

321090

Accessing PCI Express*
Configuration Registers
Using Intel® Chipsets

 December 2008

White Paper
Sam Fleming

Technical Marketing
Engineer

Intel Corporation

Accessing the Real Time Clock Registers and NMI Enable Bit

2 321090

Executive Summary

There are two different methods that can be used to access PCI Express*

(PCIe*) configuration registers of devices in systems based on Intel

silicon. The first method involves setting the desired Bus, Device,

Function, and Register values in I/O register CF8h and then reading or

writing the desired value via an access to I/O register CFCh. These

registers are located in the memory controller component of most Intel

chipsets (typically the “North Bridge” or MCH/GMCH component). The act

of reading/writing to I/O register CFCh causes this component to generate

downstream PCIe configuration bus cycles. This is the original “legacy”

PCI method of accessing the configuration registers and is limited to

accessing only the first 255 configuration registers of any PCIe device.

The second method that can be used to access PCIe* configuration

registers involves standard memory read/write accesses to a reserved

block of memory space. Intel® silicon is designed to convert these

memory cycles into downstream PCIe configuration read and write cycles.

This permits access to the full 4096 configuration register range in each

PCIe device.

 The second method can be a bit tricky for software

programmers to implement.

This second method can be a bit a tricky for software programmers to

implement, especially considering that some of the details vary from

chipset to chipset. This paper will examine the exact formulas and

processes that software developers need to implement in order to

successfully read and write to these PCIe* registers.§

Accessing the Real Time Clock Registers and NMI Enable Bit

321090 3

Contents
Business Challenge ...4

PCIe* Configuration Register Access – Method 1: I/O CF8h and CFCh4

PCIe* Configuration Register Access – Method 2: Memory Mapped6
Conversion Formulas ...8
Chipset Variance ...9
PCIe* Memory Range and How It Impacts Available DRAM in 4GB Systems

Running 32-bit Operating Systems...9

Conversion Formulas – Code ..10

Conclusion ...11

321090

Business Challenge

The methodology used in accessing the PCIe* configuration registers goes
back to the original PCI specification. Intel's first implementation of this
specification used I/O locations CF8h and CFCh in an index/data fashion in
order to create the PCI configuration cycles. This method can successfully
access any of the 255 PCI configuration registers in any PCI device. Intel
chipsets still support this configuration method.

The PCIe* specification built on the PCI foundation by allowing each PCIe
device/function to have up to 4096 configuration registers. Although the old
CF8h/CFCh method can still be used to access the first 255 registers in each
PCIe device, a different method had to be introduced to allow accesses to the
full 4KB range of configuration registers. Intel chipsets solve this problem by
moving the PCIe configuration registers into the memory address space.
PCIe configuration registers can now be accessed by performing memory
reads and writes to a very specific range in memory.

The specific range of memory is controlled by the piece of Intel silicon that
contains the memory controller. Typically, this is the “North Bridge”
component. However, details of the implementation vary from chipset to
chipset. Understanding the exact process in creating software to access the
PCIe* configuration registers using this range of memory is the purpose of
this paper.

PCIe* Configuration Register Access
– Method 1: I/O CF8h and CFCh

To access PCI configuration registers, Intel® chipsets use I/O locations CF8h
and CFCh to access the configuration registers in a PCI device. This method
can also be used to access the first 255 configuration registers in PCIe*
devices.

Accessing the Real Time Clock Registers and NMI Enable Bit

321090 5

Figure 1. I/O Registers CF8h and CFCh Details

In order to create a PCI Configuration Cycle to a given device, software must
perform the following steps:

1. The device’s bus number must be written into bits [23:16] of I/O
location CF8h

2. The device’s “PCI device number” must be written into bits [15:11] of
I/O location CF8h

3. The device’s function must be written into bits [10:8] of I/O location
CF8h

Note: The Dword address of the desired PCI configuration must be
written into bits [7:2] of I/O location CF8h

It is important to realize that all PCI configuration cycles are 4 byte (1
Dword) read/write routines. Since bits [1:0] are reserved, this
simplifies things a bit since the actual register address can be written
into the full 8 bits of [7:0] (data written to bits [1:0] has no affect on
the created PCI configuration cycle).

4. The configuration bit in I/O location CF8h[31] must be set to 1b.

5. For writes, the specific data to be written out during the configuration
cycle is written into I/O location CFCh. For reads, software must
perform a read to I/O location CFCh.

When I/O location CFCh is accessed, the corresponding read or write

Accessing the Real Time Clock Registers and NMI Enable Bit

6 321090

PCI configuration cycle is created by the Intel® silicon and propagated
throughout the system as necessary.

PCIe* Configuration Register Access
– Method 2: Memory Mapped

The PCIe* specification added more configuration registers possible for each
PCIe device. Each PCIe device can now have up to 4096 bytes of
configuration registers. Although the method described above using I/O
locations CF8h and CFCh to create configuration cycles still works for
accessing the lower 255 registers, a new method must be used to access
configuration registers to the rest of the 4096 (4K) range.

The solution involves reserving a 256MB block of memory address space.
Any accesses to this region of memory address space will cause the Intel
silicon to create a PCIe configuration cycle to be propagated throughout the
system.

Since the registers are mapped directly into memory, the memory address
space that needs to be reserved must include all 4096 registers for every
possible function of every possible device on every possible bus that could be
present in the system. This calculates out to 256MB of memory address
space being required to “fit” all of the possible configuration registers:

 256 Possible Busses
 32 Possible Devices per Bus
 8 Possible Functions Per Device
 4096 Registers per Device/Function

========================
 256 x 32 x 8 x 4096 = 256MBytes

Depending on the specific Intel® chipset, this block of memory can be moved
anywhere within the system memory map. In the Intel® Q45 and Intel®
PM965 Express Chipsets, for example, a register in the GMCH (or
“Northbridge”) called the PCI Express* Configuration Register Base Address
Register (BAR) located in PCI configuration space at B0:D0:F0-60h performs
this function. This is shown in Figure 2 below.

Accessing the Real Time Clock Registers and NMI Enable Bit

321090 7

Figure 2. Memory Mapped PCIe* Configuration Registers

PCI Express Configuration

Register BAR

Memory Map (not to scale)
0GB

Top of DRAM

4GB

Top of Memory Address Space

(Chipset and CPU Specific)

Bus 0 Device 0, Function 0 Registers

Bus 0 Device 0, Function 1 RegistersPCIe

Reg.

Space:

= 4KB

Bus 0 Device 0, Function 7 Registers

Bus 0 Device 31, Function 7 Registers

Bus 255 Device 31, Function 7 Registers

Bus 0 Device 1, Function 0 Registers

All Functions in Bus 0, Device 0:

 8 Functions x

 4KB Reg. Space

 = 32KB

All Devices on Bus 0:

 32 Devices x

 8 Functions x

 4KB Register Space

 =1MB

Entire PCI Express

Configuration Space:

 256 Busses x

 32 Devices x

 8 Functions x

 4KB Reg. Space

 = 256MB

When software wants to access a specific configuration register in a given
device, it must calculate exactly where this register resides in the PCIe*
configuration memory map and perform a simple memory read/write to this
location.

Accessing the Real Time Clock Registers and NMI Enable Bit

8 321090

Conversion Formulas

Figure 3 provides the formula used to calculate the desired memory location
needed to access a PCIe* configuration register given the device’s bus
number, device number, function number, and register offset.

Figure 3. Formula to Calculate Memory Address Given the Bus, Device,
Function, and Register Offset

Memory Address =
 PCI Express* Configuration Space Base Address +
 (Bus Number x 100000h) +
 (Device Number x 8000h) +
 (Function Number x 1000h) +
 (Register Offset)

For example, to access the following configuration register:

• PCI Express Configuration Register F0000000h

• Bus Number 15h

• Device Number 00h

• Function Number 05h

• Register Offset 84h

Software would access this register by performing a memory read/write to
address F1505084h.

Calculating the Bus, Device, Function, and Register offset given an actual
address is a little bit more complex. The formula shown in Figure 4 can be
used when given just an address.

Figure 4. Formula to Calculate Bus, Device, Function, and Register Offset
Given a Memory Address

 Bus Number = (Memory Address - PCI Express* Configuration Space Base Address) /
 (100000h)

 Device Number = (Memory Address - PCI Express Configuration Space Base Address -
 (Bus Number x 100000h)) /
 (8000h)

 Function Number = (Memory Address - PCI Express Configuration Space Base Address -
 (Bus Number x 100000h) - (Device Number x 8000h)) /
 (1000h)

Accessing the Real Time Clock Registers and NMI Enable Bit

321090 9

 Register Offset = (Memory Address) & (00000FFFh)

Chipset Variance
The memory address range containing the PCIe* configuration registers is
implemented differently between different Intel chipsets. In Intel’s older
chipsets, the PCI Express* Configuration Base Address Register is contained
inside the memory controller portion of the chipset (MCH and GMCH). The
location of this register varies between chipsets. For the Intel® Q45 and
PM965 Express chipsets, for example, this register is located in PCI space at
B0:D0:F0-60h. In the Intel® EP80579 Integrated Processor (“Silicon on
Chip”) however, this register is called the HECBASE register and is located in
at B0:D0:F0-CEh. Programmers must be aware that the memory range and
its control registers change between chipsets.

Additionally, since the memory address range occupied by the PCIe
configuration registers will mask any DRAM located at the same address
range (see the section below for more details), most Intel® chipsets permit
the memory address range occupied by the PCIe configuration registers to
consume less than the full 256MB range. These chipsets permit BIOS to
program the PCIe* configuration register memory range to occupy 256MB,
128MB, or 64MB of memory address space. This is done by simply limiting
the number of PCIe busses allowable in a given system.

For example, in the Intel® PM965 chipset, if configuration software detects
less than 64 PCI/PCIe busses within the system (very common), then the
software can program the chipset to only allow 64MB of PCIe Configuration
memory space. Accesses above 64MB will be sent to DRAM.

PCIe* Memory Range and How It Impacts Available DRAM
in 4GB Systems Running 32-bit Operating Systems

It is important to realize that since the PCIe* configuration register memory
space occupies a chunk of the memory address map, any DRAM located in
this space will essentially be lost to the system. This often happens in
systems with 4GB of DRAM running 32 bit Operating Systems.

For example, Windows* XP uses only 32 bits when accessing memory space.
This permits accesses to memory address region from 0-4GB. If the system is
fully populated with 4GB of DRAM, Windows XP* could theoretically access all
of the 4GB of DRAM. However, since the PCIe* configuration registers
requires some of this memory address space, up to 256MB of DRAM will be
“lost” to the operating system since the PCIe configuration register address
space overlaps the same memory region used by the DRAM. This is why
most Intel® chipsets contain a register to change the memory address space
used by the PCIe configuration registers to something smaller than 256MB
(typically 128MB or 64MB).

Note that 64 bit operating systems do not have this problem. Since they use
64 bits for addresses, they can access memory ranges above 4GB. Intel

Accessing the Real Time Clock Registers and NMI Enable Bit

10 321090

chipsets typically contain logic that can “remap” the DRAM overlapping the
PCIe configuration register space to memory addresses above 4GB. Details
of this are beyond the scope of this paper.

Conversion Formulas – Code
The code in Figure 5 written in C shows how to:

• Create the Memory Address needed to access a PCIe* configuration
register given the Bus Number, Device Number, Function, and
Register Offset

• Calculate the Bus Number, Device Number, Function, and Register
offset when provided with a memory address.

Figure 5. Sample Code Demonstrating How to Access PCIe* Configuration
Registers

//***
unsigned long PCIeBase = 0xF0000000UL;
unsigned long FinalAddress;
unsigned long Bus = 0;
unsigned long Device = 0;
unsigned long Function = 0;
unsigned long Register = 0;

//***
void Convert_to_Memory()
{
 FinalAddress = PCIeBase +
 (Bus*0x100000UL) +
 (Device*0x8000) +
 (Function*0x1000) +
 Register;
}
//***
void Convert_to_Register()
{
 Bus = (FinalAddress-PCIeBase) / (0x100000UL);
 Device = (FinalAddress-PCIeBase - (Bus*0x100000UL)) / (0x8000);
 Function = (FinalAddress-PCIeBase - (Bus*0x100000UL) -
 (Device*0x8000)) / (0x1000);
 Register = (FinalAddress) & (0x00000FFFUL);
}
//***

Accessing the Real Time Clock Registers and NMI Enable Bit

321090 11

Conclusion
Since most modern computers implement PCI Express* devices, it is
imperative for programmers to understand how to access the PCIe*
configuration registers contained within these devices. Although the original
access method using I/O locations CF8h and CFCh will still work, that method
will only access the first 255 configuration registers of a device. To access
the remaining 4096 registers, memory accesses must be made to the PCI
Express* Configuration Register memory block that is contained in memory
address space. The Convert_to_Memory routine shown in Figure 5 can be
used to calculate the final memory address to be used when given a device’s
bus number, device number, function number, and register offset. The
Convert_to_Register routine can be used to calculate the bus, device,
function and register offset when provided with a memory address within the
PCI Express* Configuration Register memory range.

321090

Authors

Sam Fleming is a Technical Marketing Engineer with the
Applications Design-In Center at Intel in Folsom, California.

Acronyms

MCH: Memory Controller Hub. This is the generic name given
to the specific integrated circuit that contains the memory
interface in a given chipset.

GMCH: Graphics Memory Controller Hub. Same definition as
above, but applied to MCH’s that also contain an integrated
graphics controller.

North Bridge: A generic term that refers to the MCH or GMCH.

PCI: Peripheral Component Interconnect. A standardized bus
specification. See http://www.pcisig.com/specifications/ for
more details.

PCIe*: PCI Express*. Another standardized bus. Although the
hardware interface is completely different from PCI, the
configuration register implementation is very similar.

http://www.pcisig.com/specifications/

321090

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS.
NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use
in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

This paper is for informational purposes only. THIS DOCUMENT IS PROVIDED "AS IS" WITH NO
WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE
ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Intel disclaims all liability, including
liability for infringement of any proprietary rights, relating to use of information in this specification.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted
herein.

Intel, the Intel logo, Intel leap ahead, the Intel Leap ahead logo, the Intel EP80579 Integrated
Processor and the Intel Express Chipset Family are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2008 Intel Corporation. All rights reserved.

	Executive Summary
	Contents
	
	Business Challenge
	PCIe* Configuration Register Access – Method 1: I/O CF8h and CFCh
	PCIe* Configuration Register Access – Method 2: Memory Mapped
	Conversion Formulas – Code
	Conclusion

