 21.81
…
SystemPerf: Steps per I/O: 458.77
…

26. Exit the simulation session.

simics> exit

Simics Simulator Educational Workshop 02 – Model Building 77

9.5 Ascertain the effect on benchmarking runs

The above tests checked the effect using various performance tools. It is also necessary

to ascertain the effect of the optimization on an actual complete run without

instrumentation attached.

27. Start the Simics simulator using the script 008- with default settings:

$./simics targets/workshop-02/008-system-benchmarking.simics

The script should indicate a non-zero stall time on status reads.

28. Run the simulation:

simics> r

29. When the simulation stops, compare the run time in virtual time and real time to what

you saw previously in the baseline run. You should expect a much lower real time,

but essentially the same virtual time.

30. Exit the simulation session.

simics> exit

31. Start a new session using script 008- with parallelism set to 8:

$./simics targets/workshop-02/008-system-benchmarking.simics
parallelism=8

32. Run the simulation:

simics> r

33. When the simulation stops, compare the run time in virtual time and real time to the

previous experiments.

The benefit of the stalling optimization is typically much less for the case of parallel

computations, since the polling loop already runs for a shorter time on target (thanks

to the job being split up into multiple jobs with a total virtual time that is shorter).

34. Exit the simulation session.

simics> exit

The conclusion of this experiment would seem to be that “stall on poll” optimizations can

have a very positive impact on simulation performance with little effect on the target

software behavior. At least for this particular accelerator and software stack.

9.6 What is the effect of an extremely large stall time?

However… could stalling have an impact on the software behavior? Test this as well,

using an extreme value for the stall time.

35. Start the Simics simulator using the script 008- with default settings:

$./simics targets/workshop-02/008-system-benchmarking.simics

The script should indicate a non-zero stall time on status reads.

Simics Simulator Educational Workshop 02 – Model Building 78

36. Change the stall time by writing the configuration register that appears when stalling

is enabled. The value is a floating-point value in seconds, set it to 5 millisecond, or

100 times higher than the default.

simics> qsp.macc.control->status_reg_stall_time = 5e-3

37. Check that the setting had effect using the info command on the control unit:

simics> qsp.macc.control.info

38. Run the simulation:

simics> r

39. When the simulation stops, compare the run time in virtual time and real time to what

you saw above. The virtual time is expected to increase by about 50%, from around

0.98 to around 1.5. The runtime

40. Exit the simulation session.

simics> exit

9.7 Full fury movie
End the performance optimization exercises with a full fury run combining all the

optimizations to provide a smooth video rendering for the benchmarks.

41. Open the source code for compute unit: [project]/modules/m-

compute/m_compute.dml.

42. Change the value of the parameter threaded_compute to true, in order to enable

threaded computation:

param threaded_compute = true;

43. From the host shell, rebuild all device models:

$ make

44. Start a new session using script 008- with parallelism set to 8 and using the most

expensive benchmark, bench3.txt. Only repeat the run once.

$./simics targets/workshop-02/008-system-benchmarking.simics
parallelism=8 test_file=bench3.txt repeats=1

45. Show the graphics console for the accelerator:

simics> qsp.macc.gcon.con.show

46. Run the simulation:

simics> r

47. Once the run has finished, exit the simulation session.

simics> exit

Simics Simulator Educational Workshop 02 – Model Building 79

10 Create a Custom Command for the Display Unit

This exercise adds a custom command-line command for the display unit. In general,

when devices have user-facing features controller with attributes (or interfaces), it is a

good idea to create custom CLI commands to invoke them. This makes discovering the

features easier. It also makes accessing the features from CLI and Python easier.

For this command, the

10.1 Build the display unit in the project

1. Use project-setup to copy the m-display module to your project:

$ bin/project-setup --copy-module m-display

2. Build the module:

$ make

10.2 Run the display unit on its own

3. Start Simics using the script 010-:

$./simics targets/workshop-02/010-try-m-display.simics

4. Check the configuration:

simics> list-objects

Note the display unit object that is called dd.

5. Raise the log level:

simics> log-level dd 3

6. Set up the width and height registers in the display unit:

simics> write-device-reg dd.bank.regs.width 800
simics> write-device-reg dd.bank.regs.height 400

7. Write the “color everything” register, which is designed to test the connection from

the display unit to the console:

simics> write-device-reg dd.bank.regs.color_all 0xff8000

Simics Simulator Educational Workshop 02 – Model Building 80

The result should be a nice orange window:

10.3 Create a custom command outside the device code

Custom commands can be created and overridden on the fly in the Simics simulator. This

feature can be used to prototype commands within a single Simics simulator session,

with no need to rebuild or reload anything.

8. Create a new Python file in your project. Say [project]/u10-custom-command.py.

Simics Simulator Educational Workshop 02 – Model Building 81

9. Open the file and paste in the following initial code:

def display_color_all_cmd(object_arg, width, height, color):
 print(f"Command called for {object_arg}, {width}x{height} to 0x{color:08x}")

cli.new_command("color-all",
 display_color_all_cmd,
 args = [cli.arg(cli.obj_t("Display object",
 kind="m_display"), "display"),
 cli.arg(cli.int_t, "width"),
 cli.arg(cli.int_t, "height"),
 cli.arg(cli.int_t, "color")],
 short = "Display a solid color",
 doc="""
Set the <arg>display</arg> to size <arg>width</arg> x <arg>height</arg>,
and set the color to <arg>color</arg>.
"""
)

10. Go back to the Simics simulator, and run the file:

simics> run-python-file u10-custom-command.py

11. Check that the new command was added by doing help on it:

simics> help color-all

12. Find the command with list-commands:

simics> list-commands substr = color

13. Try to run it:

simics> color-all

An error will be printed that mandatory arguments are missing.

14. Try again:

simics> color-all dd 100 100 0xff00ff

This should work and print the message from the command function:

simics> color-all dd 100 100 0xff00ff
Command called for <the m_display 'dd'>, 100x100 to 0x00ff00ff

This means the command is properly receiving arguments.

15. Next, it is necessary to try out the code to write a register from Python. The simplest

way to do this is to use the CLI commands you used above, but from Python. Global

CLI commands such as write-device-reg are available in the cli.global_cmds

namespace in Python.

Instead of coding this into the Python, try it live. Convert the dashes in the name to

underscores, and pass in the command arguments as Python function arguments:

simics> @cli.global_cmds.write_device_reg("dd.regs.width",100)

That does not work.

The error says that all arguments must be named.

Simics Simulator Educational Workshop 02 – Model Building 82

16. To find the precise name of the arguments, use Python help():

simics> @help(cli.global_cmds.write_device_reg)

17. With this information, try again:

simics> @cli.global_cmds.write_device_reg(register="dd.regs.width",
data=100)

18. To use this inside the custom command, it is necessary to convert from the object

parameter given to the command to the name string of object. Try that from the

command line too. Type in @conf.dd to get to the dd object from Python, and then

tab-complete to check its members.

simics> @conf.dd.<TAB>

19. There is a “name” member that seems appropriate. Try it:

simics> @conf.dd.name

Looks like it returns the expected value.

20. Next, try construct the call to the CLI command in Python, with the object in a

variable. Using a Python f-string, it is easy to construct the string value:

simics> @o=conf.dd
simics>
@cli.global_cmds.write_device_reg(register=f"{o.name}.regs.width",
data=400)

21. Check that the register did change its value:

simics> print-device-reg-info dd.regs.width

22. With this, the contents of the Python file can be updated. Add three lines of

cli.global_cmds… to the Python function.

One solution is found below in Solution: Color-all command: implementation for the

command line.

23. Reload the Python file:

simics> run-python-file u10-custom-command.py

24. Test the updated command:

simics> color-all dd 600 100 0xff00ff

Which should provide an all-purple display.

25. Exit this simulation session.

simics> exit

10.4 Add the command to the device class
The command defined above is global, which is not really recommended for a command

that only pertains to a single class and at most a few objects at once. Instead, it should be

Simics Simulator Educational Workshop 02 – Model Building 83

a namespace command on objects of the class. It should be part of the device model

code.

26. Open the file [project]/modules/m-display/module_load.py. This file is run when

the module is loaded, and creates custom commands for the device classes in the

module. In this case, the info and status commands for the class.

To make the command a namespace command, the new_command() function takes

an additional “cls” argument that specifies the class name. This also means that the

“display” argument to the command is now implicit and should be removed.

27. Add the code from u10-custom-command.py at the end of the module_load.py file,

modifying it to work with the class. The class name is held in the variable class_name.

One solution is found below in Solution: Color-all command: implementation for

module_load.py.

28. From the host shell, rebuild the device model:

$ make

29. Start a new simulation session from script 010-:

$./simics targets/workshop-02/010-try-m-display.simics

30. Raise the log level:

simics> log-level dd 3

31. Try the new command:

simics> dd.color-all 500 400 0x8080ff

32. Check the help on the command:

simics> help dd.color-all

Note that the command is documented as provided by the m_display class.

10.5 Some bad-case testing

Having a custom command in place makes it easier to make stupid mistakes and enter

intentionally bad data.

33. Try setting one dimension to zero:

simics> dd.color-all 100 0 0x8080ff

The existing code will block that with a nice error message.

Simics Simulator Educational Workshop 02 – Model Building 84

34. However… try a negative number:

simics> dd.color-all -1 100 0x8080ff

This will cause Simics to assert, as it tries to allocate a very very large block of

memory. The number -1 is treated as a 64-bit unsigned integer number, which

becomes very large, and there is no check for “unreasonably large” sizes in the

device model itself. Instead, the Simics core memory allocators sees an

unreasonable request and asserts – since clearly the code requesting the memory is

broken.

35. Exit this simulation session – the command line still lives on, so you have to quit

Simics even after the fatal error.

simics> exit

10.6 Add additional checking

36. Open the file [project]/modules/m-display/m_display.dml.

37. Find the behavior of the color_all register, by searching for “color_all”. This will

lead to a function that implements the behavior of writing to the register. Add a

check for the display width or height being bigger than 4000 pixels.

One solution is found below in Solution: Color-all command: implementation of

checks in the DML device.

38. From the host shell, rebuild the device model:

$ make

39. Start a new simulation session from script 010-:

$./simics targets/workshop-02/010-try-m-display.simics

40. Raise the log level:

simics> log-level dd 3

41. Try the command again:

simics> dd.color-all -1 100 0x0080ff
simics> dd.color-all 4000 100 0x0080ff
simics> dd.color-all 4001 100 0x0080ff

42. Next, try -1 for the second argument. Note that the Simics CLI parsing makes it

necessary to use a parenthesis around “-1” when used in here: otherwise, the CLI will

interpret the input as “200-1” being used as the value for the first argument:

simics> dd.color-all 200 (-1) 0x0080ff

43. Exit this simulation session.

simics> exit

Simics Simulator Educational Workshop 02 – Model Building 85

10.7 Solution: Color-all command: implementation for the command line

The final contents of u10-custom-command.py:

def display_color_all_cmd(object_arg, width, height, color):
 print(f"Command called for {object_arg}, {width}x{height} to 0x{color:08x}")
 cli.global_cmds.write_device_reg(register=f"{object_arg.name}.bank.regs.width", data=width)
 cli.global_cmds.write_device_reg(register=f"{object_arg.name}.bank.regs.height", data=height)
 cli.global_cmds.write_device_reg(register=f"{object_arg.name}.bank.regs.color_all", data=color)

cli.new_command("color-all",
 display_color_all_cmd,
 args = [cli.arg(cli.obj_t("Display object",
 kind="m_display"), "display"),
 cli.arg(cli.int_t, "width"),
 cli.arg(cli.int_t, "height"),
 cli.arg(cli.int_t, "color")],
 short = "Display a solid color",
 doc="""
Set the <arg>display</arg> to size <arg>width</arg> x <arg>height</arg>,
and set the color to <arg>color</arg>.
"""
)

10.8 Solution: Color-all command: implementation for module_load.py

------------------------ color-all -----------------------

def display_color_all_cmd(object_arg, width, height, color):
 cli.global_cmds.write_device_reg(
 register=f"{object_arg.name}.bank.regs.width", data=width)
 cli.global_cmds.write_device_reg(
 register=f"{object_arg.name}.bank.regs.height", data=height)
 cli.global_cmds.write_device_reg(
 register=f"{object_arg.name}.bank.regs.color_all", data=color)

cli.new_command("color-all",
 display_color_all_cmd,
 args = [cli.arg(cli.int_t, "width"),
 cli.arg(cli.int_t, "height"),
 cli.arg(cli.int_t, "color")],
 cls = class_name,
 short = "Display a solid color",
 doc="""
Set the display to size <arg>width</arg> x <arg>height</arg>,
and set the color to <arg>color</arg>.
"""
)

10.9 Solution: Color-all command: implementation of checks in the DML device

Despite what the comments in the code says, the simplest solution is to check this right

in the color_it_all() function. After the check for zero width or height, add a similar

check for >4000 pixels (or some other reasonable number). This will nicely cover the

color-all case. The same check should likely be added to the regular display path. Note

that adding it to the console.set_display_size() function becomes more complicated

as that function deals with reallocating the internal buffer, and it would have to return an

error that would have to be handled… etc. However, adding an assert in that function

could be a way to catch an error like this early.

Simics Simulator Educational Workshop 02 – Model Building 86

 if ((width==0) || (height==0)) {
 log spec_viol, 1, software: "Display size of %d x %d pixels is non-sensical",
 width, height;
 return;
 }

 // Check too-large error
 if ((width>4000) || (height>4000)) {
 log spec_viol, 1, software: "Display size of %d x %d pixels is too large",
 width, height;
 return;
 }

 // Call the general coloring method
 single_color_display(width, height, rgb);

	1 Introduction
	1.1 Host type
	1.2 Conventions
	1.3 Translating the instructions to Windows hosts
	1.4 Overview of the target setup
	1.5 Accelerator design
	1.6 Work descriptors

	2 Basic Preparations
	2.1 Installing the Simics software and setting up a project
	2.2 Build the compute device model from source code
	2.3 Find the scripts in the simulator installation
	2.4 Set up the default number output format
	2.5 Open the Simics simulator documentation
	2.6 Important reference points in the documentation

	3 Quickly Test the Complete Setup
	3.1 Start the Simics simulator
	3.2 Boot the target system
	3.3 Activate device driver and display a Mandelbrot
	3.4 Investigate the PCIe setup
	3.5 Look inside the accelerator subsystem
	3.6 Create your own Mandelbrot specification

	4 Run the Compute Unit on its Own
	4.1 Inspect the custom interface
	4.2 Start a Simics simulation session with the compute unit
	4.3 Inspect the start-up scripts
	4.4 Inspect the configuration
	4.5 Set up a descriptor
	4.6 Start a compute job
	4.7 Check the status register implementation
	4.8 Test some error cases
	4.9 Detect the end of the operation using notifiers
	4.10 Run unit tests on the compute unit
	4.11 Introduce device misbehavior, fail unit test

	5 Display Results using Python
	5.1 Compute a result
	5.2 Copy the Python display code
	5.3 Inspect and modify the display code

	6 Integrate the Control Unit with the Compute Unit
	6.1 Copy the control unit code to the project
	6.2 Start the simulation and create objects
	6.3 Inspecting device-to-device connection in the DML code
	6.4 Check the definition of the signal interface
	6.5 Inspect the connection from the control unit to the compute units
	6.6 Inspect register memory mappings
	6.7 An excursion into endianness
	6.8 Run a parallel compute job
	6.9 Display the results
	6.10 Error handling/specification violations

	7 Package the Accelerator as a Component
	7.1 Copy the component source code to the project
	7.2 Test the component stand-alone
	7.3 Look at the component source code
	7.4 Run a compute job
	7.5 Display results using the display unit
	7.6 Connect the accelerator using PCIe
	7.7 Dig deeper into the PCIe modeling
	7.8 Drive the target software using the Simics simulator command line

	8 Test Performance in Virtual and Real Time
	8.1 Set up checkpoint
	8.2 Run baseline performance test
	8.3 Look at the benchmarking script
	8.4 Look at the application code hooks
	8.5 Measure performance when using multiple compute units
	8.6 Rebuild compute unit with threading
	8.7 Measure performance with the threaded model
	8.8 Maximize the effect of the threaded model

	9 Improve Performance for Software Poll Loops
	9.1 Analyze the simulation performance
	9.2 Pin-point polling register
	9.3 Optimize polling performance
	9.4 Test and measure the effect of stalling
	9.5 Ascertain the effect on benchmarking runs
	9.6 What is the effect of an extremely large stall time?
	9.7 Full fury movie

	10 Create a Custom Command for the Display Unit
	10.1 Build the display unit in the project
	10.2 Run the display unit on its own
	10.3 Create a custom command outside the device code
	10.4 Add the command to the device class
	10.5 Some bad-case testing
	10.6 Add additional checking
	10.7 Solution: Color-all command: implementation for the command line
	10.8 Solution: Color-all command: implementation for module_load.py
	10.9 Solution: Color-all command: implementation of checks in the DML device

