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1 Introduction  

This Intel® Simics® simulator educational workshop goes through Simics model building. 

The workshop is built around a simple Mandelbrot fractal computation engine and shows 

how this is used in successively more complex system setups. The first step uses just the 

compute block in isolation, while in the end, a complete accelerator is connected over 

PCIe to a Simics Quick-Start Platform (QSP) model. The accelerator can be used to 

perform computations in parallel as seen from the virtual system, as well as running in 

parallel on the host to optimize simulation performance. 

The workshop is intended to be worked through in order – later steps often depend on 

the results from previous steps.  

1.1 Host type 
This workshop is written assuming you are working on a Linux host, but all steps should 

work the same on a Windows host.  

1.2 Conventions 
The following conventions are used in this workshop instruction: 

Actions from the shell on the host (the machine that runs Simics) are indicated by $. The 

commands to type are in bold: 

$ ls 

 

Commands for the Simics simulator command line are indicated by simics>: 

simics> help 

 

When the Simics simulator is running, the prompt changes to running>. Most command-

line commands can be used while the simulator is running: 

running> ptime 

 

Actions from the shell on the target (the simulated machine) are also indicated by $ or #. 

The instructions will indicate that this is to be entered on the target system. The target 

system prompt is only used while Simics is running, so it should be fairly clear when the 

target console is used and when the host shell is used.  

# lspci 
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Output from commands (in any environment) are shown as a box with slightly smaller 

text, and in regular font. Typically, the command used to generate the output is not 

shown in the box: 

Status of sim [class sim] 
========================= 
 
Environment: 
        Hide Console Windows : No 
 
Simulation Engine: 
                Page Sharing : Disabled 
      Multithreading enabled : Enabled 
                Thread limit : Unlimited 
        Worker threads limit : 1 
    Simulation threads limit : 0 
        CPU module load mode : normal 
          Image memory usage : Limited to 22.24 GB 
      Image memory limit hit : 0 times 
... 

 

The Simics simulator scripts used to start simulation runs are all named with a prefix 

number (for example, 001-). Most of the time, the workshop instructions only refer to the 

scripts by their number. It is typically possible to tab-complete the full file name once the 

number has been entered on the console.  

1.3 Translating the instructions to Windows hosts 
In general, the Simics simulator tries to hide the differences between Windows and Linux 

host once the simulator is running. However, outside command-line work will be 

different. Here are the most noticeable differences. 

On Windows, use “simics.bat” to start a new Simics simulator sessions instead of 

“./simics”: 

C:\...> simics.bat -v 

 

Note that the Simics simulator core allows the use of Linux-style paths on Windows 

hosts. Thus, you can start Simics on Windows using Linux-style script names that you 

copy from the instructions in this workshop. For example: 

C:\...> simics.bat ./simics targets/workshop-02/006-accelerator-in-
qsp.simics 

Tab completion from CMD will produce \-separated paths, and these also work. 

Tab-completing paths from the simulator command line will also produce native 

Windows paths.  

 

On Windows, make is present as a script in the project bin directory: 

C:\...> bin\make  
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The project-setup script is in the project bin on both host types. It takes the same 

arguments. The path to invoke it contains a backslash instead of forward-slash: 

C:\...> bin\project-setup  

 

1.4 Overview of the target setup 

The target system used in this workshop is the Simics Quick-Start Platform (QSP), 

extended with a custom Mandelbrot accelerator PCI-express (PCIe) add-in card. The 

QSP runs the standard Clear Linux* image, and the disk image provided contains both a 

device driver and user-level application that drives the hardware accelerator.  

The system overall looks like this: 

 
The standard QSP hardware is on the left, with the accelerator on the right. When 

running, the accelerator is logically part of the QSP overall platform since it is inserted as 

a virtual PCIe card in a virtual PCIe slot inside the QSP virtual platform.  

The target graphics console is not used in this workshop.  

The target serial console is used to interact with the target Linux. 

The Mandelbrot extra display is used to see the results computed by the accelerator.  
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1.5 Accelerator design 

The accelerator looks like this in more detail: 

 
The control unit contains the main control registers for the accelerator, as well as the 

PCIe interface. It manages computation jobs in the compute units via a set of signals to 

and from the compute units.  

Each compute unit has a few memory-mapped control registers, as well as control 

signals towards the control unit. They access the on-accelerator RAM via the “memory” 

memory map (also available via BAR3) to read descriptors and write results.  

The display unit displays the results to an external display, using the results and color 

table in on-accelerator RAM.  

When connected to PCIe, the control registers for the control, compute, and display 

units are mapped through BAR0. The local RAM is mapped as a memory map through 

BAR3. BAR1 and BAR2 are used to manage the MSI-X interrupts from the accelerator. 

The complete PCIe interface logic is part of the control unit.  

The entire accelerator can also be used without a PCIe connection and without external 

software, driving it from the Simics simulator command line interface and test scripts.  

1.6 Work descriptors 
The compute units work from a descriptor held in local memory.  
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OFFSET SIZE MEANING 

0x00 4 Bottom (fixed-point) 

0x04 4 Left (fixed-point) 

0x08 4 Top (fixed-point) 

0x0c 4 Right (fixed-point) 

0x10 4 Width (pixels) 

0x14 4 Height (pixels) 

0x18 4 Maximum iterations (really just a 16-bit number) 

0x1c 4 Reserved to align the next field 

0x20 8 Address of results area 

 

The floating-point values used to encode the drawing area are stored using a 32-bit fixed-

point format. The encoding covers the range -2.0 to +2.0, using the formula:  

 Descriptor_value = uint32( (floating_point_value * 0x4000_0000) + 0x8000_0000)  

 

The results are stored as an array of 16-bit integers, one per pixel, storing the iteration 

count for that particular pixel (up to max iterations).  

The addresses used by the compute units and other devices are all expressed as offsets 

in the local memory map (for BAR3). It does not matter where the accelerator memory 

spaces are mapped in the rest of the system, all addresses are strictly local as used by the 

hardware.  
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2 Basic Preparations 

2.1 Installing the Simics software and setting up a project 
This workshop assumes that you have: 

• Installed the public release of the Intel Simics simulator, including all its packages.  

• Created a Simics project using the Simics Package Manager. This location will be 

referred to as [project] for the rest of this workshop.  

o (The default location used by the Simics Package Manager is ~/simics-

projects/my-simics-project-1/, but you can use any location.) 

It is also recommended that you have: 

• Activated virtualization for simulation acceleration (VMP), as that makes the 

simulation run quite a bit faster for many use cases.  

• Worked through the getting started tutorial in the Simics simulator 

documentation to get an idea for basic interaction with Simics.  

On a Windows host, make sure to install a MinGW gcc in order to be able to build Simics 

models.  

2.2 Build the compute device model from source code 
To ascertain that your project works for model building, copy the source code for the 

m_compute device model to your project and run its unit tests.  

1. Go to the host shell, in your Simics project. You can do this from a shell you start 

yourself or use the Simics Package Manager functionality to start a new shell. 

2. Use project-setup to copy the m-compute module to your project: 

$ bin/project-setup  --copy-module  m-compute 

This will copy the given device source code to your project.  

3. Check that the module appeared in [project]/modules/. 

$ ls modules 

The output should look like this: 

$ ls modules/ 
m-compute 

4. Build the module: 

$ make 

Note that on Windows host, you have to do “bin\make” due to how the make program 

is located by the Simics simulator build infrastructure.  
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The build process will show the build steps. It will look something like this: 

=== Building module m-compute === 
GEN     module_id.c 
DEP     module_id.d 
DML-DEP m-compute.dmldep 
DEP     m-compute-dml.d 
PYC     module_load.pyc 
DMLC    m-compute-dml.c 
CC      m-compute-dml.o 
CC      module_id.o 
CCLD    m-compute.so 

 

2.3 Find the scripts in the simulator installation  

Many exercises in this workshop involve looking at the source code of Simics command-

line and Python scripts. These scripts are located in the Simics simulator installation and 

are not found in the Simics project – except for trampoline scripts that call the .simics 

files in the installation.  

To inspect the files, use an editor to open the files from within the installation. To find the 

installation location of the [simics]/targets/workshop-02/ directory, use a script that 

reveals the location of the installation. 

5. From the shell in your Simics project, start a new Simics simulation with the script 

000-find-simics-installation.simics from your local project: 

$ ./simics targets/workshop-02/000-find-simics-installation.simics 

When the script runs, it will print the location, something like this: 

$ ./simics targets/workshop-02/000-find-simics-installation.simics  
Intel Simics 6 (build 6122 linux64) Copyright 2010-2021 Intel Corporation 
 
Use of this software is subject to appropriate license. 
Type 'copyright' for details on copyright and 'help' for on-line documentation. 
 
You can find the script files used in Workshop 02 here: 
 
/disk1/simics-6-install/simics-training-6.0.pre25/targets/workshop-02 

This technique works since the [project]/targets/workshop-02/000-find-

simics-installation.simics file in your project is a trampoline that points at the 

actual installation location. That trampoline was set up when the project was created 

(and it will be updated each time bin/project-setup is run).  

6. Check the actual sets of scripts that were run when the simulator was started: 

simics> command-file-history -v 

To see how the trampoline script in the local project is run first, then it starts the 

same-name file in the installation, and finally both scripts exit.  
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2.4 Set up the default number output format 

The simulator command line maintains a global preference for how to display numeric 

values, known as the output radix. The output-radix command is used to specify the 

base radix that used for display as well as controlling the grouping of digitals for numbers 

7. To set the output to hexadecimal with 4-digit grouping: 

simics> output-radix 16 4 

8. Test it by entering some numbers: 

simics> 0xdeadbeef 

Which should result in an output with digit grouping applied: 

0xdead_beef 

9. Try a decimal number: 

simics> 100000 

Which should be converted to a hexadecimal number: 

0x0001_86a0 

10. Note that the output radix setting doesn’t affect output from inline Python.  

simics> @10000 

Should display as: 

10000 

11. Not all commands use the default number format for their output. For example, 

addresses tend to be printed in hexadecimal and time in decimal formats regardless 

of the default settings. Simics maintains a digit grouping setting for each base.  

Check the digit grouping settings: 

simics> digit-grouping   

The output is something like this (your settings might vary): 

┌─────┬──────┐ 
│Radix│Digits│ 
├─────┼──────┤ 
│    2│     8│ 
│    8│     0│ 
│   10│     3│ 
│   16│     4│ 
└─────┴──────┘ 

12. Test the format of decimal numbers using the dec command (which prints its 

argument in decimal): 

simics> dec 1000000 

With a digit grouping of three for base 10, this should look like: 

"1_000_000" 
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13. Set base 10 as the default format, with a grouping of three: 

simics> output-radix 10 3 

14. Test the formatting: 

simics> 0xdeadbeef 

Which should result in: 

3_735_928_559 

15. To use the same current output base and digit groupings in your next Simics session, 

use the command save-preferences: 

simics> save-preferences 

It makes sense to leave the default at 10 for the time being, but if you want to see 

most numbers in hexadecimal, you can change that.  

16. Check the preference values: 

simics> list-preferences 

Resulting in: 

[...] 
            output_radix: 10 
         output_grouping: [8, 0, 3, 4] 
[...] 

17. Quit this Simics session. 

simics> quit 

2.5 Open the Simics simulator documentation 
The Simics simulator comes with extensive documentation. It can be opened from inside 

the Simics Package Manager view of your project. It can also be opened from the host 

shell in the project.  

18. From the shell in your Simics project, bring up the documentation using the 

documentation script (documentation.bat on a Windows host): 

$ ./documentation & 

This will open a web browser with the documentation. Keep this window around.  

It is a good idea to open interesting parts of the documentation in their own tabs in 

the browser, that makes it easier to get back to them.  
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2.6 Important reference points in the documentation 

19. The Model Builder User’s Guide. This document contains introductory and overview 

information about how to build Simics models.  

 

20. The Device Modeling Language 1.4 Reference Manual. This is the main source of 

information about the Device Modeling Language (DML) and the libraries and 

standard templates provided.  
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21. The API Reference Manual. This manual provides information on the standard 

interfaces used to build Simics models. Both between the models and the simulator 

cores and models and other models.  

 

22. The Simics Reference Manual. This manual contains information on executable 

tools used in the model-building process, as well as some frameworks like the model 

test framework.  
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3 Quickly Test the Complete Setup  

Start by running the complete system with software and everything, to see how it all fits 

together.  

3.1 Start the Simics simulator  

1. Start a new simulation session using the script 006-: 

$ ./simics targets/workshop-02/006-accelerator-in-qsp.simics 

When the Simics simulator has started, you see a number of windows:  

• The host shell you started simics from.  

• The target system serial console (qsp.mb.sb.com[0]) 

• The target system graphics console (qsp.mb.gpu.vga) 

• The Mandelbrot accelerator display graphics console (qsp.macc.display) 

• The target console control window 

• The simple Simics Control window 

It will look something like this: 

 

3.2 Boot the target system 

2. Run the simulation: 

simics> r  
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The graphics console will show the UEFI splash screen and then the target Linux 

login prompt. The serial console will (eventually) show “root” logged in. There will be 

some messages about ACPI errors during the boot. They are harmless. 

3. Wait for the target system serial console to show that root has logged in.  

 

3.3 Activate device driver and display a Mandelbrot 

4. Go to the target system serial console, and list the available files: 

# ls 

5. Use insmod to load the driver file m-acc-pcie-driver.ko.  

# insmod m-acc-pcie-driver.ko 

6. Run the m-app program to display a first Mandelbrot fractal. The first argument to 

the program is the file to use to specify what to draw, the second argument is the 

level of parallelism in the rendering, the third the verbosity, and the fourth the path to 

the device node for the accelerator on the PCI bus. The last argument is crucial as it 

lets the program memory-map both the register and memory BARs.  

# ./m-app mandel1.txt 1 1 /sys/bus/pci/devices/0000\:02\:00.0/ 

The result should look something like this: 

 



 

Simics Simulator Educational Workshop 02 – Model Building 15 

3.4 Investigate the PCIe setup 

7. Check the PCI devices in the system using lspci: 

# lspci 

Towards the end of the lists there should be listing showing: 

02:00.0 Processing accelerators: Intel Corporation Device 0d5f (rev 02) 

The device is not identified by name, since it is not part of the PCI hardware ID list 

that is part of the target Linux system (see /usr/share/hwdata/pci.ids). 

8. Check that the accelerator PCI ID is the same. Go to the Simics simulator command 

line in the shell window, and list the registers of the PCI configuration bank of 

qsp.macc.control. Set the output format to hexadecimal to make the values easier 

to read: 

running> output-radix 16 
running> print-device-regs qsp.macc.control.bank.pci_config 

Which shows something like: 

running> print-device-regs qsp.macc.control.bank.pci_config  
Offset  Name                    Size        Value | Offset  Name                   Size   Value 
--------------------------------------------------+-------------------------------------------- 
0x0000  vendor_id                  2       0x8086 | 0x0072  msix_control              2  0x8001 
0x0002  device_id                  2       0x0d5f | 0x0074  msix_table                4  0x0001 
0x0004  command                    2       0x0407 | 0x0078  msix_pba                  4  0x0002 
0x0006  status                     2       0x0010 | 0x0080  exp_capability_header     2  0x0010 
0x0008  revision_id                1       0x0002 | 0x0082  exp_capabilities          2  0x0002 
… 

Note the value of the device_id, vendor_id, and revision_id registers matching 

the output from lspci on the target system.  

3.5 Look inside the accelerator subsystem 
Use the command line to inspect the contents of the accelerator subsystem.  

9. The list-objects command can be used to show the hierarchical setup of the 

subsystem. The -tree option shows a tree, and namespace= shows only a part of the 

system. Hiding the port objects with -hide-port-objects makes the output focus 

on the most important objects of the simulation  

running> list-objects namespace=qsp.macc -tree -hide-port-objects  
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The output should look like this: 

┐ 
├ compute[0..7]  
├ console  
├ control  
├ display  
├ gcon ┐ 
│      ├ abs_mouse  
│      ├ con ┐ 
│      │     ├ frontend  
│      │     ├ tcp  
│      │     └ unix_socket  
│      ├ device  
│      ├ keyboard  
│      └ mouse  
├ local_memory  
├ pci  
├ ram ┐ 
│     └ image  
└ register_memory  

10. To also see the register banks and ports of the objects: 

running> list-objects -tree namespace = qsp.macc 

11. To get more information about the type and other properties of a particular object, 

use the help command on the object. For example: 

running> help qsp.macc.control 

3.6 Create your own Mandelbrot specification  
The target application renders fractals from a “work order” file. To draw a custom 

Mandelbrot fractal, create your own such file and upload it to the target system, using the 

Simics Agent back-door system.  

12. Check what a file looks like. In the target serial console, check the contents of 

mandel1.txt on the target system: 

# more mandel1.txt 

13. In a text editor, create a new file in your Simics project. Call it 

[project]/mandel4.txt.  

14. Copy and paste the contents of mandel1.txt from the target system console into 

mandel4.txt. 

The first two numbers are the width and height of the area to plot, in pixels. The last 

number is the maximum number of iterations to use before considering that a point 

escapes the set.  

The floating-point numbers on the second line are bottom, left, top, right. You need 

to make the width/height ratio of the plot area specification match that of the pixel 

size to get a nice-looking picture. 
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15. Modify the contents of mandel4.txt to indicate a different area. For example: 

1000 1000 256 
0.14 -0.75 0.16 -0.73 

16. Go to the Simics simulator command line prompt. Start the Simics Agent manager: 

running> start-agent-manager 

17. Create a new connection to the target system: 

running> agent_manager.connect-to-agent 

You should see a printout like: 

matic0 connected to cl-qsp0 (0x1b90f02e4ca081fb) 

The connect operations works since the target-side agent software is already 

running on the target system (it is started on boot in the default QSP setup). 

18. Check for the running agent. Go to the target system serial console: 

# ps -x | grep agent 

There should be a /usr/bin/simics-agent process running. 

19. Go back to the Simics simulator command line and use the Simics Agent upload 

command to upload the mandel4.txt file to /root/ on the target. The connection to 

the target is called matic0, as indicated by the connection message above.  

running> matic0.upload mandel4.txt /root/ 

20. In the target serial console, check that the file mandel4.txt appeared: 

# ls 

21. On the simulator command line, raise the log level of the qsp.macc subsystem to 2 to 

get basic information about what the model is doing.  

running> log-level qsp.macc 2 -r 

22. Run the m-app program on the file, using verbosity 2 to see the maximum amount of 

information from the application: 

# ./m-app mandel4.txt 1 2 /sys/bus/pci/devices/0000\:02\:00.0/ 
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You should see a new fractal displayed in the accelerator display window: 

 

23. On the simulator command line, a number of info log messages will be printed that 

show the steps taken in the hardware model. Check that the descriptor seen by the 

hardware is the same as that specified by the mandel4.txt file, by looking at the log 

message printed when the computation is started: 

… 
[qsp.macc.compute[0].port.control_in info] Received request to start compute job 
[qsp.macc.compute[0] info] Work descriptor read. Area: (0.140000, -0.750000) - 
(0.160000, -0.730000) (1000, 1000) iter: 256 pixels  @ 0x3000 
[qsp.macc.compute[0] info] Compute operation time: 0.0100000000 s 
… 

24. Exit this simulation session. 

running> exit 
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4 Run the Compute Unit on its Own 

This section zooms in on a single compute unit. The goal is to understand how to interact 

with a device model from the Simics simulator command line, to test its basic 

functionality and interfaces to the outside world. 

The overall connectivity and design of the compute unit looks like this: 

  
The external interface of the compute unit contains the following: 

• Some control registers, that are accessed via memory operations. One register 

holds the address of the descriptor to work on, and the other register reports the 

current operational status of the compute unit.  

• An outbound connection to the local memory in the accelerator, for reading 

descriptors and writing results.  

• An inbound signal that tells it to start computing. This signal is handled not as a 

Simics simulator signal interface but using a custom interface together with the 

clear done handling. 

• An outbound signal that indicates that the operation is done (has completed). 

This is modeled as a Simics simulator signal interface. It state is supposed to be 

raised as long as the done flag in the status register is set to 1.  

• An inbound signal to clear the done flag (and lower the outbound done signal). 

This is modeled by a function call in the same interface as the start signal.  

• An outbound connection to the queue used by this object for retrieving time and 

posting events. 

• A Simics simulator attribute to control the compute time per pixel. In the basic 

model, this is a fixed time, which might be slightly unrealistic. Overall, it provides 

the ability to model throughput approximately.  

• A Simics simulator notifier to tell scripts that the operation is done. This can be 

used to run the simulation until a compute job is done, for example.  

The custom interface used to control the compute unit is defined as its own Simics 

simulator module. This interface definition has to be used by the control unit and other 

code when communicating with the compute unit.  
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Memory operations
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Inside the compute unit, there is the core compute code, the control logic for how 

compute operations are started, and the definition of the memory layout of the 

descriptor.  

4.1 Inspect the custom interface 

To inspect the definition of the custom control interface, you need to open its definition.  

1. Go to the host shell in the Simics project, and copy the interface module into the local 

project: 

$ bin/project-setup --copy-module m-compute-control-interface 

2. Rebuild the code: 

$ make 

The interface module build creates a Python wrapper for the interface and provides 

metadata so that the simulator core knows that it exists.  

3. Open the file [project]/ modules/m-compute-control-interface/m-compute-

control-interface.dml in an editor. 

4. The definition of the interface is wrapped inside a struct definition. The definition 

tells us that the device implementing the interface needs to implement two 

functions: 

void start_operation(conf_object_t*) 

And: 

void clear_done(conf_object_t*) 

The interface functions can also be called from Python, since the interface is 

automatically wrapped into Python during compilation.  

4.2 Start a Simics simulation session with the compute unit 

5. Start a new simulation session using script 001-: 

$ ./simics targets/workshop-02/001-try-m-compute.simics 

4.3 Inspect the start-up scripts  

6. Open the start script in an editor, it is found at [simics]/targets/workshop-

02/001-try-m-compute.simics. See above for how to locate the Simics simulator 

installation. All it does is call one Python file that is used to set up the experimental 

setup.  

It also contains a large “commented out” section of code that essentially goes 

through the commands of this lab.  

7. Open that Python script file, [simics]/targets/workshop-02/001-m-compute-

setup.py. This file creates a set of pre_conf_objects to describe the setup, and 

then calls SIM_add_configuration() to create all the objects at once. This is the 
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standard way to create small sets of objects in the Simics simulator. In particular for 

unit testing.  

4.4 Inspect the configuration  

8. List the objects in the simulation configuration: 

simics> list-objects 

The objects you see are a mix of the standard infrastructure objects found in all 

simulations (bp, breakpoints, default_cell0, default_sync_domain, sim, prefs, 

params), and the small set of objects (clock, compute, ram, ram_image, 

local_memory) created from the script.  

9. Use help on the compute object: 

simics> help compute  

The output starts like this: 

simics> help compute  
Class m_compute 
 
   Provided By 
      m-compute 
 
   Description 
      Compute unit for the mandelbrot hardware accelerator 
... 

This illustrates an important aspect of Simics naming. The object named compute is 

an object in the Simics simulator configuration. It is created from the class 

m_compute (with an underscore). Multiple objects can be created from each class 

(obviously), with arbitrary names. The class m_compute is provided by the module m-

compute (with a dash – module names are preferably named using dashes). The 

module is automatically loaded into the simulation session when an object of the 

class is created.  Modules can contain multiple classes, in general.  

10. Check the current configuration of the object using its info namespace command 

(such commands can be defined for all classes in the Simics simulator to provide a 

user-friendly interface to high-level information about objects): 

simics> compute.info 

11. Look at the control registers of the compute object: 

simics> print-device-regs compute 

If the device had had multiple register banks, this would print all the registers from all 

banks. In this case, there is just a single bank holding two registers. Both are currently 

zero as no address has been set and no operation has been performed.  

12. Check the mappings in the local_memory memory space: 

simics> local_memory.map 
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Memory spaces are how all memory transactions in the Simics simulator reach their 

destination. In this case, there is one mapping for the local memory (“ram”) and one 

for the register bank of the compute unit.  

13. Check the configuration attributes of the compute unit: 

simics> list-attributes compute 

14. Help can also be used on an individual attribute (in command-line commands, an 

object attribute is accessed via ->): 

simics> help compute->local_memory 

15. List the interfaces of the compute object – this how other parts of the simulation 

communicate with the compute unit.  

simics> list-interfaces compute 

You will see two “ports” listed: the unified control interface (control_in) and the 

register bank (ctrl). A register bank is technically also a port of a model since it 

receives memory operations.  

4.5 Set up a descriptor 
To get the compute unit to do anything, it is necessary to set up a compute job descriptor 

in memory. This can be done manually, setting one value after the other from the 

command line. To speed things up, there is a Python script available that provides a utility 

function that creates descriptors and poking them into target system memory.  

16. Run the Python script [simics]/targets/workshop-02/001-m-compute-

descriptor-generator.py to define the utility function.  

simics> run-python-file "%simics%/targets/workshop-02/001-m-compute-
descriptor-generator.py" 

The %simics% specifier in the string ask the Simics simulator to look for a file 

matching the rest of the string in the Simics project, as well as in all installed Simics 

packages.  

17. To see where %simics% searches for files, use the list-simics-search-paths 

command: 

simics> list-simics-search-paths 

The first entry is your Simics project, and then you see all installed packages in the 

order in which they are searched.  

18. Before building a descriptor, make sure that the target area in local memory is 

empty. Use the namespaced x command on the local_memory object. To find the 

arguments of the command, use help: 

simics> help local_memory.x 

19. Display 40 bytes (the size of a descriptor) from offset 0x1000: 

simics> local_memory.x 0x1000 40 
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20. Call the Python function create_m_compute_descriptor() with some easily 

recognizable Mandelbrot parameters.  The first argument to the function is the local 

memory object to write the descriptor to, the second argument is the address of the 

descriptor, the third argument is the address of the results, and then follow bottom, 

left, top, right, width, height, and max_iter.  

simics> @create_m_compute_descriptor(conf.local_memory, 0x1000, 0x2000, 
-1.0, -1.0, 1.0, 1.0, 100, 100, 200) 

“@” at the beginning of a line makes the Simics simulator interpret the rest of the line 

as Python code. “conf.NNN” is the Python reference to the Simics configuration 

object called NNN. 

21. Display the descriptor area again. Group values in groups of 32 bits, and with little-

endian interpretation:  

simics> local_memory.x 0x1000 40 group-by = 32 -l 

This should show that the memory now contains a descriptor: 

p:0x00001000  40000000 40000000 c0000000 c0000000 
p:0x00001010  00000064 00000064 000000c8 deadbeef 
p:0x00001020  00002000 00000000 

22. Check the “bottom” value. This indicates the y coordinate of the bottom of the area 

to plot. Read the value from memory using a read command: 

simics> local_memory.read 0x1000 4 -l 

23. Use this as part of an expression decoding the encoding: 

simics> ((local_memory.read 0x1000 4 -l) - 0x8000_0000) / 0x4000_0000 

24. Check that the area used for the results is all zeroes: 

simics> local_memory.x 0x2000 group-by = 16 -l 64 

4.6 Start a compute job  
Configure the compute unit to use the new descriptor, and instruct it to do the compute 

job. 

25. Raise the log-level of the compute unit to 3 (which includes internal debug 

messages): 

simics> log-level compute 3 

26. Configure logs to display when they happen in virtual picoseconds: 

simics> log-setup -pico-seconds -group 

27. Use the write-device-reg command to write the descriptor_addr register of the 

compute unit: 

simics> write-device-reg compute.bank.ctrl.descriptor_addr 0x1000 

Note that registers that do not have side effects do normally log anything on 

accesses; to trace register reads and writes, use the dedicated trace-io command. 
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28. To make the compute unit perform the compute operation, it needs to be started 

using the “start signal”. This is part of the custom control interface that is exposed in 

the control_in port.  

Check the metadata on the control_in port: 

simics> help compute.port.control_in 

The output indicates that the port implements three interfaces. control_in is 

interface used in the hardware model. conf_object and log_object are standard 

framework interfaces that are present on all Simics objects. Note that a port object is 

a full Simics object from the perspective of the framework.   

   Description 
      control input from the control unit 
 
   Interfaces Implemented 
      conf_object, log_object, m_compute_control 
 

The general form of calling an interface in an object in the simulation from the 

command line using inline Python is this: 

@conf.<object_name>.iface.<interface_name>.<function_name>(<arguments>) 

Since a port object is an object, the same pattern is used, just with the full name of 

the port object: 

@conf.<object_name>.port.<port_name>.iface.<interface_name>.<function_name>(<arguments>) 

29. From the simulator command line, inline Python to call start_operation() in the 

control_in port of the compute unit: 

simics> 
@conf.compute.port.control_in.iface.m_compute_control.start_operation() 

Note that it is not necessary to have an object to use as the “originator” for an 

operation like this.  The code in the device model will get called just as if the call came 

from another object, and it has no way to know where the call came from.  

When the signal is raised, several log messages are printed: 

simics> @conf.compute.port.control_in.iface.m_compute_control.start_operation() 
[compute.port.control_in info control] {0 ps} Received request to start compute job 
[compute info compute] {0 ps} start_compute_job called 
[compute info compute] {0 ps} Work descriptor read. Area: (-1.000000, -1.000000) - 
(1.000000, 1.000000) (100, 100) iter: 200 pixels  @ 0x2000 
[compute info compute] {0 ps} Compute operation time: 0.0001000000 s 
[compute info compute] {0 ps} Starting computation inline in main thread 
None 

The first part of the log message shows [object type group] – the object that 

issues the log (in this case either the compute object or its 

compute.port.control_in port object).  The type is info in these examples, 

indicating informational messages. The group, finally, indicates the log group for the 

message. This can be used to turn on and off logging for just certain aspects of a 

model. They are defined by loggroup statements in the device model source code, 

and some are provided by the standard device templates and modeling libraries.  
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After that comes the time specification, {0 ps}. All the logs here were printed within 

the same picosecond of virtual time. All happened at once from the perspective of 

the rest of the simulation, essentially.   

30. The logs above indicate that the compute operation is supposed to take 100 

microseconds. The delay is implemented by posting an event 100 microseconds into 

the future – on queue assigned to the compute object. In the Simics simulator, event 

queues are distributed and handled by processors or clock objects, not by the 

simulation kernel. This means that there are typically several event queues in a single 

simulation, and each object is configured with a default queue to use for posting 

events. This configuration is performed using the queue attribute present in all 

objects.  

Read the queue attribute of the compute object: 

simics> compute->queue 

This should indicate the “clock” object.  

31. In device code, the SIM_object_clock() API call is typically used to retrieve the 

queue for an object.  Note that “clock” and “queue” are used interchangeably and not 

quite consistently in the API.  

Try the API using inline Python on the command line: 

simics> @SIM_object_clock(conf.compute) 

32. Check the current time of the clock object: 

simics> ptime clock 

The current time is zero since the simulation has not been run forward yet.  

33. Check the event queues of the clock object: 

simics> peq clock 

This shows a single event posted 100k cycles into the future (since 100 

microseconds is 100k cycles at 1GHz): 

┌───────┬───────┬──────────────────────────┐ 
│ Cycle │ Object│       Description        │ 
├───────┼───────┼──────────────────────────┤ 
│100_000│compute│compute_operation_complete│ 
└───────┴───────┴──────────────────────────┘ 

34. Check the contents of the results memory at this point: 

simics> local_memory.x 0x2000 group-by = 16 -l 64 

Note that the results have already been written to memory. They were computed 

immediately on operation start. However, software is not supposed to look at them 

until the compute unit indicates that the results are ready.   
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35.  Check the value of the status register: 

simics> print-device-reg-info compute.bank.ctrl.status 

The “processing” bit it set, indicating that work is in progress, from the perspective 

of the software using the hardware. Even though the results are already present in 

the simulated memory.  

36. Run the simulation forward for 100 microseconds, to reach the end of the compute 

operation: 

simics> run 100 us 

Log messages will be printed indicating that the operation completes (this is based 

on rendering 100x100 pixels; if you used other dimensions, the time will be different).  

[compute info compute] {100000000 ps} Compute operation nominally finished 
[compute info control] {100000000 ps} Setting done flag 
[compute info control] {100000000 ps} No connected object to signal completion to 

37. Check the current time in the simulation: 

simics> ptime clock 

38. Check the event queue: 

simics> peq clock 

It should be empty since the event has triggered and no new events have been 

posted.  

39. Check the value of the status register: 

simics> print-device-reg-info compute.bank.ctrl.status 

It shows that the operation is done. The number of computed pixels is also reflected 

in the count field. 

simics> print-device-reg-info compute.bank.ctrl.status  
Compute status [compute.bank.ctrl:status] 
========================================== 
 
 
                  Bits : 64 
                Offset : 0x8 
                 Value : 9_223_372_036_854_785_808 (0x8000_0000_0000_2710) 
 
Bit Fields: 
          done[63..63] : 1                                "Compute completed" 
    processing[62..62] : 0                                "Compute in progress" 
        unused[61..32] : 000000000000000000000000000000   "unused" 
          count[31..0] : 00000000000000000010011100010000 "Processed pixel count" 

40. It is possible access the value of a field using the register name and the field name. 

For example, to read out the value of the count field of the status register: 

simics> read-device-reg compute.bank.ctrl.status count 

This should return the value 10000.  
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41. To clear the done flag, write a “1” bit to the done flag, using a whole-register value of 

0x8000_0000_0000_0000: 

simics> write-device-reg compute.bank.ctrl.status 0x8000_0000_0000_0000 

The device will complain that zero is being written to the count field – in the form of a 

spec_viol log message. This means that the “software” is not following the 

documented behavior of the register, by trying to change the value of a read-only 

field.  

4.7 Check the status register implementation  
Check the implementation of the status register to see where the spec-viol log 

message comes from. 

42. Open the file [project]/modules/m-compute/m_compute.dml.  

43. Search the code for “register status”. The result should look something like this, 

depending on your editor: 

 

The log comes from read_only template that has been applied to the count field. A 

field declared as read_only will log if a value different from the current value of the 

field is written to it (and ignore the written value in any case). Given this definition, 

the “proper” way to clear the register is to write back the value you read from it.  

44. The done field got cleared despite the warning about count. Check the new state of 

the register: 

simics> print-device-reg-info compute.bank.ctrl.status 
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This concludes this section. You have seen how to drive an individual device from the 

simulator command line, and how to inspect the device state and system state. 

Using this kind of interaction, it is easy to explore the implementation of a device 

model without a full system context.  

4.8 Test some error cases 

Investigate how the model deals with some types of bad inputs.  

45. Set up a new descriptor in memory, in a different location and with different 

contents:  

simics> @create_m_compute_descriptor(conf.local_memory, 0x10000, 
0x11000, -0.4, -0.4, 0.4, 0.4, 150, 150, 200) 

46. Check the contents: 

simics> local_memory.x 0x10000 group-by = 32 -l 40 

47. Change the descriptor address register to point at address zero, where the 

descriptor is not located: 

simics> write-device-reg compute.bank.ctrl.descriptor_addr 0x0000 

48. Tell the device to start the computation: 

simics> 
@conf.compute.port.control_in.iface.m_compute_control.start_operation() 

Luckily, an all zero descriptor results in no work being performed, not a crash. This 

kind of “likely” mistake might be worth a specific check in the model, along with a 

spec-violation log message. 

49. Check the event queue: 

simics> peq clock 

Zero time is converted to “on the next cycle”.  

50. Try to fix the error by updating the descriptor address: 

simics> write-device-reg compute.bank.ctrl.descriptor_addr 0x10000 

51. ...and starting a new run: 

simics> 
@conf.compute.port.control_in.iface.m_compute_control.start_operation() 

The device will complain, since the previous operation has not yet completed.  

[compute.port.start info control] {100000000 ps} start.signal - Signal raised 
[compute.port.start info control] {100000000 ps} Received signal to start compute job 
[compute.port.start spec-viol control] {100000000 ps} Operation start request while 
operation in progress 

52. Run 1 cycle to trigger the event and complete the operation: 

simics> run 1 cycle 
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53. Start a new run: 

simics> 
@conf.compute.port.control_in.iface.m_compute_control.start_operation() 

Check the log messages to make sure this run was indeed using the valid descriptor 

address and valid descriptor contents.  

54. Try to write the status register: 

simics> write-device-reg compute.bank.ctrl.status 0 

This time, the processing field will complain that a read-only field is being written, 

and the done field will complain that writing zero to it has no effect. Such information 

can be quite useful to someone writing a device driver for the hardware.  

4.9 Detect the end of the operation using notifiers 

In the Simics simulator, notifiers are used to signal that something has happened in a 

device model or other part of the simulated system or simulator itself. They are most 

commonly used as model-to-simulator channels to implement user-facing features (they 

can also be used for some instances of model-to-model communication).  

55. Run until the job completes, using the notifier built into the model to signal 

completion. List all available notifiers: 

simics> list-notifiers 

56. m-compute-complete is triggered by the compute unit when the computation is 

completed. Run until it triggers: 

simics> bp.notifier.run-until m-compute-complete 

This command uses the Simics simulator breakpoint manager to run the simulation 

forward until the notifier is triggered.  

57. When the simulation stops, the operation has completed.  Check the current time: 

simics> ptime clock 

58. Clear the done flag using the control interface, imitating how the control unit would 

do it: 

simics> 
@conf.compute.port.control_in.iface.m_compute_control.clear_done() 

59. Check the status register contents: 

simics> print-device-reg-info compute.bank.ctrl.status 

60. Exit this simulation session. 

simics> exit 

4.10 Run unit tests on the compute unit 
The interactive session in the previous section shows how an individual device model can 

be run on its own inside of a Simics simulator configuration, with a few other objects 
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around it to provide the necessary context. This ability is also used for unit testing device 

models. Each device model should come with a dedicated unit test suite that tests the 

model on its own, without the need for a system context. Unit tests should make use of as 

few other “real” device classes as possible to keep their dependencies minimal.  

The Simics Model Builder User Guide contains more information about unit testing in 

Chapter 16. The Simics Reference Manual Chapter 7 describes the overall test 

framework. Python utilities used in writing tests are described in the API Reference 

Manual in Chapter 10.7.  

61. In a file browser, open [project]/modules/m-compute/test/. This directory 

contains the test suite for the m-compute module.  

 

There are three types of files here: 

• SUITEINFO declares that this directory contains a test.  

• m_compute_common.py contains the common setup code used to create the 

device under test and the stubs devices/fake objects needed to run tests.  

• s-*.py are the actual tests. Each file contains a set of tests that logically belong 

together.  

When you create a new Simics device model, you get a skeleton implementation of 

the tests for it.  

Open the file s-m-compute.py. This is the main test file that tests the basic behavior 

of the compute unit. There are quite a few steps in the test.  

Checks for errors in tests are done using the stest Python framework, including all 

aspects of the execution, from values in registers and memory to log messages 

printed from device models (or the absence thereof).  

62. Go to the Simics project directory in your host shell.  

63. Run the tests for the m-compute module using the test-runner tool.  

First, list the tests it knows about: 

$ bin/test-runner --tests 
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It will show the suite for m-compute, and each s- Python file is considered its own 

test: 

Suite: modules/m-compute/test 
    s-info-status 
    s-m-compute-extra 
    s-m-compute 

64. Run the tests with verbose output, to see how each test is run in turn: 

$ bin/test-runner -v 

The test log file is saved in the project, at  

[project]/logs/test/[host-type]/modules/m-compute/test/test.log  

65. For example, on a Linux host, display the contents of the log file: 

$ more logs/test/linux64/modules/m-compute/test/test.log  

This shows the log messages printed during the test.  

Note that the tests do not quite use the same setup as the interactive session – 

special test memory is used to make it easier to detect issues like reading from 

memory that was not previously written to. There is also a fake signal receiver to 

receive the outbound signal that was not set up at all in the interactive session, as 

well as a simple receiver for notifications.  

4.11 Introduce device misbehavior, fail unit test 
To test the unit tests, introduce an intentional error into the device model.  

66. If it is not already open, open the file 

[project]/modules/m_compute/m_compute.dml in an editor. 

67. Search the code for “do_clear_done”.  

68. Edit the method do_clear_done() to return immediately instead of doing the work 

of actually clearing the done flag: 

method do_clear_done() { 
    return;   // intentional error 
    log info, 2, control: "Clearing done flag"; 
    operation_done.signal_done_clear(); 
    ctrl.status.done.val = 0; 
} 

69. Build the device model: 

$ make 

70. Run the tests: 

$ bin/test-runner  

Which will report an error: 

..f 
[...]modules/m_compute/test/test.log:21: test s-m-compute in modules/m_compute/test 
failed (*** failed (exit-status 2) ***) 
Ran 3 tests in 1 suites in 0.882581 seconds. 
Failures: 1  Timeouts: 0 
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71. Check the log file. Either open the log file in an editor (use the full path provided in 

the test output) or use more from the shell in the same way as above.  

The error behind the test failure is reported like this: 

Expected 100 = 0x64 
Got      9223372036854775908 = 0x8000000000000064 
*** Python script 's-m-compute.py' failed: Python error in PyEval_Evalcode(): 
… 
      "Failed to clear done flag") 
… 

Basically, a failed test triggers a Python traceback in order to display the point of 

failure even if tests are run through multiple Python files.  

72. Edit the method do_clear_done() in the model source code to remove the bad 

return statement. 

73. Build the device model and test it in one go, using the test target: 

$ make test 

This both rebuilds any changed code, and reruns all known tests.  
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5 Display Results using Python 

It makes sense to convert the output of the compute unit to a displayed image early on in 

the development process – without having to build the model of the display unit and its 

software interface. Instead, a Python script can be used to visualize the results of the 

computation, sending pixels to a standard Simics framework graphics console.  

The Python code will read the results in simulator memory, convert an iteration value into 

a color, and then put a colored pixel into the console.  

5.1 Compute a result 

1. Start a new Simics simulation using script 002-: 

$ ./simics targets/workshop-02/002-try-m-compute-with-display.simics 

2. List all objects in the simulation: 

simics> list-objects 

Note the presence of the graphics console object called con.  

3. Raise the log level: 

simics> log-level 2 

4. Set up a descriptor: 

simics> @create_m_compute_descriptor(conf.local_memory, 0x1000, 0x2000, 
0.5, -0.6, 0.7, -0.4, 1000, 1000, 256) 

5. Start the operation in the same way as before: 

simics> write-device-reg compute.bank.ctrl.descriptor_addr 0x1000 
simics> 
@conf.compute.port.control_in.iface.m_compute_control.start_operation() 

6. Run until the results are computed: 

simics> bp.notifier.run-until m-compute-complete 

7. Display the results in the graphics console, by calling the Python code. It needs to 

know the console object, the local memory object, the starting address of the results 

in the local memory, the pixel dimensions of the result, and the maximum iteration 

count: 

simics> @display_m_result(conf.con, conf.local_memory, 0x2000, 1000, 
1000, 256)  

This should result in the console window showing a Mandelbrot fractal.  

In addition, the code will print some basic statistics about the results. The graphics 

console will emit a few log messages about being resized.  

8. Note that the Simics simulator graphics console might show the results as greyed 

out, as a result of the default behavior of the graphics consoles to grey out their 
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display when the simulator is stopped. Thus, to see the full color, start the simulation 

and leave it running.  

simics> r 

 

5.2 Copy the Python display code 
The Python display code is currently located in a script in the Simics simulator 

installation, at [simics]/targets/workshop-02/002-display-result.py. To modify it, it 

should be copied into your Simics project, into targets/workshop-02/. The copy can be 

performed using the simulator command line. 

9. Since you have a Simics session running, use the command-line command lookup-

file to put the path to the script into the CLI variable $s: 

running> $s = (lookup-file "%simics%/targets/workshop-02/002-display-
result.py") 

10. Check the result: 

running> $s 

11. The destination in the Simics project can be produced by using lookup-file with 

just the name of the target directory: 

running> $p = (lookup-file "%simics%/targets/workshop-02")   

12. Check the result: 

running> $p 

13. Use Python shutil to copy the file (works on all hosts): 

running> @import shutil 
running> @shutil.copy(simenv.s, simenv.p) 

simenv.V is the way to access a command-line variable named V from Python.  

5.3 Inspect and modify the display code 
A core part of the Python code is to determine how to color the fractal. This code is a 

Python prototype for the code used in the m-app application.  

14. Open the file [project]/targets/workshop-02/002-display-result.py in an 

editor.  

15. Search for “def colorize”. This will find the definition of the function that converts 

an iteration count into a 0x00RRGGBB 24-bit color value.  

16. Rename the existing function to colorize_2.  
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17. Add a new function colorize, which implements a simple gradient from black to 

bright yellow, like this: 

def colorize(v,min,max): 
    # From black (0x000000) to light yellow (0xffff80) 
    s1=min 
    s2=max 
    c1=[0x00,0x00,0x00] 
    c2=[0xff,0xff,0x80] 
    if(v < s2): 
        return rgb_from_list(color_interpolate(c1,c2,(v-s1)/(s2-s1))) 
    return 0x000000 

18. Reload the display code from the project: 

running> run-python-file targets/workshop-02/002-display-result.py 

19. Redraw the result: 

running> @display_m_result(conf.con, conf.local_memory, 0x2000, 1000, 
1000, 256)  

The new display is less colorful: 

   vs   

The key point is that it is possible to change and reload Python code during a Simics 

simulation session, which is very handy for experimenting with parts of the system 

without having to rebuild anything.  

20. To keep experimenting with the color logic, also try some more zoomed-in versions 

of the fractal. Keep the simulator running; there is no real need to stop to display the 

result.  

For example: 

running> @create_m_compute_descriptor(conf.local_memory, 0x1000, 
0x2000, 0.60032495,-0.55318505,0.60032505,-0.55318495, 1000, 1000, 256) 
running> 
@conf.compute.port.control_in.iface.m_compute_control.start_operation()
running> @display_m_result(conf.con, conf.local_memory, 0x2000, 1000, 
1000, 256) 
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Edit and reload the Python file. Rerun the display: 

running> run-python-file targets/workshop-02/002-display-result.py 
running> @display_m_result(conf.con, conf.local_memory, 0x2000, 1000, 
1000, 256) 

21. Exit this simulation session. 

simics> exit 

 



 

Simics Simulator Educational Workshop 02 – Model Building 37 

6 Integrate the Control Unit with the Compute Unit 

The control unit is used to start compute operations in multiple compute units. It 

provides a single interface to the outside that indicates that an operation has completed. 

The setup shows how device models communicate in the Simics simulator framework.  

The configuration looks like this, for the case of two compute units being controlled by a 

single control unit: 

 
The active devices (control and compute units) use the clock to post events.  

All the control registers are mapped in the register memory map. This is unlike the 

previous setup where a single memory map pointed at both the control registers and the 

memory.  

The compute units access the on-accelerator RAM through the “local memory” memory 

map. The control unit does not need to have references to the memory maps for the 

simple case, but they are used in the PCIe case and are set up in any case.  

The control unit has a connection to control port on each compute unit, to start 

operations and clear the done flag.   

The control unit has a global status register with a done flag reflecting the state of all the 

compute units. The done flag is set after all compute units signal that they are done. 

Clearing the global done flag makes the control unit clear the done flag of all connected 

compute units.  

The graphics console is a separate object that is not actually connected to anything else 

in the configuration. It driven from Python, like in the previous cases.  

6.1 Copy the control unit code to the project 

1. Use project-setup to copy the m-control module to your project: 

$ bin/project-setup --copy-module m-control 
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2. Build all the modules in the project: 

$ make 

6.2 Start the simulation and create objects 

3. Start a new simulation session using script 003-: 

$ ./simics targets/workshop-02/003-control-unit.simics 

4. List the objects in the simulation configuration: 

simics> list-objects 

There is no model in place (yet), so all that is listed are the standard objects that all 

Simics simulator sessions contain as part of the simulation framework. 

5. Open the Python file [simics]/targets/workshop-02/003-control-unit-

setup.py in an editor. You can find its location using this command-line command: 

simics> lookup-file "%simics%/targets/workshop-02/003-control-unit-
setup.py" 

The system creation is contained inside a Python function. The first argument to the 

function is the name of the subsystem, and the second argument is the number of 

compute units to create as part of the subsystem.  

6. Create a new accelerator subsystem using the Python function: 

simics> @create_N_compute_accelerator("macc",2) 

7. Inspect the newly created set of models: 

simics> list-objects namespace = macc  

There are two compute units, a control unit, plus the local memory and a (new) 

memory space containing the registers for all the devices.  

8. The accelerator objects are now inside the namespace macc, instead of being at the 

top level of the name hierarchy (in the same way that they were in a namespace in 

Section 3 when using the complete setup).  

simics> list-objects namespace=macc 
┌──────────────┬────────────────────┐ 
│    Class     │       Object       │ 
├──────────────┼────────────────────┤ 
│<clock>       │macc.clock          │ 
│<m_compute>   │macc.compute[0]     │ 
│<m_compute>   │macc.compute[1]     │ 
│<graphcon>    │macc.con            │ 
│<m_control>   │macc.control        │ 
│<memory-space>│macc.local_memory   │ 
│<ram>         │macc.ram            │ 
│<recorder>    │macc.rec            │ 
│<memory-space>│macc.register_memory│ 
└──────────────┴────────────────────┘ 

9. Create a second accelerator subsystem called macc8 with 8 units: 

simics> @create_N_compute_accelerator("macc8",8) 
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The Simics framework can contain an arbitrary set of models, including multiple 

copies of the same device or multiple subsystems of the same content. As long as 

names are unique, everything will work nicely.  

10. Inspect the newly created set of models: 

simics> list-objects namespace = macc8 

6.3 Inspecting device-to-device connection in the DML code 
The connections between the compute and control units are coded in DML as connect 

objects from the side that needs to call into the interface, and as port objects on the side 

that is called.  

11. Open the file [project]/modules/m-control/m_control.dml in an editor, to get the 

source code of the control unit.  

12. Search for “port done” to find the control unit input port that receives completion 

signals from the compute units.  

13. Open the file [project]/modules/m-compute/m_compute.dml in an editor, to get the 

source code of the compute unit.  

14. Search for “connect operation_done” to find the compute unit connect that points 

at the control unit port.  

15. Put the two pieces of code side by side.  

 

The connect declaration results in an attribute being added that is used to point at a 

port or other object. The declaration interface signal in the connect declaration 

indicates that the connected object should implement the signal interface.  

The declaration port done creates an array of ports based on a local template called 

level_checked_signal. Each connect will point to one of these ports.  
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16. Scroll back up a bit to find the declaration of template level_checked_signal: 

 

The declaration “implement signal” indicates that the port based on this template 

implements the signal interface. This aligns with the declaration in the connect.  

17. Go to the Simics simulator command line.  

List the attributes of the object macc.compute[1] (the second compute unit in the 

first accelerator subsystem created): 

simics> list-attributes "macc.compute[1]" 

Note how the attribute operation_done is set to point at 

macc.control.port.done[1]. This connection is set up by the setup script, but 

could also be configured and changed interactively from the command line.  

There is nothing on the control unit side that knows about this incoming connection- 

it just receives signal calls on the port, and such calls can come from other devices or 

from the command line or from script code.  

18. By giving the name of a specific attribute to list-attributes, you get more information 

about it: 

simics> list-attributes "macc.compute[1]" operation_done 

The help text is derived from the “param desc” declaration in the connect, plus 

autogenerated text indicating the required interface(s) of the connect.  

19. Test the error checking with an intentionally bad change to the operation_done 

attribute. The standard sim object does not implement the signal interface.  

simics> macc.compute[1]->operation_done = sim 

20. Check that the attribute still has the same value as before: 

simics> macc.compute[1]->operation_done 



 

Simics Simulator Educational Workshop 02 – Model Building 41 

21. To find the inbound ports of the control unit, use list-objects: 

simics> list-objects namespace = macc.control 

22. To view the ports and banks of the control unit as a tree: 

simics> list-objects namespace = macc.control -tree 

23. Use help on the done[1] port: 

simics> help macc.control.port.done[1] 

This shows that the port implements the signal interface, as required by the 

macc.compute[1].operation_done attribute you inspected above.  

6.4 Check the definition of the signal interface 

24. To quickly find the definition of standard Simics simulation interfaces and simulator 

API calls, the api-help command is pretty handy. Note that it currently does not 

know about interfaces defined outside of the Simics base product. Use tab 

completion to find the information about the signal interface: 

simics> api-help signal<TAB> 

This should expand to: 

simics> api-help signal_interface_t 

25. Press <RETURN>.  

simics> api-help signal_interface_t 

This prints a help text explaining how the interface works, as well as the definition of 

the functions in the interface. 

... 
 
SHORT DESCRIPTION 
 
#include <simics/devs/signal.h>    // in C/C++ 
import "simics/devs/signal.dml";   // in DML 
 
typedef struct signal_interface { 
    void (*signal_raise)(conf_object_t *NOTNULL obj); 
    void (*signal_lower)(conf_object_t *NOTNULL obj); 
} signal_interface_t; 
 
// available in Python 

26. If you do not quite know the name of what you are looking for, use the api-search 

command.  

simics> api-search signal 

This will show all api-help entries that contain the given string in their name or the 

help text.  

27. The simulator documentation that you opened earlier contains the same information 

about the signal interface. Go to the documentation you have open in a browser 

window.  
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28. Enter “signal” into the search box.  

A list of results will appear. Select the entry called “signal” from the API Reference 

Manual: 

 

29. Go back to the source code and the template level_checked_signal.  

Note how it defines implementations for signal_raise() and signal_lower() 

inside the implements signal block. When something calls the signal interface in 

the port macc.control.port.done[N], these methods are called.  

The methods check the rules of the signal interface (you are not allowed to call raise 

or lower multiple times in a row) then call the on_signal_raise() and 

on_signal_lower() to perform the actual model actions corresponding to signal 

raising and lowering. These two methods are declared default, indicating that they 

can be overridden by objects using this template: 

    method on_signal_raise () default { 
        log info, 2: "Default implementation called that does nothing"; 
    } 
 
    // Same for signal_lower. 
    method on_signal_lower () default { 
        log info, 2: "Default implementation called that does nothing"; 
    } 

30. Check the code for port done again. It includes the template with an is statement.  

port done[i<max_compute_units] is level_checked_signal { 
    param desc = "Completion signal from compute units"; 
    ... 

It then implements specific versions of on_signal_raise() and on_signal_lower() 

to do the appropriate work in the model.  

Check that on_signal_raise() does indeed get called. Use inline Python to call the 

interface function of the port. To see the log messages, raise the log level to 3.  

31. Raise the log level to 3 for macc.control: 

simics> log-level macc.control 3 
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32. Call the method: 

simics> @conf.macc.control.port.done[1].iface.signal.signal_raise() 

The output indicates that a bit is being set in the done register.  

33. Check that this is indeed the case: 

simics> print-device-reg-info macc.control.bank.ctrl.done 

It is a bit interesting that this happened when no operation was in progress. On the 

other hand, is this something the hardware model should check for? It is a judgement 

call how much checking to include in a device model.  

34. Try raising the signal again: 

simics> @conf.macc.control.port.done[1].iface.signal.signal_raise() 

In this case, the model complains with a spec-violation.  

35. Lower the signal to return the system state to where it was previously. 

simics> @conf.macc.control.port.done[1].iface.signal.signal_lower() 

6.5 Inspect the connection from the control unit to the compute units 

36. Since the control unit controls multiple compute units, it uses arrays of connections. 

Go to the editor where m_control.dml is open, and search for “connect 

compute_unit_control”.  

The declaration looks like this: 

connect compute_unit_control[i<max_compute_units] { 
    param desc = "Connection to the compute unit control ports"; 
    …  
    interface m_compute_control; 

37. This declaration results in an attribute called compute_unit_start being added to 

the control unit model. The attribute value is expected to be a list of objects.  

38. Check the current value of the attribute in the current configuration: 

simics> macc.control->compute_unit_control 

It is a list of eight elements, the first two of which point at compute units 0 and 1. The 

rest of the items are NIL, indicating that there is nothing connected to those slots.   

39. The control unit also has an attribute indicating the total number of connected 

compute units. This attribute is used as the master in iterations inside the device 

model, and the model expects its value to be consistent with the list.  

Look at the configuration attributes of the control unit:  

simics> list-attributes macc.control 

40. Another way to inspect the configuration of a model is to invoke its info command. 

Ideally, all device models should implement a custom info command to allow a quick 

and easy-to-read inspection of the device configuration. Adding such commands is 
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good practice, but the framework cannot enforce that. Thus, some models might 

have empty or misleading info commands.  

The control unit model does have a useful info command: 

simics> macc.control.info 

41. Check the setup in the other subsystem, macc8: 

simics> macc8.control.info 

Here, all the slots are filled with references to compute units.  

42. The configuration setup code is responsible for making sure that the configuration is 

consistent. Go to the 003-control-unit-setup.py file (that you already opened 

above). Scroll down to the loop starting with “for i in range(N_units):” 

For each created compute unit, the code needs to: 

• Connect the control unit to the compute unit 

• Connect the compute unit to the control unit 

• Add the unit to the memory map 

It also has to set up the compute unit configuration in the control unit correctly.  

Getting this right is actually very easy in code, since the number of compute units is a 

variable.  

6.6 Inspect register memory mappings 
The integrated setup adds the register memory map to the configuration.  

43. Check the memory map of the macc subsystem, using the namespaced map 

command. 

simics> macc.register_memory.map  

The output should look like this: 

┌──────┬─────────────────────────┬──┬──────┬──────┬──────┬────┬─────┬────┐ 
│  Base│Object                   │Fn│Offset│Length│Target│Prio│Align│Swap│ 
├──────┼─────────────────────────┼──┼──────┼──────┼──────┼────┼─────┼────┤ 
│0x0000│macc.control.bank.ctrl   │  │0x0000│0x0080│      │   0│    8│    │ 
│0x0080│macc.compute[0].bank.ctrl│  │0x0000│0x0010│      │   0│    8│    │ 
│0x00c0│macc.compute[1].bank.ctrl│  │0x0000│0x0010│      │   0│    8│    │ 
└──────┴─────────────────────────┴──┴──────┴──────┴──────┴────┴─────┴────┘ 

Note that the mapped objects are all register banks. The Base column indicates 

where it is mapped. Offset should be zero in most cases. The Length indicates the 

length of the mapping – note that there is empty space between the mapped 

devices. Ignore the rest of the columns for now.  

44. Another way to view the memory map is using the memory-map command: 

simics> memory-map macc.register_memory 

45. Check the memory map of the macc8 subsystem: 

simics> macc8.register_memory.map  
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46. Look at the registers of the macc.control device’s ctrl register bank: 

simics> print-device-regs macc.control.bank.ctrl 

At offset zero, there is an eight-byte register holding the number of attached 

compute units. At offset 32, there is another register holding a bitmap representing 

the same information.  

6.7 An excursion into endianness 

47. Read the register at offset zero, using a read operation to the memory map. You 

need to specify the offset, side of the read, and the interpretation of the bytes read 

(little endian in this case). Set the output radix to hexadecimal to make it easier to 

see the individual bytes: 

simics> output-radix 16 
simics> macc.register_memory.read address = 0 8 -l 

Note about endianness. 

Internally in a device model, the value of a register is typically saved as a single 

integer variable. This could be said to have no inherent endianness.  

Endianness is applied when a device register is read from software or from the 

command line. At that point, an array in the memory operation is filled in with a 

sequence of byte values corresponding to either a little-endian or big-endian 

representation of the value, as determined by a param in the DML code. This is 

typically set for the entire device but can be set per bank if needed.  

The read command then converts this byte array back to an integer value for 

presentation. This is where the -l and -b flags come in. Unlike the named register 

read commands, the read command only sees a sequence of bytes in memory and 

needs help to interpret them correctly.   

48. Read the register using big-endian byte ordering (intentionally mis-interpreting the 

byte array): 

simics> macc.register_memory.read address = 0 8 -b 

49. Inspect the raw bytes using the x command: 

simics> macc.register_memory.x address = 0 8 

The result of the above should look something like this (all output in hex): 

simics> macc.register_memory.read address = 0 8 -l 
0x0002 (LE) 
simics> macc.register_memory.read address = 0 8 -b 
0x0200_0000_0000_0000 (BE) 
simics> macc.register_memory.x address = 0 8 
p:0x00000000  0200 0000 0000 0000                      ........ 

50. When reading the register using its name, the integer value is returned without any 

need to specify the endianness since that is given by the register metadata. Try 

reading the register using its name instead: 

simics> read-device-reg macc.control.bank.ctrl.compute_units 
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6.8 Run a parallel compute job 

Use the two-way parallel subsystem macc to compute a fractal, using two compute units 

to render it. This means setting up two descriptors, one for each compute unit, and 

having them write the results to two adjacent blocks of memory.  By splitting the work 

vertically, it is trivial to combine the output of multiple compute units.  

Consider the previously used descriptor plotting: 

• 1000 pixels high 

• 1000 pixels wide 

• Bottom = 0.5 

• Top = 0.7 

• Left = -0.6 

• Right = -0.4 

• Results at 0x2000 

The first descriptor would be: 

• 500 pixels high 

• 1000 pixels wide 

• Bottom = 0.6 (this is the top half) 

• Top = 0.7  

• Left = -0.6, right = -0.4 (same as above) 

• Results at 0x2000 

• The descriptor can be located at the location used before, 0x1000 

And the second: 

• 500 pixels high 

• 1000 pixels wide 

• Bottom = 0.5 

• Top = 0.6 (equal to bottom above) 

• Left = -0.6, right = -0.4 (same as above) 

• Results at 0x2000 + the amount of space taken by the above rendering. Which is 

500 pixels by 1000 pixels by 16 bits, or exactly 1 million bytes.  

• This is a separate descriptor, located at 0x1100 

Doing this kind of work from the command line is a way to prototype the design of the 

software needed to use the accelerator. Later, when eventually writing the target 

software, the design will have been tested in a quick-turn-around interactive environment 

with much better error reporting than running actual software on the target system.  

51. Raise the log-level on the macc subsystem to see what happens behind the scenes.  

simics> log-level macc 2 -r 

52. Create the top-half descriptor: 

simics> @create_m_compute_descriptor(conf.macc.local_memory, 0x1000, 
0x2000, 0.6, -0.6, 0.7, -0.4, 1000, 500, 256) 
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53. Create the bottom-half descriptor: 

simics> @create_m_compute_descriptor(conf.macc.local_memory, 0x1100, 
0x2000 + 1_000_000, 0.5, -0.6, 0.6, -0.4, 1000, 500, 256) 

54. Set the descriptor pointer for compute unit zero, through the register memory map. 

Find the address locally in the bank: 

simics> print-device-regs "macc.compute[0].bank.ctrl" 

55. Write to offset zero, adding in the mapping address of compute unit 0 (which is 0x80, 

as seen above from the memory-map command): 

simics> macc.register_memory.write 0x80 0x1000 8 -l 

56. Do the same for compute unit one, which is mapped from 0xc0: 

simics> macc.register_memory.write 0xc0 0x1100 8 -l 

57. Check that the descriptor registers have indeed been set: 

simics> print-device-regs "macc.compute[0].bank.ctrl" 
simics> print-device-regs "macc.compute[1].bank.ctrl" 

58. To start an operation, write the start register of the control unit. This will in turn start 

the work in each compute unit using the control interface. The value to write to the 

start register is the number of units to use for the job, which could be less than the 

maximum. The start register is found at offset 0x08.  

simics> macc.register_memory.write 0x08 2 8 -l 

Log messages will be printed indicating that the compute units have been activated.  

59. Check the status register of the control unit: 

simics> print-device-reg-info macc.control.bank.ctrl.status 

The processing field is set and the done field is not, indicating an operation in 

progress.  

60. Check the events posted:  

simics> peq 

Check that there are two completion events posted, one for each compute unit.  

61. Run until the computation has completed, using a notifier. The control unit uses the 

same notifier name as the compute unit. To wait for it from the control unit 

specifically, provide an object in addition to the notifier name to the run-until 

command: 

simics> bp.notifier.run-until object = macc.control name = m-compute-
complete 

When the simulation stops, the log messages should indicate that the computation 

in each compute unit completed, and after that that the control unit received signals 

indicating that the compute units are in “done” state.  
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62. Check the current time in the simulation. Note that there is one clock inside each of 

the accelerator subsystems created. Check both using -all to ptime: 

simics> ptime -all 

Despite having nothing to do, the clock in the macc8 subsystem has moved forward. 

This is expected, as the Simics simulation framework makes sure to run all clocks in 

the system (with a maximum difference equivalent to the current time quantum).  

63. Check the contents of the done register in the control unit. This is a bit mask that 

tracks the completion status of each compute unit used.  

simics> print-device-reg-info macc.control.bank.ctrl.done 

64. Check the status register of the control unit: 

simics> print-device-reg-info macc.control.bank.ctrl.status 

The done bit is set and the processing bit is zeroed.  

65. Check the status register of compute unit zero: 

simics> print-device-reg-info "macc.compute[0].bank.ctrl.status" 

The register also has its done bit set.  

66. Clear the done state for the whole accelerator subsystem by writing a 1 to the done 

bit. There is no count value to worry about:  

simics> macc.register_memory.write 0x10 0x8000_0000_0000_0000 8 -l 

The log messages indicate that the control unit reaches out to the compute units via 

the clear_done signal to clear all their “done” state. They also lower their respective 

done signals towards the control unit.  

67. The done register should now be all zero. Check it: 

simics> print-device-reg-info macc.control.bank.ctrl.done 

68. Also check the status register of compute unit zero: 

simics> print-device-reg-info "macc.compute[0].bank.ctrl.status" 

This has also been cleared (as should be obvious from the log messages).  

6.9 Display the results 

The above focused on the control flow between the control unit and the compute units. 

Next, check that the results are correct by displaying them. The display code used 

previously is already loaded by the start scripts.  

69. Run the simulation to avoid the greying out of the console that the Simics simulator 

applies any time the simulation is stopped. To see the full-color version, make sure to 

run the simulation. 

simics> r 

Note that the virtual time proceeds very quickly since there is nothing happening in 

the simulation. This is harmless.  



 

Simics Simulator Educational Workshop 02 – Model Building 49 

70. Call display_m_result() like above – but note that the objects have changed name 

since they have been put into the macc namespace: 

running> @display_m_result(conf.macc.con, conf.macc.local_memory, 
0x2000, 1000, 1000, 256) 

71. Check the current time a few times: 

running> ptime -all 

6.10 Error handling/specification violations 
With the simulation running, test the error handling of the control unit registers. Bad use 

of registers should result in specification violation log messages from the model.  

72. Clear the done state of the status register again (it is already cleared): 

running> macc.register_memory.write 0x10 0x8000_0000_0000_0000 8 -l 

73. Write to the read-only compute unit count register: 

running> macc.register_memory.write 0x00 0xffff 8 -l 

74. Write an invalid value to the start register: 

running> macc.register_memory.write 0x08 0xffff 8 -l 

75. To see where these log messages come from in the code, go back to the 

m_control.dml file that should still be open in an editor. Search for the last message 

printed, “Invalid value”.  

You should find this code: 

    if ((unitcount==0) ||  
        (unitcount > connected_compute_unit_count.val )) { 
        log spec_viol, 1, control : 
        "Invalid value for compute start: requested %d (expected 1 to %d).", 
            unitcount, connected_compute_unit_count.val; 
        return; 
    } 

Such checks for input from the software are good modeling practice. They also help 

protect the model functionality from bad inputs, making the model more robust.  

76. Exit this simulation session. 

simics> exit 
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7 Package the Accelerator as a Component 

To easily create the accelerator subsystem and facilitate its connections to other part of 

the simulated system, a Simics simulator component is used.  

Logically, a component represents a subsystem (set of objects) and its high-level 

connections to the rest of the system. An instance of a component is created using a 

custom command-line command. It is connected to other components using 

component-level command-line connect commands. Thus, the component for the 

accelerator subsystem can be treated as a virtual PCIe card that is connected to a virtual 

PCIe slot on the virtual quick-start platform. Components are also configurable with 

component-level configurations, such as the number of compute units in the accelerator. 

Physically, the implementation of a component is a Simics simulator class written in 

Python, using the components framework. The code in the component creates objects 

and the internal connections between them in a way very similar to the Python scripts 

used previously in this workshop. The component is present in the simulation 

configuration as an object that provides a namespace for the objects in the subsystem. 

There is also code in the components that take action when one component is connected 

to another component and sets up the references between the objects inside the 

components. Component connectors are not involved when the connected objects 

communicate during the simulation.  

Components are mostly used when setting up a new target system, but they can also be 

used at run time to do things like create a new USB disk to connect to running target 

system. Like everything in the Simics simulator, components can be created and 

connected during run time, and their connections can be changed (where that makes 

sense).  

Component creation can be done in two ways. Typically, when setting up a system, all 

components are created in non-instantiated form first and connected together. This 

essentially creates a component-level template for the system to create. Then, once all 

components are in place, the instantiate-components command is used to cause all the 

objects to be created. Essentially, the code in the components creates a set of pre-

configuration objects which are then sent to SIM_add_configuration() when the 

instantiate-components command is called. The commands creating non-instantiated 

components are called create-X, where X is the name of the component. There are also 

commands called new-X, which instantiate the component immediately.  

The component for the accelerator subsystem looks like the below, with the internal 

connections simplified compared to previous illustrations. It has two connectors, one to 

PCIe to connect to the QSP, and one to a graphics console.  
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The component also introduces the display unit model, driving the graphics console 

“from hardware” instead of drawing from a script as was done previously. The display unit 

has a set of control registers and needs a software driver just like all the other hardware 

units. 

7.1 Copy the component source code to the project  
To have access to the source code, copy it to the project and open it in an editor. 

1. Copy the component source code to the project. It counts as a device.  

$ bin/project-setup --copy-module m-accelerator-comp 

2. Open the file [project]/ modules/m-accelerator-comp/m_accelerator_comp.py 

in an editor, to get the source code of the component.  

3. Build all the modules in the project, including the component.  

$ make 

7.2 Test the component stand-alone 

4. Start a new simulation from script 004-: 

$ ./simics targets/workshop-02/004-use-component.simics 

5. List the objects in the simulation configuration: 

simics> list-objects 

6. Check the help on the component-creation command for the accelerator: 

simics> help new-m-accelerator-comp 

7. Create a new accelerator called macc, with 8 compute units: 

simics> new-m-accelerator-comp macc compute_units = 8 
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Control registers

PCIe Config
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Note that the simple GUI control window updated to show an icon for the 

accelerator. The system information is coded into the component.  

 

8. Use the status command to check the configuration attributes of the component: 

simics> macc.status 

9. Use the info command to inspect the contents of the component: 

simics> macc.info 

This command shows the “slots” of the component, i.e., the objects contained in it.  

simics> macc.info  
Information about macc [class m_accelerator_comp] 
================================================= 
 
Slots: 
               cell : macc.cell 
              clock : macc.clock 
         compute[0] : macc.compute[0] 
         compute[1] : macc.compute[1] 
         compute[2] : macc.compute[2] 
         compute[3] : macc.compute[3] 
         compute[4] : macc.compute[4] 
         compute[5] : macc.compute[5] 
         compute[6] : macc.compute[6] 
         compute[7] : macc.compute[7] 
            console : macc.console 
            control : macc.control 
            display : macc.display 
       local_memory : macc.local_memory 
                ram : macc.ram 
    register_memory : macc.register_memory 
 
Connectors: 
            console : graphics-console     down  hotplug 

It also shows a single connector – to a graphics console. There is no PCIe connector 

since no PCIe support was requested when setting up the component.  

10. Inspect the objects of the component using the list-objects command. Hide the port 

objects to keep the output reasonably short: 

simics> list-objects -tree namespace = macc -hide-port-objects 
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The output looks like this: 

simics> list-objects -tree namespace = macc -hide-port-objects  
┐ 
├ cell ┐ 
│      └ ps  
├ clock ┐ 
│       └ vtime ┐ 
│               ├ cycles  
│               └ ps  
├ compute[0..7]  
├ console  
├ control  
├ display  
├ local_memory  
├ ram ┐ 
│     └ image  
└ register_memory  

Note the object called console – it is the component connector used to connect 

from the accelerator subsystem to the graphics console. Each connector has a 

corresponding object in the object hierarchy.  

11. Create a graphics console for the connector to connect to: 

simics> new-gfx-console-comp gcon 

12. Check the contents of the gcon component: 

simics> gcon.info 

This has a connector called device, of type graphics-console, and direction up. This 

matches the console connector of the accelerator, which has the same type but the 

direction down. Thus, these two connectors are connectable.  

13. Connect them together: 

simics> connect macc.console gcon.device 

The console will update its contents and size to correspond to the default “empty” 

state of the display unit. The display unit drives and update to the console object on 

connection.  

7.3 Look at the component source code 
Now that you have seen the component in action, have a look at its source code.   

14. Go to the file [project]/ modules/m-accelerator-comp/m_accelerator_comp.py 

that you should have opened in an editor.  

15. Look at the component declaration. It is a Python class that inherits from the 

StandardComponent class.  

class m_accelerator_comp(StandardConnectorComponent): 
    """Component for the mandelbrot accelerator subsystem.""" 
    _class_desc = "mandelbrot accelerator component" 
    _help_categories = () 
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16. Scroll down to find the component configuration arguments. They are declared as 

subclasses inside the component class. For example: 

    class compute_units(SimpleConfigAttribute(2,"i")): 
        """Number of compute units in this accelerator instance.""" 
        ... 

17. The core functionality of the component is contained in the add_objects() method.  

    def add_objects(self): 
        ... 
        # Memory  
        ram = self.add_pre_obj('ram', 'ram') 
        ram_image = self.add_pre_obj('ram.image', 'image') 
        ram_image.attr.size = self.ram_size.val  
        ram.attr.image = ram_image   
        local_memory.attr.map = [[0x0000, ram, 0, 0, self.ram_size.val]] 
        ... 

Note how similar this code is to the code used in scripts to set up ad-hoc Simics 

simulation configurations. It uses a wrapping around pre-conf objects that is specific 

to components (add_pre_obj) and that automatically puts the created object into 

the component namespace. There is no call to SIM_add_configuration(), as that is 

taken care of by the components framework.  

There is no assignment to the queue attribute of objects either, as that is also 

handled by the component system. If the component is set up with a local clock that 

will be used, otherwise the component system will find a clock to use (typically the 

first processor of the machine that the accelerator is connected to over PCIe),  

18. The connections to other components are set up in the setup() method, found 

towards the start of the file.  

    def setup(self): 
        super().setup() 
        ... 
        ## Add connector to the graphics console 
        self.add_connector('console', 
                           connectors.GfxDownConnector('display', 'console')) 
        ... 

The connections are added using add_connector(), using pre-defined connector 

types (modelers can also define their own connector types). All that is needed is to 

provide a name for the connector itself ('console') and indicate the actual object 

that is the target of the connection ('display').   

19. To see some basic documentation on a component connector, use Python help.  

simics> @help ( connectors.GfxDownConnector) 
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7.4 Run a compute job  

Set up descriptors in the same way as in Section 6.8. 

20. Create the top-half descriptor. Note that the name of the local_memory object is the 

same as above, since the component was created with the same name as the 

subsystem. 

simics> @create_m_compute_descriptor(conf.macc.local_memory, 0x1000, 
0x2000, 0.6, -0.6, 0.7, -0.4, 1000, 500, 256) 

21. Create the bottom-half descriptor: 

simics> @create_m_compute_descriptor(conf.macc.local_memory, 0x1100, 
0x2000 + 1_000_000, 0.5, -0.6, 0.6, -0.4, 1000, 500, 256) 

22. Write the descriptor registers using their names (for variety): 

simics> write-device-reg macc.compute[0].bank.ctrl.descriptor_addr 
0x1000 
simics> write-device-reg macc.compute[1].bank.ctrl.descriptor_addr 
0x1100 

23. Start the operation: 

simics> write-device-reg macc.control.bank.ctrl.start 2 

24. Raise the log level to see what happens: 

simics> log-level macc 2 

25. Run the simulation forward: 

simics> r 

The operation will complete very quickly, leave the simulation running.  

7.5 Display results using the display unit  
To display the results using the display unit, it is necessary to first set up a color table 

(mapping iteration values computed by the compute units to RGB color values). Then, 

the display unit needs to be configured with information about the size of the results and 

where in memory the results are found.  

Finally, a redraw request will pick up the results of the compute, convert each pixel to an 

RGB value, and send it to the console. Technically, the model actually maintains an 

internal buffer that contains the complete display state, since the graphics console 

model does not have that responsibility.  

26. List the control registers of the display unit: 

running> print-device-regs macc.display 
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27. Check where it is mapped in the register space of the accelerator subsystem: 

running> macc.register_memory.map 

The control registers for the display are mapped from offset 0x300 and forward. 

This is useful to write the target software, but for now the interactive exploration will 

use named register accesses.  

28. Set the size of the display: 

running> write-device-reg macc.display.bank.regs.width 1000 
running> write-device-reg macc.display.bank.regs.height 1000 

29. Set the number of iterations used (256): 

running> write-device-reg macc.display.bank.regs.max_iter 256 

30. Set the address of the results (0x2000):  

running> write-device-reg macc.display.bank.regs.iter_data_addr 0x2000 

31. At this point, a color table is needed. The color table will need to cover 257 values 

(from zero to the maximum iteration count), each for 4 bytes. Which requires just 

about 1KiB of RAM. Given that there is a huge memory bank on the accelerator, this 

can be jammed in between the descriptors and the results area.  

Check where a table containing 257 entries, and starting at 0x1200 would end up: 

running> hex 0x1200 +  4 * 257 

The value is below 0x2000, so a color table at 0x1200 makes sense.  

32. Set the color table pointer register: 

running> write-device-reg macc.display.bank.regs.color_table_addr 
0x1200 

33. Check the configuration of the display unit using its status command: 

running> macc.display.status 

34. To create the color table, use a ready-made Python helper script. Load the Python 

file (it is located in the installation, you can take a look at it if you want to): 

running> run-python-file "%simics%/targets/workshop-02/004-build-color-
table.py" 

35. Use the Python function create_color_table() to create a color table. It takes four 

arguments: the memory space to write the result to, the address of the table, the 

maximum iteration value, and the Python coloring function to use. There are two 

coloring functions provided, colorize_1 and colorize_2.  

Use colorize_1: 

running> @create_color_table(conf.macc.local_memory, 0x1200, 256, 
colorize_1) 



 

Simics Simulator Educational Workshop 02 – Model Building 57 

36. Check the resulting table in memory (using little-endian display makes it easier to 

read, as each word will then be rendered as #00RRGGBB): 

running> macc.local_memory.x 0x1200 group-by = 32 -l 1028 

37. Finally, update the display. Write 1 to the update register: 

running> write-device-reg macc.display.bank.regs.update 1 

This should result in a fairly subdued picture.  

38. Try the other available coloring function: 

running> @create_color_table(conf.macc.local_memory, 0x1200, 256, 
colorize_2) 
running> write-device-reg macc.display.bank.regs.update 1 

This is a bit more colorful.  

39. The Simics simulator graphics console can save the displayed image as a PNG file, 

using the screenshot command on the console object. Try it: 

running> gcon.con.screenshot m1.png 

40. Go to a file browser, locate your Simics project, and open the image. Exactly how 

depends on how your Linux or Windows host is configured. Here is one example, 

including zooming in to see the colored pixels at the edge of the fractal: 
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41. Exit this simulation session. 

running> exit 

7.6 Connect the accelerator using PCIe 
The accelerator is designed to be connected to the QSP virtual platform over PCIe. This 

is all automated in the 006- script that you tried back in section 3. It can also be done 

manually.  

42. Run the script 006- with the parameter add_accelerator set to FALSE. This will skip 

the accelerator setup and leave you with a standard QSP setup.  

$ ./simics targets/workshop-02/006-accelerator-in-qsp.simics 
add_accelerator=FALSE 

43. Check that there is no accelerator present: 

simics> list-objects namespace = qsp 

44. Create a new uninstantiated accelerator component, with no clock but with PCIe 

enabled. Use $system to get name of the top-level QSP machine, like it is done in typical 

setup scripts: 

simics> create-m-accelerator-comp $system.macc compute_units = 8 
use_pcie = TRUE use_clock=FALSE 

45. Connect the accelerator to the QSP using PCIe. This requires some knowledge 

about the hardware in the QSP. The QSP is a traditional personal computer (PC) 

where there is a north bridge close to the processors, and a south bridge that holds 

slower input and output devices. In this case, the PCIe connectors on the north 

bridge should be used.  

Check the available connections on the “north bridge” component in the QSP 

machine: 

simics> $system.mb.nb.info 

46. The slot used by the defaults of script 006- is pcie_slot[1]. The slot used affects 

the PCI bus number and thus the /sys/bus file system path required by the m-app 

program. Try a different slot instead, pcie_slot[2]: 

simics> connect qsp.macc.pci "qsp.mb.nb.pcie_slot[2]" 

47. Create a new uninstantiated graphics console component: 

simics> create-gfx-console-comp $system.macc.gcon 

48. Connect the accelerator and the graphics console: 

simics> connect qsp.macc.console qsp.macc.gcon.device 

49. Instantiate the components: 

simics> instantiate-components 
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50. In case the new graphics console is not visible, use the show command: 

simics> qsp.macc.gcon.con.show 

51. Check the accelerator connections: 

simics> qsp.macc.status 

It should be connected to the console and PCIe, like this: 

simics> qsp.macc.status 
Status of qsp.macc [class m_accelerator_comp] 
 
... 
 
Connections: 
               console : qsp.macc.gcon:device 
                   pci : qsp.mb.nb:pcie_slot[2] 

52. Check the connections from the north bridge: 

simics> qsp.mb.nb.status 

You should see the pci connector on the qsp.macc component being connected to 

the pcie_slot[2] connector.  

53. Run the simulation to boot the target system: 

simics> r  

54. Once the target system has booted, check where the accelerators ended up from 

the perspective of the target software. Use the known vendor and device ID as a 

filter to lspci.  

Go to the target system serial console and enter: 

# lspci -d 8086:0d5f 

This should show the device on bus 03, instead of bus 02 as in the introduction.  

55. Stop the simulation. 

running> stop 

7.7 Dig deeper into the PCIe modeling 

Time to look a bit deeper at how PCIe works in the Simics simulator. Unfortunately, the 

PCIe slot connector names has no direct relationship to the models of the PCIe ports in 

the north bridge, or the software-exposed bus numbers. They all follow from the 

hardware design the model is based on, and that is not one-to-one. Instead of guessing at 

names it is better to follow the trace from the accelerator through the model. 

The control unit in the accelerator subsystem implements the PCIe functionality for the 

accelerator – configuration bank, mapping of BARs, etc.  

56. To find the actual PCIe “bus” that the accelerator is connected to, check the value of 

the pci_bus attribute on the control unit: 

simics> list-attributes qsp.macc.control substr = pci_bus 
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The value should be qsp.mb.nb.pcie_p3.downstream_port. 

57. List the objects inside the downstream port: 

simics> list-objects -tree namespace = 
qsp.mb.nb.pcie_p3.downstream_port  

58. The cfg_space holds the configuration banks of the objects on the bus. Use the map 

command to see the devices on the port: 

simics> qsp.mb.nb.pcie_p3.downstream_port.cfg_space.map  

The configuration register bank is mapped using a “function number”. This is a 

convention used with PCI and PCIe in the Simics framework.  

simics> qsp.mb.nb.pcie_p3.downstream_port.cfg_space.map  
┌───────────┬──────────────────┬───┬──────┬───────────┬──────┬────┬─────┬────┐ 
│       Base│Object            │ Fn│Offset│     Length│Target│Prio│Align│Swap│ 
├───────────┼──────────────────┼───┼──────┼───────────┼──────┼────┼─────┼────┤ 
│     0x0000│qsp.macc.control  │255│0x0000│0x0001_0000│      │   0│    8│    │ 
├───────────┼──────────────────┼───┼──────┼───────────┼──────┼────┼─────┼────┤ 

… 

The length, 0x1_0000 bytes (4192), indicate that this is a PCIe extended 

configuration space. Old PCI just used 256 bytes.  

59. Since the target system is booted, software has set up the memory mappings of the 

device using the PCIe Base Address Registers (BARs). Check out the mappings in 

the PCIe port’s mem_space (used for PCI “memory” accesses): 

simics> qsp.mb.nb.pcie_p3.downstream_port.mem_space.map 

60. Compare this to the values written to the BAR registers: 

simics> output-radix 16 
simics> print-device-regs qsp.macc.control.bank.pci_config pattern = 
"base_address*" 

The mapped addresses align with the addresses in the BARs.  
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simics> qsp.mb.nb.pcie_p3.downstream_port.mem_space.map  
┌───────────┬───────────────────┬──┬──────┬───────────┬──────┬────┬─────┬────┐ 
│       Base│Object             │Fn│Offset│     Length│Target│Prio│Align│Swap│ 
├───────────┼───────────────────┼──┼──────┼───────────┼──────┼────┼─────┼────┤ 
│0xf000_0000│qsp.macc.local_    │  │0x0000│0x0400_0000│      │   0│     │    │ 
│           │memory             │  │      │           │      │    │     │    │ 
├───────────┼───────────────────┼──┼──────┼───────────┼──────┼────┼─────┼────┤ 
│0xf400_0000│qsp.macc.control.  │  │0x0000│     0x0100│      │   0│    8│    │ 
│           │bank.dev_msix_pba  │  │      │           │      │    │     │    │ 
├───────────┼───────────────────┼──┼──────┼───────────┼──────┼────┼─────┼────┤ 
│0xf400_1000│qsp.macc.control.  │  │0x0000│     0x0100│      │   0│    8│    │ 
│           │bank.dev_msix_table│  │      │           │      │    │     │    │ 
├───────────┼───────────────────┼──┼──────┼───────────┼──────┼────┼─────┼────┤ 
│0xf400_2000│qsp.macc.register_ │  │0x0000│     0x1000│      │   0│     │    │ 
│           │memory             │  │      │           │      │    │     │    │ 
└───────────┴───────────────────┴──┴──────┴───────────┴──────┴────┴─────┴────┘ 
… 
simics> print-device-regs qsp.macc.control.bank.pci_config pattern = "base_address*" 
Offset  Name            Size        Value 
----------------------------------------- 
0x0010  base_address_0     4  0xf400_2000 
0x0014  base_address_1     4  0xf400_1000 
0x0018  base_address_2     4  0xf400_0000 
0x001c  base_address_3     4  0xf000_0000 
0x0020  base_address_4     4       0x0000 
0x0024  base_address_5     4       0x0000 

61. The next question is how these addresses are mapped from the perspective of the 

processors in the system. All the processors in the simulated system are found using 

the list-processors command: 

simics> list-processors 

62. Pick the first processor listed, and check its info command: 

simics> qsp.mb.cpu0.core[0][0].info 

The object of interest is the “physical memory” of the processor. This is the memory 

space where all memory operations from the processor are sent. It uses physical 

addresses, not the virtual or logical addresses used in software.  

63. List the memory map of the processor’s physical memory: 

simics> qsp.mb.cpu0.mem[0][0].map 

This contains a mapping for the APIC connected to the core, and then a default 

mapping. Any access not hitting the APIC will go to qsp.mb.phys_mem, which is 

common to all the processors in the system.  

64. List the memory map of the common memory: 

simics> qsp.mb.phys_mem.map 

This shows several RAM mappings, plus a default mapping onwards.  
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65. Follow the trail into the PCI mapping: 

simics> qsp.mb.nb.pci_bus.port.mem.map 

Here there is a mapping for the pcie_p3.downstream_port.port.mem: 

┌───────────┬───────────┬──────┬───────────┬───────┬──────────┬────┬─────┬────┐ 
│       Base│Object     │    Fn│     Offset│ Length│Target    │Prio│Align│Swap│ 
├───────────┼───────────┼──────┼───────────┼───────┼──────────┼────┼─────┼────┤  
… 
├───────────┼───────────┼──────┼───────────┼───────┼──────────┼────┼─────┼────┤ 
│0xf000_0000│qsp.mb.nb. │      │0xf000_0000│0x0410_│          │   3│     │    │ 
│           │pcie_p3.   │      │           │   0000│          │    │     │    │ 
│           │downstream_│      │           │       │          │    │     │    │ 
│           │port.port. │      │           │       │          │    │     │    │ 
│           │mem        │      │           │       │          │    │     │    │ 
├───────────┼───────────┼──────┼───────────┼───────┼──────────┼────┼─────┼────┤ 
…  

This mapping has Offset=Base, which means that memory accesses will retain the 

full address when passed on. Thus, the memory addresses shown by 

qsp.mb.nb.pcie_p3.downstream_port.mem_space.map map directly to what comes 

out of the processor.  

66. Write to the first mapped address (0xf000_0000), from the processor’s memory 

map. This is equivalent to issuing an access to physical address 0xf000_0000 from 

code in the processor.  

simics> qsp.mb.cpu0.mem[0][0].write 0xf000_0000 0xcafef00d 4 -l 

67. Check that the local memory was updated: 

simics> qsp.macc.local_memory.x 0x00 group-by = 32 -l 

7.8 Drive the target software using the Simics simulator command line 
Next, it is time to test that the accelerator works as intended. Instead of typing the 

commands on the target console, use <con>.input commands from the Simics CLI to 

direct input to the target system. Note that each line has to end with \n to actually press 

enter on the target system to get the command executed. The serial console is 

represented by the object qsp.serconsole.con. 

68. Run the simulation again, so that it can respond to command-line commands: 

simics> r  

69. Insert the driver: 

running> qsp.serconsole.con.input "insmod m-acc-pcie-driver.ko\n" 

70. Check the results using dmesg: 

running> qsp.serconsole.con.input "dmesg | tail -20\n" 

71. Set up a memory access breakpoint to accesses to the local_memory on the 

accelerator. Cover the whole RAM, to make no assumptions about the software 

behavior. This means starting at offset zero and going on for 0x400_0000 bytes. 

Check the memory map first to see where the offset comes from: 
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running> qsp.macc.local_memory.map 
running> bp.memory.break qsp.macc.local_memory 0x0 0x400_0000 -w 

72. Next, use the application to display a fractal. Remember to use bus 03 instead of 02 in 

the device argument to the bus! Note that the backslash characters in the path to the 

device must be escaped so that they come out right: 

running> qsp.serconsole.con.input "./m-app mandel3.txt 1 1 
/sys/bus/pci/devices/0000\\:03\\:00.0/\n" 

73. The simulator will stop on the first memory access from software. The message 

should look something like this: 

[qsp.macc.local_memory] Breakpoint 3: qsp.macc.local_memory 'w' access to p:0x100 len=4 
val=0x101010 

The number written looks a lot like a color value.  Could this be the start of the color 

table? 

74. Check this hunch by removing the breakpoint and instead setting up a trace on the 

memory instead. This will log memory accesses that hit the defined area, but will not 

stop the execution.  

simics> bp.delete -all 
simics> bp.memory.trace qsp.macc.local_memory 0x000 0x04000000 -w 

75. Run the simulation: 

simics> r 

The result is a fairly long trace of memory accesses.  

76. Pause the simulation once the fractal is displayed.  

running> stop 

77. Scroll back up and look at the memory accesses. There are a long series of 4-byte 

accesses starting at address 0x100 and going on to 0x8d0.  

Compute the distance: 

simics> (0x8d0 - 0x100) / 4 

This agrees with the output from the serial console, which indicates that the maxiter 

value for this particular Mandelbrot specification was 500. Having 501 values in the 

color table makes sense, since the range of iteration values go from zero to maxiter 

(where obviously zero is kind of silly, but it simplifies the indexing code).  

78. Next, a set of writes to offset 0x2000 to 0x2020 represents the descriptor. Note the 

unnecessary write to address 0x201c, the padding word.  

79. Finally, there is a single very large write. This is the accelerator model saving the 

results from its internal buffers to the simulated memory in one single step.  

80. To get a better idea for the software interaction with the devices as well as the 

memory, add a memory trace on the register memory:  

simics> bp.memory.trace qsp.macc.register_memory 0x0000 0x0400 -w 
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81. The timing of each memory access can also shed light on the software behavior, and 

what takes time. Trace messages follow the log-setup settings. Set up basic time-

stamping, which will print the following for each message: the current processor or 

clock at the time the operation happened, its current instruction pointer/program 

counter, and the current cycle count.  

simics> log-setup -time-stamp 

82. Set up some logging in the accelerator: 

simics> log-level qsp.macc 2 

83. Run the simulation: 

simics> r 

84. Repeat the previous command on the serial console by sending Up arrow followed 

by Enter. This can be done using the -e flag to the input command, which provides 

for Emacs-style keystroke sequences: 

running> qsp.serconsole.con.input -e "Up Enter" 

85. After the display unit logs that it is displaying the picture, stop the simulation. 

simics> stop 

86. Scroll back up to the color table setup, and note how it the writes happen with an 

interval of between 200 and 300 cycles. There is probably room for improvement 

there, but it does not really matter compared to the time spent waiting for the 

accelerator to complete. For example, here are some cycle numbers from one run: 

[bp.memory trace] {qsp.mb.cpu0.core[1][0] 0x401208 93347821313132} [trace:4] 
qsp.macc.local_memory 'w' access to p:0x818 len=4 val=0xffac5c 
[bp.memory trace] {qsp.mb.cpu0.core[1][0] 0x401208 93347821313395} [trace:4] 
qsp.macc.local_memory 'w' access to p:0x81c len=4 val=0xffae5d 
[bp.memory trace] {qsp.mb.cpu0.core[1][0] 0x401208 93347821313658} [trace:4] 
qsp.macc.local_memory 'w' access to p:0x820 len=4 val=0xffb05e 

87. Find the write that starts the compute operation: 

[bp.memory trace] {…} […] qsp.macc.register_memory 'w' access to p:0x8 len=4 val=0x1 

After this write, several log messages have the same clock cycle count, ending with 

the large write of results to memory. Everything happens at the same instance in 

virtual time, since that is how the model has been designed. 

Using time-stamped logs is a good way to understand the simulation flow and 

operation timing.  

88. Exit the simulation. This concludes the component lab. 

simics> exit 
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8 Test Performance in Virtual and Real Time 

The accelerator performance can be measured in both virtual and real time. Virtual time 

measures the performance as seen from the target system, where the main variable is 

the use of parallelism as well as the size of the data to draw. Real time measures how 

quickly the simulator can complete each simulation job, primarily affected by how the 

compute unit model is implemented.  

8.1 Set up checkpoint 
To test performance, it is necessary to run from a booted system with the kernel driver 

installed and the application available. To avoid having to boot the system each time, 

save a checkpoint after the boot and use this for further testing.  

1. Start the Simics simulator using the script 007-: 

$ ./simics targets/workshop-02/007-prep-system-benchmarking.simics 

2. Run the simulation.  The script will take care of booting the target system, testing the 

application, and saving a checkpoint automatically. You can inspect the script in the 

installation to see what it does.  

simics> r 

The script will stop the simulator once the checkpoint has been saved. It will print the 

name and path of the checkpoint, for reference.  

3. List the checkpoints that the Simics simulator knows about – basically, checkpoints 

in the current project.  

simics> list-checkpoints 

There should be a checkpoint with the name printed from the script, and with a 

comment explaining what it is: 

simics> list-checkpoints  
… 
ws02-setup-for-benchmarking.ckpt 
  Target system booted to prompt, driver installed, ready to run benchmarks for   
  mandelbrot accelerator. 

4. Exit this simulation session. 

simics> exit 

5. From the host shell, check the contents of the checkpoint.  

$ ls -lh ws02-setup-for-benchmarking.ckpt/ 

The biggest file is the memory image, representing the changes to RAM from the 

UEFI and Linux boot, as well as operations after the boot like running the m-app 

application. 
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8.2 Run baseline performance test 

The baseline test is running with no parallelism in the target software use of the 

hardware, no threading in the compute unit model, no stall optimization in the control unit 

(see below), and with all target-visible hardware delays set to defaults.  

6. Start the Simics simulator using the script 008-, with default settings: 

$ ./simics targets/workshop-02/008-system-benchmarking.simics 

7. Run the simulation: 

simics> r 

This will automatically run the m-app on the target, rendering the bench1.txt file. 

The test file contains 100 images, at an iteration level of 200. The test is run three 

times in a row, to provide a more meaningful average.  

After each run of the software run complete, it will print the virtual and real time 

consumed. Something like this: 

Run 1/3 
  Host time (real time)      (s) : 125.74 
  Virtual time (target time) (s) : 0.9721 
 
Run 2/3 
  Host time (real time)      (s) : 124.22 
  Virtual time (target time) (s) : 0.9615 
 
Run 3/3 
  Host time (real time)      (s) : 125.66 
  Virtual time (target time) (s) : 0.96082 
 
Averages: 
 
  Host time (real time)      (s) : 125.21 
  Virtual time (target time) (s) : 0.9648 
 
Stopping simulation 

If this test completes in less than a minute of real time, it might be a good idea to 

switch to a heavier benchmark. To do that, add the argument 

“test_file=bench2.txt” or even “test_file=bench3.txt” to the command line.  

8. Note down the virtual and real time execution for this experiment, to have something 

to compare later runs to. The precise results will vary with the host.  

9. Exit this simulation session. 

simics> exit 

8.3 Look at the benchmarking script 

10. Use an editor to open the script 008-system-benchmarking.simics, as found in the 

Simics installation (not in your project). See Section 2.3 above for how to locate the 

installation. 
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11. Note how the input data file (test_file) to use, level of target compute parallelism, 

and the number of repetitions of the test to run are declared as parameters to the 

script.  

decl { 
! Start from checkpoint, run benchmarks  
 
    param test_file : string = "bench1.txt" 
    ! Test file to use on target system  
 
    param parallelism : int = 1 
    ! Parallelism to use in the run (1-8 unless you changed something) 
 
    param repeats : int = 3 
    ! Number of times to repeat test  
 
    param checkpoint_name : string = "ws02-setup-for-benchmarking.ckpt" 
    ! Name of checkpoint  
} 

12. The software on the target is run from the target serial console. The reason for this is 

mostly to show that something is happening. The commands could also be run using 

the Simics agent, but then the run would be very quiet.  

This is done by this code: 

    foreach $i in (range $repeats) { 
        @print(f"\nRun {simenv.i+1}/{simenv.repeats}") 
 
        # Test file, one-way parallel, level 2 verbose, and the pci node 
        bp.console_string.wait-then-write $sercon " # " $cmd 

13. The script picks up the start and end of a software run not by looking at the target 

serial console, but by using magic instructions. These magic instructions have been 

compiled into the target software, to signal points of interest. Where possible, this is 

a good way to only measure interesting parts of a workload. On real hardware, magic 

instructions are no-ops and thus they can be inserted into code that will run both on a 

simulator and on real hardware.  

        # Pick up start of core run 
        # Target software has been specially prepared with magic instructions  
        bp.magic.wait-for number=3 

14. The script picks up the current host time using Python, and the current virtual time 

by running a CLI command from Python: 

        @start_rt = time.time() 
        @start_vt = cli.global_cmds.ptime(_t=True)      

8.4 Look at the application code hooks 

15. Use an editor to open the file [simics]/targets/workshop-02/target-source/m-

app/m-app.c. 

16. Search for MAGIC in the code to see the hooks for the benchmarking system.  
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17. Note how MAGIC(1) and MAGIC(2) are used to bracket the computation and 

rendering of a single image: 

void do_one_mandelbrot(work_desc_t *desc, 
                       int          parallelism) { 
 
  // Allow Simics to catch the start of each image 
  MAGIC(1); 
  … 

18. Note how MAGIC(3) and MAGIC(4) are used to bracket the entire work of reading a 

work file: 

int do_mandelbrot_from_file(FILE *workfile_fp, int parallelism) { 
  … 
  // Hook for measuring time 
  MAGIC(3); 
 
  …  
  // Hook for measuring time 
  MAGIC(4); 

19. There is also a MAGIC(0) early in the main() function. MAGIC(0) is used by convention 

to be the generic “magic breakpoint”. If bp.magic.break is used without any 

argument, it will break on magic zero.  

 

8.5 Measure performance when using multiple compute units 
After looking at the architecture of the benchmark system, it is time to test some more 

variants to see how much time they take. 

20. Start the Simics simulator using the script 008- with parallelism set to 8: 

$ ./simics targets/workshop-02/008-system-benchmarking.simics 
parallelism=8 

This will result in a command line command on the target that is set up to tell the 

application program to run with all eight compute units in use.  

21. Run the simulation: 

simics> r 

22. When the simulation stops, compare the run time in virtual time and real time to the 

previous experiment.  

Note that the virtual time is much smaller, almost inversely proportional to the 

parallelism used. The lower virtual time also makes the real time much smaller since 

there is less virtual time to run through. 

While the same amount of compute work is being done, it seems that the target 

software waiting for the computation to complete is a significant part of the overall 

simulation time cost.  

23. Exit this simulation session. 

simics> exit 
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24. Start the Simics simulator using the script 008- with parallelism set to 4, to get a 

point in between 1 and 8: 

$ ./simics targets/workshop-02/008-system-benchmarking.simics 
parallelism=4 

25. Run the simulation: 

simics> r 

26. When the simulation stops, compare the run time in virtual time and real time to the 

previous experiment.  

27. Exit this simulation session. 

simics> exit 

8.6 Rebuild compute unit with threading 

28. Open the source code for compute unit: [project]/modules/m-

compute/m_compute.dml. 

29. Change the value of the parameter threaded_compute to true: 

param threaded_compute = true; 

30. Search the rest of the code for the identifier threaded_compute to see what this 

does. There are quite a few hits, showing how to synchronize between the threaded 

job and the main simulation thread, as well as how the threaded work is started.  

Read the comments in the code to understand what is done and why; that is 

intended as the primary source of this information.  

31. From the host shell, rebuild the device model and rerun all tests: 

$ make test 

The threaded implementation is very careful to avoid changing the semantics visible 

to the rest of the system. Thus, the same test should work.  

8.7 Measure performance with the threaded model  
The threaded model has its biggest effect on runs with parallelism in the workload. To get 

an idea for the effectiveness of the threading, rerun the 8-way parallel test from above 

and compare the run time in real time.  

32. Start the Simics simulator using the script 008- with parallelism set to 8: 

$ ./simics targets/workshop-02/008-system-benchmarking.simics 
parallelism=8 

33. Run the simulation: 

simics> r 

34. When the simulation stops, compare the run time in virtual time and real time to the 

previous experiment. The virtual time should be the very close to the previous runs 

with 8-way parallelism.  
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The real time execution is expected to be quite a bit smaller, but not eight times. The 

only part that is threaded is the compute work, and the simulation is doing many 

other things that are not affected by the parallel computation (Amdahl’s law in 

action). The expectation is that the execution time in real time is reduced by a factor 

of two to three.  

35. Exit this simulation session. 

simics> exit 

8.8 Maximize the effect of the threaded model 
The effect of threading a workload is always dependent on the relationship between 

serial and parallel components, and how much work can be run concurrently. The 

“bench1.txt” test is maybe a bit light on the amount of work available for concurrent 

execution. Simulation performance is almost always dependent on the nature of the 

workload. Use the much heavier test case “bench3.txt” to see if this is case here.  The 

amount of compute work required is roughly 20x bigger (4x the number of images,  5x 

the number iterations in each image). 

36. Start the Simics simulator using the script 008- with parallelism set to 8 and using 

the bench3.txt test file: 

$ ./simics targets/workshop-02/008-system-benchmarking.simics 
parallelism=8 test_file="bench3.txt" 

37. Check that it is running with the threaded model before continuing! The output 

should look like this: 

Accelerator parallelism   : 8 
Time per pixel (ps)       : 10000 
Model threading           : True 
Stall on status poll (ps) : 0 

38. Run the simulation: 

simics> r 

39. When the simulation stops, note that this run took a lot longer.  Virtual time increases 

by approximately 4x, since there are 4 times as many images to render. The virtual 

rendering time per image is not affected by the increased maximum iteration count, 

which might be considered an unrealistic hardware model – adding that to the virtual 

time computation is a possibility.   

40. Exit this simulation session. 

simics> exit 

41. Turn of threading:  Open the source code for compute unit: [project]/modules/m-

compute/m_compute.dml. 
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42. Change the value of the parameter threaded_compute to false: 

param threaded_compute = false; 

Why not make the threading controllable via a runtime attribute? That does make 

some sense for experiments like this – but also there is some additional code that is 

added to the model when compiled for threading that could theoretically disturb the 

execution. Thus, in to keep things really “clean”, it makes sense to rebuild when 

making changes like this to the model.  

In practice, an attribute that affects the nature of the computation would work fine 

for this code base. You can add that yourself, should not be very hard.  

43. From the host shell, rebuild the device model and rerun all tests: 

$ make test 

44. Start the Simics simulator using the script 008- with parallelism set to 8 and using 

the bench3.txt test file: 

$ ./simics targets/workshop-02/008-system-benchmarking.simics 
parallelism=8 test_file="bench3.txt" 

45. Check that it is running with the model that is not threaded before continuing! The 

script should print this information: 

Accelerator parallelism   : 8 
Time per pixel (ps)       : 10000 
Model threading           : False 
Stall on status poll (ps) : 0 

46. Run the simulation: 

simics> r 

47. This run can take a very significant amount of time. The expectation is that the virtual 

time is the same as for the previous run, but that the real time is four times or more 

longer. The threading of the device model has a larger effect on the real-time 

execution time when there is more work that can be done in parallel to the main 

simulation thread. 

48. Exit this simulation session. 

simics> exit 
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9 Improve Performance for Software Poll Loops 

The m-app application uses polling to detect the end of a compute run. The code sits in a 

tight loop reading the status register of the accelerator. Such code is fairly common 

when driving hardware that is expected to return “soon” – for very long operations, 

interrupts are more common. However, calling the driver to wait for an interrupt is a little 

bit complicated and time consuming. Thus, the m-app program uses polling.  

However, such polling can pose a performance issue for a virtual platform. The core of 

the issue is that doing a memory read to a device model to check the status of the flag is 

much more expensive than running regular instructions that do not touch devices. Thus, 

each iteration of the poll loop will only consume a small amount of virtual time but require 

a large amount of real time.  

It looks something like this, with the simulation cost of “100” being mostly indicative.  

 
 

In practice, the simulation time when using m-app is dominated by the polling due to this 

effect. 

This is a simulation performance problem that can be alleviated in the simulator itself by 

making reads to the polled register take more virtual time. This will reduce the number of 

times the loop needs to iterate before detecting the change in the register, thus reducing 

the amount of simulation time spent running roughly the same virtual time. In the Simics 

simulator, this is implemented by using the SIM_stall() call to insert a wait in the 
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execution of the target code. Using stalling, the above scenario would look like the below 

when using a 100k virtual processor cycle stall time: 

 
 

In this section, you will analyze the performance of the simulation to find the register that 

is being polled using standard performance and target system analysis tools.  

9.1 Analyze the simulation performance 

1. Start the Simics simulator using the script 008-, using default settings: 

$ ./simics targets/workshop-02/008-system-benchmarking.simics 

2. Run the simulation until the m-app program has started on the target system. This is 

achieved by looking for magic instruction number 3, which is used to mark the 

beginning of the actual work of the program (as discussed above in section 8.4): 

simics> bp.magic.run-until number = 3 

3. Wait until the run stops.  

4. Start the system-perfmeter tool using normal mode, additionally counting device 

accesses (using the flag -io). This provides sufficient information for this analysis, 

while not producing an overwhelming amount of output:   

simics> system-perfmeter mode = normal -io -window 

5. Run the simulation for half a virtual second: 

simics> r 500 ms 

As the simulation runs, the system-perfmeter tool will print one line every real-time 

second. In particular, note the columns called Slowdown and i I/O (meaning 

instructions per device access).  

6. When the simulation stops, a performance summary will be printed by the system-

perfmeter tool. The important lines for this exercise are Slowdown and Steps per 

I/O. They will look something like this (numbers will vary depending on the speed of 

the host and small differences in the target system state): 
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SystemPerf: Performance summary: 
-------------------------------- 
SystemPerf: Target:  4 CPUs in 1 cells [4] 
… 
SystemPerf: Slowdown:                          134 
… 
SystemPerf: Steps per I/O:                     15.06  
… 
 

A slowdown of 134 is not very good, even though the system is doing a lot 

computation on the host. The steps per IO number indicates that the processor runs 

about 15 instructions for each device access, on average. For best performance, 

device accesses should not happen much more often than one in 10k instructions or 

more. A low number typically indicates that software is running a polling loop 

somewhere.  

7. To figure out which device is being polled, use the io-stats command: 

simics> io-stats 

It indicates that basically all devices accesses are hitting the control device. The 

output would look something like the below. Note that it counts steps vs device 

accesses slightly differently from the system perfmeter.  

simics> io-stats 
Total io-accesses   :        59396436 
Total steps         :     20500958891 (in average an io access each 345) 
Total non-idle steps:     20500958891 (in average an io access each 345) 
 
Most frequently accessed device classes (Total): 
 
Accesses  Class           Percent 
59391612  m_control.ctrl   100.0% 
 
Most frequently accessed device objects (Total): 
 
Accesses  Object                      Class           Percent 
59391612  qsp.macc.control.bank.ctrl  m_control.ctrl   100.0% 

8. The command only shows the control unit in this case, since almost all accesses go 

there. To see more devices, use a 0% cutoff to the command: 

simics> io-stats cutoff = 0 

This will show a few more devices, which just makes it even clearer that accesses to 

the control unit totally dominate the device access count. 

9. To find the precise register, you need to use the bank coverage instrumentation tool. 

To do this, start a new simulation from the same script to get back to the same initial 

situation. 

simics> exit 

9.2 Pin-point polling register 

10. Start the Simics simulator using the script 008- with the same settings as above: 

$ ./simics targets/workshop-02/008-system-benchmarking.simics 
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11. Run the simulation until the application has started, just like above: 

simics> bp.magic.run-until number = 3 

12. Create a new bank coverage tool, targeting only the register bank indicated by io-

stats in previous experiment: 

simics> new-bank-coverage-tool banks = qsp.macc.control.bank.ctrl 

The bank coverage tool collects access count information for one or more banks. It is 

used for both ascertaining the register use coverage from software, and to 

investigate how often particular registers are accessed from software.  

13. Run the simulation for half a virtual second, just like above: 

simics> r 500 ms 

14. When the simulation stops, list the register access counts for the ctrl bank in the 

control unit: 

simics> coverage_tool0.access-count bank = qsp.macc.control.bank.ctrl  

The result is should indicate the register that is being accessed all the time: 

┌─────┬──────┬──────┬────┬──────────┐ 
│Row #│ Name │Offset│Size│  Count   │ 
├─────┼──────┼──────┼────┼──────────┤ 
│    1│start │0x0008│   8│        52│ 
│    2│status│0x0010│   8│59_391_559│ 
├─────┼──────┼──────┼────┼──────────┤ 
│Sum  │      │      │    │59_391_611│ 
└─────┴──────┴──────┴────┴──────────┘ 

15. Exit the simulation session.  

simics> exit 

9.3 Optimize polling performance 
You should have the code for the control unit in your Simics project already. If not, go 

back to the point where you build it the first time.  

16. Open the source code: [project]/modules/m-control/m_control.dml. 

17. Search it for the identifier stall_on_status_read.  

This will find a few snippets of implementation that make the device stall any 

processor that reads from the ctrl.status register.  

The attribute status_reg_stall_time contains the time to stall after each hardware 

access, allowing it to be configured at runtime.  

18. Change the value of the parameter stall_on_status_read to true: 

// Enable use of stall performance optimization  
param stall_on_status_read = true; 

19. From the host shell, rebuild the device model: 

$ make m-control 
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20. Rerun the unit tests, to make sure this did not change the behavior of the model in a 

visible way: 

$ make test 

9.4 Test and measure the effect of stalling  
Measure the performance after the change. Note that the Simics simulator framework 

can open a checkpoint taken using a different implementation of the same system as 

long as the changes are backwards compatible – there is no need to rebuild the 

checkpoint. The newly compiled version of m-control will be used along with the state 

from the checkpoint (this works since no attributes were removed, only a single one 

added).  

21. Start the Simics simulator like above: 

$ ./simics targets/workshop-02/008-system-benchmarking.simics 

Note that the startup printouts indicate a non-zero value for Stall on status poll, 

where it previously was always zero: 

Accelerator parallelism   : 1 
Time per pixel (ps)       : 10000 
Model threading           : False 
Stall on status poll (ps) : 50000000 

22. Run the simulation until the application has started, just like above: 

simics> bp.magic.run-until number = 3 

23. Start the system-perfmeter tool: 

simics> system-perfmeter mode = normal -io -window 

24. Run the simulation for half a virtual second, just like above: 

simics> r 500 ms 

25. Wait for the simulation to stop and check the results. Note how system-perfmeter 

indicates a significantly lower slow-down, and much higher steps per I/O. Something 

like this: 

… 
SystemPerf: Slowdown:                          21.81 
… 
SystemPerf: Steps per I/O:                    458.77 
…  

26. Exit the simulation session.  

simics> exit 
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9.5 Ascertain the effect on benchmarking runs 

The above tests checked the effect using various performance tools. It is also necessary 

to ascertain the effect of the optimization on an actual complete run without 

instrumentation attached.  

27. Start the Simics simulator using the script 008- with default settings: 

$ ./simics targets/workshop-02/008-system-benchmarking.simics 

The script should indicate a non-zero stall time on status reads.  

28. Run the simulation: 

simics> r 

29. When the simulation stops, compare the run time in virtual time and real time to what 

you saw previously in the baseline run.  You should expect a much lower real time, 

but essentially the same virtual time.  

30. Exit the simulation session.  

simics> exit 

31. Start a new session using script 008- with parallelism set to 8: 

$ ./simics targets/workshop-02/008-system-benchmarking.simics 
parallelism=8 

32. Run the simulation: 

simics> r 

33. When the simulation stops, compare the run time in virtual time and real time to the 

previous experiments.  

The benefit of the stalling optimization is typically much less for the case of parallel 

computations, since the polling loop already runs for a shorter time on target (thanks 

to the job being split up into multiple jobs with a total virtual time that is shorter).  

34. Exit the simulation session.  

simics> exit 

 

The conclusion of this experiment would seem to be that “stall on poll” optimizations can 

have a very positive impact on simulation performance with little effect on the target 

software behavior. At least for this particular accelerator and software stack.   

9.6 What is the effect of an extremely large stall time? 

However… could stalling have an impact on the software behavior? Test this as well, 

using an extreme value for the stall time.  

35. Start the Simics simulator using the script 008- with default settings: 

$ ./simics targets/workshop-02/008-system-benchmarking.simics 

The script should indicate a non-zero stall time on status reads.  
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36. Change the stall time by writing the configuration register that appears when stalling 

is enabled. The value is a floating-point value in seconds, set it to 5 millisecond, or 

100 times higher than the default.  

simics> qsp.macc.control->status_reg_stall_time = 5e-3 

37. Check that the setting had effect using the info command on the control unit: 

simics> qsp.macc.control.info 

38. Run the simulation: 

simics> r 

39. When the simulation stops, compare the run time in virtual time and real time to what 

you saw above. The virtual time is expected to increase by about 50%, from around 

0.98 to around 1.5. The runtime  

40. Exit the simulation session.  

simics> exit 

9.7 Full fury movie 
End the performance optimization exercises with a full fury run combining all the 

optimizations to provide a smooth video rendering for the benchmarks.  

41. Open the source code for compute unit: [project]/modules/m-

compute/m_compute.dml. 

42. Change the value of the parameter threaded_compute to true, in order to enable 

threaded computation: 

param threaded_compute = true; 

43. From the host shell, rebuild all device models: 

$ make 

44. Start a new session using script 008- with parallelism set to 8 and using the most 

expensive benchmark, bench3.txt. Only repeat the run once.  

$ ./simics targets/workshop-02/008-system-benchmarking.simics 
parallelism=8 test_file=bench3.txt repeats=1 

45. Show the graphics console for the accelerator: 

simics> qsp.macc.gcon.con.show 

46. Run the simulation: 

simics> r 

47. Once the run has finished, exit the simulation session.  

simics> exit 
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10 Create a Custom Command for the Display Unit 

This exercise adds a custom command-line command for the display unit. In general, 

when devices have user-facing features controller with attributes (or interfaces), it is a 

good idea to create custom CLI commands to invoke them. This makes discovering the 

features easier. It also makes accessing the features from CLI and Python easier.  

For this command, the  

10.1 Build the display unit in the project 

1. Use project-setup to copy the m-display module to your project: 

$ bin/project-setup --copy-module m-display 

2. Build the module: 

$ make 

10.2 Run the display unit on its own 

3. Start Simics using the script 010-: 

$ ./simics targets/workshop-02/010-try-m-display.simics 

4. Check the configuration: 

simics> list-objects 

Note the display unit object that is called dd. 

5. Raise the log level: 

simics> log-level dd 3 

6. Set up the width and height registers in the display unit: 

simics> write-device-reg dd.bank.regs.width  800 
simics> write-device-reg dd.bank.regs.height 400 

7. Write the “color everything” register, which is designed to test the connection from 

the display unit to the console: 

simics> write-device-reg dd.bank.regs.color_all 0xff8000 
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The result should be a nice orange window: 

 

10.3 Create a custom command outside the device code 

Custom commands can be created and overridden on the fly in the Simics simulator. This 

feature can be used to prototype commands within a single Simics simulator session, 

with no need to rebuild or reload anything.  

8. Create a new Python file in your project. Say [project]/u10-custom-command.py.  
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9. Open the file and paste in the following initial code: 

def display_color_all_cmd(object_arg, width, height, color): 
    print(f"Command called for {object_arg}, {width}x{height} to 0x{color:08x}") 
 
cli.new_command("color-all", 
                display_color_all_cmd, 
                args = [cli.arg(cli.obj_t("Display object", 
                                          kind="m_display"), "display"), 
                        cli.arg(cli.int_t, "width"), 
                        cli.arg(cli.int_t, "height"), 
                        cli.arg(cli.int_t, "color")], 
                short = "Display a solid color", 
                doc=""" 
Set the <arg>display</arg> to size <arg>width</arg> x <arg>height</arg>, 
and set the color to <arg>color</arg>.  
""" 
               ) 

10. Go back to the Simics simulator, and run the file: 

simics> run-python-file u10-custom-command.py 

11. Check that the new command was added by doing help on it: 

simics> help color-all 

12. Find the command with list-commands: 

simics> list-commands substr = color 

13. Try to run it: 

simics> color-all 

An error will be printed that mandatory arguments are missing.  

14. Try again: 

simics> color-all dd 100 100 0xff00ff 

This should work and print the message from the command function: 

simics> color-all dd 100 100 0xff00ff 
Command called for <the m_display 'dd'>, 100x100 to 0x00ff00ff 

This means the command is properly receiving arguments.  

15. Next, it is necessary to try out the code to write a register from Python. The simplest 

way to do this is to use the CLI commands you used above, but from Python. Global 

CLI commands such as write-device-reg are available in the cli.global_cmds 

namespace in Python.  

Instead of coding this into the Python, try it live. Convert the dashes in the name to 

underscores, and pass in the command arguments as Python function arguments: 

simics> @cli.global_cmds.write_device_reg( "dd.regs.width",100) 

That does not work.  

The error says that all arguments must be named.  
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16. To find the precise name of the arguments, use Python help(): 

simics> @help(cli.global_cmds.write_device_reg) 

17. With this information, try again: 

simics> @cli.global_cmds.write_device_reg( register="dd.regs.width", 
data=100) 

18. To use this inside the custom command, it is necessary to convert from the object 

parameter given to the command to the name string of object. Try that from the 

command line too. Type in @conf.dd to get to the dd object from Python, and then 

tab-complete to check its members.  

simics> @conf.dd.<TAB> 

19. There is a “name” member that seems appropriate. Try it: 

simics> @conf.dd.name 

Looks like it returns the expected value.  

20. Next, try construct the call to the CLI command in Python, with the object in a 

variable. Using a Python f-string, it is easy to construct the string value: 

simics> @o=conf.dd 
simics> 
@cli.global_cmds.write_device_reg( register=f"{o.name}.regs.width", 
data=400) 

21. Check that the register did change its value: 

simics> print-device-reg-info dd.regs.width 

22. With this, the contents of the Python file can be updated. Add three lines of 

cli.global_cmds… to the Python function.  

One solution is found below in Solution: Color-all command: implementation for the 

command line. 

23. Reload the Python file: 

simics> run-python-file u10-custom-command.py 

24. Test the updated command: 

simics> color-all dd 600 100 0xff00ff 

Which should provide an all-purple display.  

25. Exit this simulation session. 

simics> exit 

 

10.4 Add the command to the device class 
The command defined above is global, which is not really recommended for a command 

that only pertains to a single class and at most a few objects at once. Instead, it should be 
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a namespace command on objects of the class. It should be part of the device model 

code.  

26. Open the file [project]/modules/m-display/module_load.py. This file is run when 

the module is loaded, and creates custom commands for the device classes in the 

module. In this case, the info and status commands for the class.  

To make the command a namespace command, the new_command() function takes 

an additional “cls” argument that specifies the class name. This also means that the 

“display” argument to the command is now implicit and should be removed.  

27. Add the code from u10-custom-command.py at the end of the module_load.py file, 

modifying it to work with the class. The class name is held in the variable class_name. 

One solution is found below in Solution: Color-all command: implementation for 

module_load.py.  

28. From the host shell, rebuild the device model: 

$ make  

29. Start a new simulation session from script 010-: 

$ ./simics targets/workshop-02/010-try-m-display.simics 

30. Raise the log level: 

simics> log-level dd 3 

31. Try the new command: 

simics> dd.color-all 500 400 0x8080ff 

32. Check the help on the command: 

simics> help dd.color-all 

Note that the command is documented as provided by the m_display class.  

10.5 Some bad-case testing 

Having a custom command in place makes it easier to make stupid mistakes and enter 

intentionally bad data.  

33. Try setting one dimension to zero: 

simics> dd.color-all 100 0 0x8080ff 

The existing code will block that with a nice error message.   
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34. However… try a negative number: 

simics> dd.color-all -1 100 0x8080ff 

This will cause Simics to assert, as it tries to allocate a very very large block of 

memory. The number -1 is treated as a 64-bit unsigned integer number, which 

becomes very large, and there is no check for “unreasonably large” sizes in the 

device model itself. Instead, the Simics core memory allocators sees an 

unreasonable request and asserts – since clearly the code requesting the memory is 

broken.  

35. Exit this simulation session – the command line still lives on, so you have to quit 

Simics even after the fatal error.  

simics> exit 

10.6 Add additional checking  

36. Open the file [project]/modules/m-display/m_display.dml.  

37. Find the behavior of the color_all register, by searching for “color_all”. This will 

lead to a function that implements the behavior of writing to the register. Add a 

check for the display width or height being bigger than 4000 pixels.  

One solution is found below in Solution: Color-all command: implementation of 

checks in the DML device.  

38. From the host shell, rebuild the device model: 

$ make  

39. Start a new simulation session from script 010-: 

$ ./simics targets/workshop-02/010-try-m-display.simics 

40. Raise the log level: 

simics> log-level dd 3 

41. Try the command again: 

simics> dd.color-all -1 100 0x0080ff 
simics> dd.color-all 4000 100 0x0080ff 
simics> dd.color-all 4001 100 0x0080ff 

42. Next, try -1 for the second argument. Note that the Simics CLI parsing makes it 

necessary to use a parenthesis around “-1” when used in here: otherwise, the CLI will 

interpret the input as “200-1” being used as the value for the first argument: 

simics> dd.color-all 200 (-1) 0x0080ff 

43. Exit this simulation session.  

simics> exit 
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10.7 Solution: Color-all command: implementation for the command line 

The final contents of u10-custom-command.py: 

def display_color_all_cmd(object_arg, width, height, color): 
    print(f"Command called for {object_arg}, {width}x{height} to 0x{color:08x}") 
    cli.global_cmds.write_device_reg(register=f"{object_arg.name}.bank.regs.width", data=width) 
    cli.global_cmds.write_device_reg(register=f"{object_arg.name}.bank.regs.height", data=height) 
    cli.global_cmds.write_device_reg(register=f"{object_arg.name}.bank.regs.color_all", data=color) 
 
cli.new_command("color-all", 
                display_color_all_cmd, 
                args = [cli.arg(cli.obj_t("Display object", 
                                          kind="m_display"), "display"), 
                        cli.arg(cli.int_t, "width"), 
                        cli.arg(cli.int_t, "height"), 
                        cli.arg(cli.int_t, "color")], 
                short = "Display a solid color", 
                doc=""" 
Set the <arg>display</arg> to size <arg>width</arg> x <arg>height</arg>, 
and set the color to <arg>color</arg>.  
""" 
               ) 

10.8 Solution: Color-all command: implementation for module_load.py 

# 
# ------------------------ color-all ----------------------- 
# 
def display_color_all_cmd(object_arg, width, height, color): 
    cli.global_cmds.write_device_reg( 
        register=f"{object_arg.name}.bank.regs.width", data=width) 
    cli.global_cmds.write_device_reg( 
        register=f"{object_arg.name}.bank.regs.height", data=height) 
    cli.global_cmds.write_device_reg( 
        register=f"{object_arg.name}.bank.regs.color_all", data=color) 
 
cli.new_command("color-all", 
                display_color_all_cmd, 
                args = [cli.arg(cli.int_t, "width"), 
                        cli.arg(cli.int_t, "height"), 
                        cli.arg(cli.int_t, "color")], 
                cls = class_name, 
                short = "Display a solid color", 
                doc=""" 
Set the display to size <arg>width</arg> x <arg>height</arg>, 
and set the color to <arg>color</arg>.  
""" 
               ) 

 

10.9 Solution: Color-all command: implementation of checks in the DML device 

Despite what the comments in the code says, the simplest solution is to check this right 

in the color_it_all() function. After the check for zero width or height, add a similar 

check for >4000 pixels (or some other reasonable number). This will nicely cover the 

color-all case. The same check should likely be added to the regular display path. Note 

that adding it to the console.set_display_size() function becomes more complicated 

as that function deals with reallocating the internal buffer, and it would have to return an 

error that would have to be handled… etc.  However, adding an assert in that function 

could be a way to catch an error like this early.  
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    if ( (width==0) || (height==0)) { 
        log spec_viol, 1, software: "Display size of %d x %d pixels is non-sensical", 
                                     width, height; 
        return; 
    }         
 
    // Check too-large error 
    if ( (width>4000) || (height>4000)) { 
        log spec_viol, 1, software: "Display size of %d x %d pixels is too large", 
                                     width, height; 
        return; 
    }         
 
    // Call the general coloring method 
    single_color_display(width, height, rgb); 
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