
GNU Emacs Manual

Nineteenth Edition, Updated for Emacs Version 27.2.

Richard Stallman et al.



201

19 International Character Set Support

Emacs supports a wide variety of international character sets, including European and
Vietnamese variants of the Latin alphabet, as well as Arabic scripts, Brahmic scripts (for
languages such as Bengali, Hindi, and Thai), Cyrillic, Ethiopic, Georgian, Greek, Han (for
Chinese and Japanese), Hangul (for Korean), Hebrew and IPA. Emacs also supports various
encodings of these characters that are used by other internationalized software, such as word
processors and mailers.

Emacs allows editing text with international characters by supporting all the related
activities:

• You can visit files with non-ASCII characters, save non-ASCII text, and pass non-ASCII

text between Emacs and programs it invokes (such as compilers, spell-checkers, and
mailers). Setting your language environment (see Section 19.2 [Language Environ-
ments], page 203) takes care of setting up the coding systems and other options for a
specific language or culture. Alternatively, you can specify how Emacs should encode
or decode text for each command; see Section 19.9 [Text Coding], page 212.

• You can display non-ASCII characters encoded by the various scripts. This works by
using appropriate fonts on graphics displays (see Section 19.14 [Defining Fontsets],
page 217), and by sending special codes to text displays (see Section 19.12 [Terminal
Coding], page 215). If some characters are displayed incorrectly, refer to Section 19.16
[Undisplayable Characters], page 220, which describes possible problems and explains
how to solve them.

• Characters from scripts whose natural ordering of text is from right to left are reordered
for display (see Section 19.19 [Bidirectional Editing], page 222). These scripts include
Arabic, Hebrew, Syriac, Thaana, and a few others.

• You can insert non-ASCII characters or search for them. To do that, you can specify
an input method (see Section 19.4 [Select Input Method], page 206) suitable for your
language, or use the default input method set up when you choose your language
environment. If your keyboard can produce non-ASCII characters, you can select an
appropriate keyboard coding system (see Section 19.12 [Terminal Coding], page 215),
and Emacs will accept those characters. Latin-1 characters can also be input by using
the C-x 8 prefix, see Section 19.17 [Unibyte Mode], page 220.

With the X Window System, your locale should be set to an appropriate value to make
sure Emacs interprets keyboard input correctly; see Section 19.2 [Language Environ-
ments], page 203.

The rest of this chapter describes these issues in detail.

19.1 Introduction to International Character Sets

The users of international character sets and scripts have established many more-or-less
standard coding systems for storing files. These coding systems are typically multibyte,
meaning that sequences of two or more bytes are used to represent individual non-ASCII

characters.

Internally, Emacs uses its own multibyte character encoding, which is a superset of
the Unicode standard. This internal encoding allows characters from almost every known



Chapter 19: International Character Set Support 202

script to be intermixed in a single buffer or string. Emacs translates between the multibyte
character encoding and various other coding systems when reading and writing files, and
when exchanging data with subprocesses.

The command C-h h (view-hello-file) displays the file etc/HELLO, which illustrates
various scripts by showing how to say “hello” in many languages. If some characters can’t
be displayed on your terminal, they appear as ‘?’ or as hollow boxes (see Section 19.16
[Undisplayable Characters], page 220).

Keyboards, even in the countries where these character sets are used, generally don’t
have keys for all the characters in them. You can insert characters that your keyboard does
not support, using C-x 8 RET (insert-char). See Section 4.1 [Inserting Text], page 16.
Shorthands are available for some common characters; for example, you can insert a left
single quotation mark ‘ by typing C-x 8 [, or in Electric Quote mode, usually by simply
typing `. See Section 22.5 [Quotation Marks], page 238. Emacs also supports various input
methods, typically one for each script or language, which make it easier to type characters
in the script. See Section 19.3 [Input Methods], page 205.

The prefix key C-x RET is used for commands that pertain to multibyte characters, coding
systems, and input methods.

The command C-x = (what-cursor-position) shows information about the character
at point. In addition to the character position, which was described in Section 4.9 [Position
Info], page 22, this command displays how the character is encoded. For instance, it displays
the following line in the echo area for the character ‘c’:

Char: c (99, #o143, #x63) point=28062 of 36168 (78%) column=53

The four values after ‘Char:’ describe the character that follows point, first by showing it
and then by giving its character code in decimal, octal and hex. For a non-ASCII multibyte
character, these are followed by ‘file’ and the character’s representation, in hex, in the
buffer’s coding system, if that coding system encodes the character safely and with a single
byte (see Section 19.5 [Coding Systems], page 208). If the character’s encoding is longer
than one byte, Emacs shows ‘file ...’.

On rare occasions, Emacs encounters raw bytes: single bytes whose values are in the
range 128 (0200 octal) through 255 (0377 octal), which Emacs cannot interpret as part
of a known encoding of some non-ASCII character. Such raw bytes are treated as if they
belonged to a special character set eight-bit; Emacs displays them as escaped octal codes
(this can be customized; see Section 11.23 [Display Custom], page 94). In this case, C-x
= shows ‘raw-byte’ instead of ‘file’. In addition, C-x = shows the character codes of raw
bytes as if they were in the range #x3FFF80..#x3FFFFF, which is where Emacs maps them
to distinguish them from Unicode characters in the range #x0080..#x00FF.

With a prefix argument (C-u C-x =), this command additionally calls the command
describe-char, which displays a detailed description of the character:

• The character set name, and the codes that identify the character within that character
set; ASCII characters are identified as belonging to the ascii character set.

• The character’s script, syntax and categories.

• What keys to type to input the character in the current input method (if it supports
the character).

• The character’s encodings, both internally in the buffer, and externally if you were to
save the buffer to a file.



Chapter 19: International Character Set Support 203

• If you are running Emacs on a graphical display, the font name and glyph code for
the character. If you are running Emacs on a text terminal, the code(s) sent to the
terminal.

• If the character was composed on display with any following characters to form one or
more grapheme clusters, the composition information: the font glyphs if the frame is
on a graphical display, else the characters that were composed.

• The character’s text properties (see Section “Text Properties” in the Emacs Lisp Ref-
erence Manual), including any non-default faces used to display the character, and any
overlays containing it (see Section “Overlays” in the same manual).

Here’s an example, with some lines folded to fit into this manual:
position: 1 of 1 (0%), column: 0

character: ê (displayed as ê) (codepoint 234, #o352, #xea)

preferred charset: unicode (Unicode (ISO10646))

code point in charset: 0xEA

script: latin

syntax: w which means: word

category: .:Base, L:Left-to-right (strong), c:Chinese,

j:Japanese, l:Latin, v:Viet

to input: type "C-x 8 RET ea" or

"C-x 8 RET LATIN SMALL LETTER E WITH CIRCUMFLEX"

buffer code: #xC3 #xAA

file code: #xC3 #xAA (encoded by coding system utf-8-unix)

display: by this font (glyph code)

xft:-PfEd-DejaVu Sans Mono-normal-normal-

normal-*-15-*-*-*-m-0-iso10646-1 (#xAC)

Character code properties: customize what to show

name: LATIN SMALL LETTER E WITH CIRCUMFLEX

old-name: LATIN SMALL LETTER E CIRCUMFLEX

general-category: Ll (Letter, Lowercase)

decomposition: (101 770) ('e' '^')

19.2 Language Environments

All supported character sets are supported in Emacs buffers whenever multibyte characters
are enabled; there is no need to select a particular language in order to display its characters.
However, it is important to select a language environment in order to set various defaults.
Roughly speaking, the language environment represents a choice of preferred script rather
than a choice of language.

The language environment controls which coding systems to recognize when reading text
(see Section 19.6 [Recognize Coding], page 209). This applies to files, incoming mail, and
any other text you read into Emacs. It may also specify the default coding system to use
when you create a file. Each language environment also specifies a default input method.

To select a language environment, customize current-language-environment or use
the command M-x set-language-environment. It makes no difference which buffer is
current when you use this command, because the effects apply globally to the Emacs session.
See the variable language-info-alist for the list of supported language environments,
and use the command C-h L lang-env RET (describe-language-environment) for more
information about the language environment lang-env. Supported language environments
include:



Chapter 19: International Character Set Support 204

ASCII, Arabic, Belarusian, Bengali, Brazilian Portuguese, Bulgarian, Burmese,
Cham, Chinese-BIG5, Chinese-CNS, Chinese-EUC-TW, Chinese-GB, Chinese-
GB18030, Chinese-GBK, Croatian, Cyrillic-ALT, Cyrillic-ISO, Cyrillic-KOI8,
Czech, Devanagari, Dutch, English, Esperanto, Ethiopic, French, Georgian,
German, Greek, Gujarati, Hebrew, IPA, Italian, Japanese, Kannada, Khmer,
Korean, Lao, Latin-1, Latin-2, Latin-3, Latin-4, Latin-5, Latin-6, Latin-7,
Latin-8, Latin-9, Latvian, Lithuanian, Malayalam, Oriya, Persian, Polish, Pun-
jabi, Romanian, Russian, Sinhala, Slovak, Slovenian, Spanish, Swedish, TaiViet,
Tajik, Tamil, Telugu, Thai, Tibetan, Turkish, UTF-8, Ukrainian, Vietnamese,
Welsh, and Windows-1255.

To display the script(s) used by your language environment on a graphical display, you
need to have suitable fonts. See Section 19.13 [Fontsets], page 216, for more details about
setting up your fonts.

Some operating systems let you specify the character-set locale you are using by set-
ting the locale environment variables LC_ALL, LC_CTYPE, or LANG. (If more than one of
these is set, the first one that is nonempty specifies your locale for this purpose.) During
startup, Emacs looks up your character-set locale’s name in the system locale alias table,
matches its canonical name against entries in the value of the variables locale-charset-

language-names and locale-language-names (the former overrides the latter), and selects
the corresponding language environment if a match is found. It also adjusts the display
table and terminal coding system, the locale coding system, the preferred coding system as
needed for the locale, and—last but not least—the way Emacs decodes non-ASCII characters
sent by your keyboard.

If you modify the LC_ALL, LC_CTYPE, or LANG environment variables while running Emacs
(by using M-x setenv), you may want to invoke the set-locale-environment command
afterwards to readjust the language environment from the new locale.

The set-locale-environment function normally uses the preferred coding system es-
tablished by the language environment to decode system messages. But if your locale
matches an entry in the variable locale-preferred-coding-systems, Emacs uses the
corresponding coding system instead. For example, if the locale ‘ja_JP.PCK’ matches
japanese-shift-jis in locale-preferred-coding-systems, Emacs uses that encoding
even though it might normally use utf-8.

You can override the language environment chosen at startup with explicit use of the
command set-language-environment, or with customization of current-language-

environment in your init file.

To display information about the effects of a certain language environment lang-env,
use the command C-h L lang-env RET (describe-language-environment). This tells you
which languages this language environment is useful for, and lists the character sets, coding
systems, and input methods that go with it. It also shows some sample text to illustrate
scripts used in this language environment. If you give an empty input for lang-env, this
command describes the chosen language environment.

You can customize any language environment with the normal hook set-language-

environment-hook. The command set-language-environment runs that hook after set-
ting up the new language environment. The hook functions can test for a specific language
environment by checking the variable current-language-environment. This hook is where



Chapter 19: International Character Set Support 205

you should put non-default settings for specific language environments, such as coding sys-
tems for keyboard input and terminal output, the default input method, etc.

Before it starts to set up the new language environment, set-language-environment
first runs the hook exit-language-environment-hook. This hook is useful for undoing
customizations that were made with set-language-environment-hook. For instance, if
you set up a special key binding in a specific language environment using set-language-

environment-hook, you should set up exit-language-environment-hook to restore the
normal binding for that key.

19.3 Input Methods

An input method is a kind of character conversion designed specifically for interactive input.
In Emacs, typically each language has its own input method; sometimes several languages
that use the same characters can share one input method. A few languages support several
input methods.

The simplest kind of input method works by mapping ASCII letters into another alpha-
bet; this allows you to use one other alphabet instead of ASCII. The Greek and Russian
input methods work this way.

A more powerful technique is composition: converting sequences of characters into one
letter. Many European input methods use composition to produce a single non-ASCII letter
from a sequence that consists of a letter followed by accent characters (or vice versa). For
example, some methods convert the sequence o ^ into a single accented letter. These input
methods have no special commands of their own; all they do is compose sequences of printing
characters.

The input methods for syllabic scripts typically use mapping followed by composition.
The input methods for Thai and Korean work this way. First, letters are mapped into
symbols for particular sounds or tone marks; then, sequences of these that make up a whole
syllable are mapped into one syllable sign.

Chinese and Japanese require more complex methods. In Chinese input methods, first
you enter the phonetic spelling of a Chinese word (in input method chinese-py, among
others), or a sequence of portions of the character (input methods chinese-4corner and
chinese-sw, and others). One input sequence typically corresponds to many possible Chi-
nese characters. You select the one you mean using keys such as C-f, C-b, C-n, C-p (or the
arrow keys), and digits, which have special meanings in this situation.

The possible characters are conceptually arranged in several rows, with each row holding
up to 10 alternatives. Normally, Emacs displays just one row at a time, in the echo area;
(i/j) appears at the beginning, to indicate that this is the ith row out of a total of j rows.
Type C-n or C-p to display the next row or the previous row.

Type C-f and C-b to move forward and backward among the alternatives in the current
row. As you do this, Emacs highlights the current alternative with a special color; type
C-SPC to select the current alternative and use it as input. The alternatives in the row are
also numbered; the number appears before the alternative. Typing a number selects the
associated alternative of the current row and uses it as input.

TAB in these Chinese input methods displays a buffer showing all the possible characters
at once; then clicking mouse-2 on one of them selects that alternative. The keys C-f, C-b,



Chapter 19: International Character Set Support 206

C-n, C-p, and digits continue to work as usual, but they do the highlighting in the buffer
showing the possible characters, rather than in the echo area.

To enter characters according to the p̄ınȳın transliteration method instead, use the
chinese-sisheng input method. This is a composition based method, where e.g. pi1

results in ‘pı̄’.

In Japanese input methods, first you input a whole word using phonetic spelling; then,
after the word is in the buffer, Emacs converts it into one or more characters using a large
dictionary. One phonetic spelling corresponds to a number of different Japanese words; to
select one of them, use C-n and C-p to cycle through the alternatives.

Sometimes it is useful to cut off input method processing so that the characters you have
just entered will not combine with subsequent characters. For example, in input method
latin-1-postfix, the sequence o ^ combines to form an ‘o’ with an accent. What if you
want to enter them as separate characters?

One way is to type the accent twice; this is a special feature for entering the separate
letter and accent. For example, o ^ ^ gives you the two characters ‘o^’. Another way is to
type another letter after the o—something that won’t combine with that—and immediately
delete it. For example, you could type o o DEL ^ to get separate ‘o’ and ‘^’. Another method,
more general but not quite as easy to type, is to use C-\ C-\ between two characters to
stop them from combining. This is the command C-\ (toggle-input-method) used twice.

C-\ C-\ is especially useful inside an incremental search, because it stops waiting for
more characters to combine, and starts searching for what you have already entered.

To find out how to input the character after point using the current input method, type
C-u C-x =. See Section 4.9 [Position Info], page 22.

The variables input-method-highlight-flag and input-method-verbose-flag con-
trol how input methods explain what is happening. If input-method-highlight-flag is
non-nil, the partial sequence is highlighted in the buffer (for most input methods—some
disable this feature). If input-method-verbose-flag is non-nil, the list of possible char-
acters to type next is displayed in the echo area (but not when you are in the minibuffer).

You can modify how an input method works by making your changes in a function that
you add to the hook variable quail-activate-hook. See Section 33.2.2 [Hooks], page 469.
For example, you can redefine some of the input method’s keys by defining key bindings in
the keymap returned by the function quail-translation-keymap, using define-key. See
Section 33.3.6 [Init Rebinding], page 480.

Input methods are inhibited when the text in the buffer is read-only for some reason.
This is so single-character key bindings work in modes that make buffer text or parts of it
read-only, such as read-only-mode and image-mode, even when an input method is active.

Another facility for typing characters not on your keyboard is by using C-x 8 RET

(insert-char) to insert a single character based on its Unicode name or code-point; see
Section 4.1 [Inserting Text], page 16.

19.4 Selecting an Input Method

C-\ Enable or disable use of the selected input method (toggle-input-method).

C-x RET C-\ method RET

Select a new input method for the current buffer (set-input-method).



Chapter 19: International Character Set Support 207

C-h I method RET

C-h C-\ method RET

Describe the input method method (describe-input-method). By default, it
describes the current input method (if any). This description should give you
the full details of how to use any particular input method.

M-x list-input-methods

Display a list of all the supported input methods.

To choose an input method for the current buffer, use C-x RET C-\ (set-input-method).
This command reads the input method name from the minibuffer; the name normally
starts with the language environment that it is meant to be used with. The variable
current-input-method records which input method is selected.

Input methods use various sequences of ASCII characters to stand for non-ASCII char-
acters. Sometimes it is useful to turn off the input method temporarily. To do this, type
C-\ (toggle-input-method). To reenable the input method, type C-\ again.

If you type C-\ and you have not yet selected an input method, it prompts you to specify
one. This has the same effect as using C-x RET C-\ to specify an input method.

When invoked with a numeric argument, as in C-u C-\, toggle-input-method always
prompts you for an input method, suggesting the most recently selected one as the default.

Selecting a language environment specifies a default input method for use in various
buffers. When you have a default input method, you can select it in the current buffer by
typing C-\. The variable default-input-method specifies the default input method (nil
means there is none).

In some language environments, which support several different input methods, you
might want to use an input method different from the default chosen by set-language-

environment. You can instruct Emacs to select a different default input method for a
certain language environment, if you wish, by using set-language-environment-hook (see
Section 19.2 [Language Environments], page 203). For example:

(defun my-chinese-setup ()

"Set up my private Chinese environment."

(if (equal current-language-environment "Chinese-GB")

(setq default-input-method "chinese-tonepy")))

(add-hook 'set-language-environment-hook 'my-chinese-setup)

This sets the default input method to be chinese-tonepy whenever you choose a Chinese-
GB language environment.

You can instruct Emacs to activate a certain input method automatically. For example:

(add-hook 'text-mode-hook

(lambda () (set-input-method "german-prefix")))

This automatically activates the input method german-prefix in Text mode.

Some input methods for alphabetic scripts work by (in effect) remapping the keyboard
to emulate various keyboard layouts commonly used for those scripts. How to do this
remapping properly depends on your actual keyboard layout. To specify which layout your
keyboard has, use the command M-x quail-set-keyboard-layout.

You can use the command M-x quail-show-key to show what key (or key sequence) to
type in order to input the character following point, using the selected keyboard layout. The



Chapter 19: International Character Set Support 208

command C-u C-x = also shows that information, in addition to other information about
the character.

M-x list-input-methods displays a list of all the supported input methods. The list
gives information about each input method, including the string that stands for it in the
mode line.

19.5 Coding Systems

Users of various languages have established many more-or-less standard coding systems for
representing them. Emacs does not use these coding systems internally; instead, it converts
from various coding systems to its own system when reading data, and converts the internal
coding system to other coding systems when writing data. Conversion is possible in reading
or writing files, in sending or receiving from the terminal, and in exchanging data with
subprocesses.

Emacs assigns a name to each coding system. Most coding systems are used for one
language, and the name of the coding system starts with the language name. Some coding
systems are used for several languages; their names usually start with ‘iso’. There are also
special coding systems, such as no-conversion, raw-text, and emacs-internal.

A special class of coding systems, collectively known as codepages, is designed to support
text encoded by MS-Windows and MS-DOS software. The names of these coding systems
are cpnnnn, where nnnn is a 3- or 4-digit number of the codepage. You can use these
encodings just like any other coding system; for example, to visit a file encoded in codepage
850, type C-x RET c cp850 RET C-x C-f filename RET.

In addition to converting various representations of non-ASCII characters, a coding sys-
tem can perform end-of-line conversion. Emacs handles three different conventions for how
to separate lines in a file: newline (Unix), carriage return followed by linefeed (DOS), and
just carriage return (Mac).

C-h C coding RET

Describe coding system coding (describe-coding-system).

C-h C RET Describe the coding systems currently in use (describe-coding-system).

M-x list-coding-systems

Display a list of all the supported coding systems.

The command C-h C (describe-coding-system) displays information about particular
coding systems, including the end-of-line conversion specified by those coding systems.
You can specify a coding system name as the argument; alternatively, with an empty
argument, it describes the coding systems currently selected for various purposes, both in
the current buffer and as the defaults, and the priority list for recognizing coding systems
(see Section 19.6 [Recognize Coding], page 209).

To display a list of all the supported coding systems, type M-x list-coding-systems.
The list gives information about each coding system, including the letter that stands for it
in the mode line (see Section 1.3 [Mode Line], page 8).

Each of the coding systems that appear in this list—except for no-conversion, which
means no conversion of any kind—specifies how and whether to convert printing characters,
but leaves the choice of end-of-line conversion to be decided based on the contents of each



Chapter 19: International Character Set Support 209

file. For example, if the file appears to use the sequence carriage return and linefeed to
separate lines, DOS end-of-line conversion will be used.

Each of the listed coding systems has three variants, which specify exactly what to do
for end-of-line conversion:

...-unix Don’t do any end-of-line conversion; assume the file uses newline to separate
lines. (This is the convention normally used on Unix and GNU systems, and
macOS.)

...-dos Assume the file uses carriage return followed by linefeed to separate lines, and do
the appropriate conversion. (This is the convention normally used on Microsoft
systems.1)

...-mac Assume the file uses carriage return to separate lines, and do the appropriate
conversion. (This was the convention used in Classic Mac OS.)

These variant coding systems are omitted from the list-coding-systems display for
brevity, since they are entirely predictable. For example, the coding system iso-latin-1

has variants iso-latin-1-unix, iso-latin-1-dos and iso-latin-1-mac.

The coding systems unix, dos, and mac are aliases for undecided-unix, undecided-dos,
and undecided-mac, respectively. These coding systems specify only the end-of-line con-
version, and leave the character code conversion to be deduced from the text itself.

The coding system raw-text is good for a file which is mainly ASCII text, but may
contain byte values above 127 that are not meant to encode non-ASCII characters. With
raw-text, Emacs copies those byte values unchanged, and sets enable-multibyte-

characters to nil in the current buffer so that they will be interpreted properly.
raw-text handles end-of-line conversion in the usual way, based on the data encountered,
and has the usual three variants to specify the kind of end-of-line conversion to use.

In contrast, the coding system no-conversion specifies no character code conversion at
all—none for non-ASCII byte values and none for end of line. This is useful for reading or
writing binary files, tar files, and other files that must be examined verbatim. It, too, sets
enable-multibyte-characters to nil.

The easiest way to edit a file with no conversion of any kind is with the M-x

find-file-literally command. This uses no-conversion, and also suppresses other
Emacs features that might convert the file contents before you see them. See Section 15.2
[Visiting], page 136.

The coding system emacs-internal (or utf-8-emacs, which is equivalent) means that
the file contains non-ASCII characters stored with the internal Emacs encoding. This coding
system handles end-of-line conversion based on the data encountered, and has the usual
three variants to specify the kind of end-of-line conversion.

19.6 Recognizing Coding Systems

Whenever Emacs reads a given piece of text, it tries to recognize which coding system to
use. This applies to files being read, output from subprocesses, text from X selections, etc.

1 It is also specified for MIME ‘text/*’ bodies and in other network transport contexts. It is different
from the SGML reference syntax record-start/record-end format, which Emacs doesn’t support directly.



Chapter 19: International Character Set Support 210

Emacs can select the right coding system automatically most of the time—once you have
specified your preferences.

Some coding systems can be recognized or distinguished by which byte sequences appear
in the data. However, there are coding systems that cannot be distinguished, not even
potentially. For example, there is no way to distinguish between Latin-1 and Latin-2; they
use the same byte values with different meanings.

Emacs handles this situation by means of a priority list of coding systems. Whenever
Emacs reads a file, if you do not specify the coding system to use, Emacs checks the data
against each coding system, starting with the first in priority and working down the list,
until it finds a coding system that fits the data. Then it converts the file contents assuming
that they are represented in this coding system.

The priority list of coding systems depends on the selected language environment (see
Section 19.2 [Language Environments], page 203). For example, if you use French, you
probably want Emacs to prefer Latin-1 to Latin-2; if you use Czech, you probably want
Latin-2 to be preferred. This is one of the reasons to specify a language environment.

However, you can alter the coding system priority list in detail with the command
M-x prefer-coding-system. This command reads the name of a coding system from the
minibuffer, and adds it to the front of the priority list, so that it is preferred to all others. If
you use this command several times, each use adds one element to the front of the priority
list.

If you use a coding system that specifies the end-of-line conversion type, such as
iso-8859-1-dos, what this means is that Emacs should attempt to recognize iso-8859-1

with priority, and should use DOS end-of-line conversion when it does recognize
iso-8859-1.

Sometimes a file name indicates which coding system to use for the file. The vari-
able file-coding-system-alist specifies this correspondence. There is a special function
modify-coding-system-alist for adding elements to this list. For example, to read and
write all ‘.txt’ files using the coding system chinese-iso-8bit, you can execute this Lisp
expression:

(modify-coding-system-alist 'file "\\.txt\\'" 'chinese-iso-8bit)

The first argument should be file, the second argument should be a regular expression that
determines which files this applies to, and the third argument says which coding system to
use for these files.

Emacs recognizes which kind of end-of-line conversion to use based on the contents of the
file: if it sees only carriage returns, or only carriage return followed by linefeed sequences,
then it chooses the end-of-line conversion accordingly. You can inhibit the automatic use
of end-of-line conversion by setting the variable inhibit-eol-conversion to non-nil. If
you do that, DOS-style files will be displayed with the ‘^M’ characters visible in the buffer;
some people prefer this to the more subtle ‘(DOS)’ end-of-line type indication near the left
edge of the mode line (see Section 1.3 [Mode Line], page 8).

By default, the automatic detection of the coding system is sensitive to escape sequences.
If Emacs sees a sequence of characters that begin with an escape character, and the sequence
is valid as an ISO-2022 code, that tells Emacs to use one of the ISO-2022 encodings to decode
the file.



Chapter 19: International Character Set Support 211

However, there may be cases that you want to read escape sequences in a file as is. In
such a case, you can set the variable inhibit-iso-escape-detection to non-nil. Then
the code detection ignores any escape sequences, and never uses an ISO-2022 encoding. The
result is that all escape sequences become visible in the buffer.

The default value of inhibit-iso-escape-detection is nil. We recommend that you
not change it permanently, only for one specific operation. That’s because some Emacs Lisp
source files in the Emacs distribution contain non-ASCII characters encoded in the coding
system iso-2022-7bit, and they won’t be decoded correctly when you visit those files if
you suppress the escape sequence detection.

The variables auto-coding-alist and auto-coding-regexp-alist are the strongest
way to specify the coding system for certain patterns of file names, or for files containing
certain patterns, respectively. These variables even override ‘-*-coding:-*-’ tags in the file
itself (see Section 19.7 [Specify Coding], page 211). For example, Emacs uses auto-coding-
alist for tar and archive files, to prevent it from being confused by a ‘-*-coding:-*-’ tag
in a member of the archive and thinking it applies to the archive file as a whole.

Another way to specify a coding system is with the variable auto-coding-functions.
For example, one of the builtin auto-coding-functions detects the encoding for XML
files. Unlike the previous two, this variable does not override any ‘-*-coding:-*-’ tag.

19.7 Specifying a File’s Coding System

If Emacs recognizes the encoding of a file incorrectly, you can reread the file using the correct
coding system with C-x RET r (revert-buffer-with-coding-system). This command
prompts for the coding system to use. To see what coding system Emacs actually used to
decode the file, look at the coding system mnemonic letter near the left edge of the mode
line (see Section 1.3 [Mode Line], page 8), or type C-h C (describe-coding-system).

You can specify the coding system for a particular file in the file itself, using the
‘-*-...-*-’ construct at the beginning, or a local variables list at the end (see Section 33.2.4
[File Variables], page 472). You do this by defining a value for the “variable” named coding.
Emacs does not really have a variable coding; instead of setting a variable, this uses the
specified coding system for the file. For example, ‘-*-mode: C; coding: latin-1; -*-’
specifies use of the Latin-1 coding system, as well as C mode. When you specify the coding
explicitly in the file, that overrides file-coding-system-alist.

19.8 Choosing Coding Systems for Output

Once Emacs has chosen a coding system for a buffer, it stores that coding system in
buffer-file-coding-system. That makes it the default for operations that write from this
buffer into a file, such as save-buffer and write-region. You can specify a different cod-
ing system for further file output from the buffer using set-buffer-file-coding-system

(see Section 19.9 [Text Coding], page 212).

You can insert any character Emacs supports into any Emacs buffer, but most coding
systems can only handle a subset of these characters. Therefore, it’s possible that the
characters you insert cannot be encoded with the coding system that will be used to save
the buffer. For example, you could visit a text file in Polish, encoded in iso-8859-2,
and add some Russian words to it. When you save that buffer, Emacs cannot use the



Chapter 19: International Character Set Support 212

current value of buffer-file-coding-system, because the characters you added cannot
be encoded by that coding system.

When that happens, Emacs tries the most-preferred coding system (set by M-x

prefer-coding-system or M-x set-language-environment). If that coding system can
safely encode all of the characters in the buffer, Emacs uses it, and stores its value in
buffer-file-coding-system. Otherwise, Emacs displays a list of coding systems suitable
for encoding the buffer’s contents, and asks you to choose one of those coding systems.

If you insert the unsuitable characters in a mail message, Emacs behaves a bit differently.
It additionally checks whether the most-preferred coding system is recommended for use
in MIME messages; if not, it informs you of this fact and prompts you for another coding
system. This is so you won’t inadvertently send a message encoded in a way that your
recipient’s mail software will have difficulty decoding. (You can still use an unsuitable
coding system if you enter its name at the prompt.)

When you send a mail message (see Chapter 29 [Sending Mail], page 388), Emacs has
four different ways to determine the coding system to use for encoding the message text.
It first tries the buffer’s own value of buffer-file-coding-system, if that is non-nil.
Otherwise, it uses the value of sendmail-coding-system, if that is non-nil. Thirdly, it
uses the value of default-sendmail-coding-system. If all of these three values are nil,
Emacs encodes outgoing mail using the default coding system for new files (i.e., the default
value of buffer-file-coding-system), which is controlled by your choice of language
environment.

19.9 Specifying a Coding System for File Text

In cases where Emacs does not automatically choose the right coding system for a file’s
contents, you can use these commands to specify one:

C-x RET f coding RET

Use coding system coding to save or revisit the file in the current buffer
(set-buffer-file-coding-system).

C-x RET c coding RET

Specify coding system coding for the immediately following command
(universal-coding-system-argument).

C-x RET r coding RET

Revisit the current file using the coding system coding (revert-buffer-with-
coding-system).

M-x recode-region RET right RET wrong RET

Convert a region that was decoded using coding system wrong, decoding it
using coding system right instead.

The command C-x RET f (set-buffer-file-coding-system) sets the file coding system
for the current buffer (i.e., the coding system to use when saving or reverting the file). You
specify which coding system using the minibuffer. You can also invoke this command by
clicking with mouse-3 on the coding system indicator in the mode line (see Section 1.3
[Mode Line], page 8).



Chapter 19: International Character Set Support 213

If you specify a coding system that cannot handle all the characters in the buffer, Emacs
will warn you about the troublesome characters, and ask you to choose another coding
system, when you try to save the buffer (see Section 19.8 [Output Coding], page 211).

You can also use this command to specify the end-of-line conversion (see Section 19.5
[Coding Systems], page 208) for encoding the current buffer. For example, C-x RET f dos

RET will cause Emacs to save the current buffer’s text with DOS-style carriage return fol-
lowed by linefeed line endings.

Another way to specify the coding system for a file is when you visit the file. First use
the command C-x RET c (universal-coding-system-argument); this command uses the
minibuffer to read a coding system name. After you exit the minibuffer, the specified coding
system is used for the immediately following command.

So if the immediately following command is C-x C-f, for example, it reads the file using
that coding system (and records the coding system for when you later save the file). Or if
the immediately following command is C-x C-w, it writes the file using that coding system.
When you specify the coding system for saving in this way, instead of with C-x RET f, there
is no warning if the buffer contains characters that the coding system cannot handle.

Other file commands affected by a specified coding system include C-x i and C-x C-v, as
well as the other-window variants of C-x C-f. C-x RET c also affects commands that start
subprocesses, including M-x shell (see Section 31.5 [Shell], page 423). If the immediately
following command does not use the coding system, then C-x RET c ultimately has no effect.

An easy way to visit a file with no conversion is with the M-x find-file-literally

command. See Section 15.2 [Visiting], page 136.

The default value of the variable buffer-file-coding-system specifies the choice of
coding system to use when you create a new file. It applies when you find a new file,
and when you create a buffer and then save it in a file. Selecting a language environment
typically sets this variable to a good choice of default coding system for that language
environment.

If you visit a file with a wrong coding system, you can correct this with C-x RET r

(revert-buffer-with-coding-system). This visits the current file again, using a coding
system you specify.

If a piece of text has already been inserted into a buffer using the wrong coding system,
you can redo the decoding of it using M-x recode-region. This prompts you for the proper
coding system, then for the wrong coding system that was actually used, and does the
conversion. It first encodes the region using the wrong coding system, then decodes it again
using the proper coding system.

19.10 Coding Systems for Interprocess Communication

This section explains how to specify coding systems for use in communication with other
processes.

C-x RET x coding RET

Use coding system coding for transferring selections to and from other graphical
applications (set-selection-coding-system).



Chapter 19: International Character Set Support 214

C-x RET X coding RET

Use coding system coding for transferring one selection—the next one—to or
from another graphical application (set-next-selection-coding-system).

C-x RET p input-coding RET output-coding RET

Use coding systems input-coding and output-coding for subprocess input and
output in the current buffer (set-buffer-process-coding-system).

The command C-x RET x (set-selection-coding-system) specifies the coding system
for sending selected text to other windowing applications, and for receiving the text of
selections made in other applications. This command applies to all subsequent selections,
until you override it by using the command again. The command C-x RET X (set-next-
selection-coding-system) specifies the coding system for the next selection made in
Emacs or read by Emacs.

The variable x-select-request-type specifies the data type to request from the X
Window System for receiving text selections from other applications. If the value is nil

(the default), Emacs tries UTF8_STRING and COMPOUND_TEXT, in this order, and uses various
heuristics to choose the more appropriate of the two results; if none of these succeed,
Emacs falls back on STRING. If the value of x-select-request-type is one of the symbols
COMPOUND_TEXT, UTF8_STRING, STRING, or TEXT, Emacs uses only that request type. If the
value is a list of some of these symbols, Emacs tries only the request types in the list, in
order, until one of them succeeds, or until the list is exhausted.

The command C-x RET p (set-buffer-process-coding-system) specifies the coding
system for input and output to a subprocess. This command applies to the current buffer;
normally, each subprocess has its own buffer, and thus you can use this command to specify
translation to and from a particular subprocess by giving the command in the corresponding
buffer.

You can also use C-x RET c (universal-coding-system-argument) just before the com-
mand that runs or starts a subprocess, to specify the coding system for communicating with
that subprocess. See Section 19.9 [Text Coding], page 212.

The default for translation of process input and output depends on the current language
environment.

The variable locale-coding-system specifies a coding system to use when encoding
and decoding system strings such as system error messages and format-time-string for-
mats and time stamps. That coding system is also used for decoding non-ASCII keyboard
input on the X Window System and for encoding text sent to the standard output and
error streams when in batch mode. You should choose a coding system that is compatible
with the underlying system’s text representation, which is normally specified by one of the
environment variables LC_ALL, LC_CTYPE, and LANG. (The first one, in the order specified
above, whose value is nonempty is the one that determines the text representation.)

19.11 Coding Systems for File Names

C-x RET F coding RET

Use coding system coding for encoding and decoding file names (set-file-
name-coding-system).



Chapter 19: International Character Set Support 215

The command C-x RET F (set-file-name-coding-system) specifies a coding system to
use for encoding file names. It has no effect on reading and writing the contents of files.

In fact, all this command does is set the value of the variable file-name-coding-

system. If you set the variable to a coding system name (as a Lisp symbol or a string),
Emacs encodes file names using that coding system for all file operations. This makes it
possible to use non-ASCII characters in file names—or, at least, those non-ASCII characters
that the specified coding system can encode.

If file-name-coding-system is nil, Emacs uses a default coding system determined by
the selected language environment, and stored in the default-file-name-coding-system

variable. In the default language environment, non-ASCII characters in file names are not
encoded specially; they appear in the file system using the internal Emacs representation.

When Emacs runs on MS-Windows versions that are descendants of the NT family
(Windows 2000, XP, and all the later versions), the value of file-name-coding-system
is largely ignored, as Emacs by default uses APIs that allow passing Unicode file names
directly. By contrast, on Windows 9X, file names are encoded using file-name-coding-

system, which should be set to the codepage (see Section 19.5 [Coding Systems], page 208)
pertinent for the current system locale. The value of the variable w32-unicode-filenames

controls whether Emacs uses the Unicode APIs when it calls OS functions that accept file
names. This variable is set by the startup code to nil on Windows 9X, and to t on newer
versions of MS-Windows.

Warning: if you change file-name-coding-system (or the language environment) in
the middle of an Emacs session, problems can result if you have already visited files whose
names were encoded using the earlier coding system and cannot be encoded (or are encoded
differently) under the new coding system. If you try to save one of these buffers under the
visited file name, saving may use the wrong file name, or it may encounter an error. If such
a problem happens, use C-x C-w to specify a new file name for that buffer.

If a mistake occurs when encoding a file name, use the command M-x recode-file-name

to change the file name’s coding system. This prompts for an existing file name, its old
coding system, and the coding system to which you wish to convert.

19.12 Coding Systems for Terminal I/O

C-x RET t coding RET

Use coding system coding for terminal output (set-terminal-coding-
system).

C-x RET k coding RET

Use coding system coding for keyboard input (set-keyboard-coding-system).

The command C-x RET t (set-terminal-coding-system) specifies the coding system
for terminal output. If you specify a character code for terminal output, all characters
output to the terminal are translated into that coding system.

This feature is useful for certain character-only terminals built to support specific lan-
guages or character sets—for example, European terminals that support one of the ISO
Latin character sets. You need to specify the terminal coding system when using multibyte
text, so that Emacs knows which characters the terminal can actually handle.



Chapter 19: International Character Set Support 216

By default, output to the terminal is not translated at all, unless Emacs can deduce the
proper coding system from your terminal type or your locale specification (see Section 19.2
[Language Environments], page 203).

The command C-x RET k (set-keyboard-coding-system), or the variable
keyboard-coding-system, specifies the coding system for keyboard input. Character-code
translation of keyboard input is useful for terminals with keys that send non-ASCII graphic
characters—for example, some terminals designed for ISO Latin-1 or subsets of it.

By default, keyboard input is translated based on your system locale setting. If your
terminal does not really support the encoding implied by your locale (for example, if you find
it inserts a non-ASCII character if you type M-i), you will need to set keyboard-coding-

system to nil to turn off encoding. You can do this by putting

(set-keyboard-coding-system nil)

in your init file.

There is a similarity between using a coding system translation for keyboard input, and
using an input method: both define sequences of keyboard input that translate into single
characters. However, input methods are designed to be convenient for interactive use by
humans, and the sequences that are translated are typically sequences of ASCII printing
characters. Coding systems typically translate sequences of non-graphic characters.

19.13 Fontsets

A font typically defines shapes for a single alphabet or script. Therefore, displaying the
entire range of scripts that Emacs supports requires a collection of many fonts. In Emacs,
such a collection is called a fontset. A fontset is defined by a list of font specifications, each
assigned to handle a range of character codes, and may fall back on another fontset for
characters that are not covered by the fonts it specifies.

Each fontset has a name, like a font. However, while fonts are stored in the system
and the available font names are defined by the system, fontsets are defined within Emacs
itself. Once you have defined a fontset, you can use it within Emacs by specifying its name,
anywhere that you could use a single font. Of course, Emacs fontsets can use only the fonts
that your system supports. If some characters appear on the screen as empty boxes or hex
codes, this means that the fontset in use for them has no font for those characters. In this
case, or if the characters are shown, but not as well as you would like, you may need to
install extra fonts or modify the fontset to use specific fonts already installed on your system
(see below). Your operating system may have optional fonts that you can install; or you
can install the GNU Intlfonts package, which includes fonts for most supported scripts.2

Emacs creates three fontsets automatically: the standard fontset, the startup fontset
and the default fontset. The default fontset is most likely to have fonts for a wide variety
of non-ASCII characters, and is the default fallback for the other two fontsets, and if you
set a default font rather than fontset. However, it does not specify font family names, so

2 If you run Emacs on X, you may need to inform the X server about the location of the newly installed
fonts with commands such as:

xset fp+ /usr/local/share/emacs/fonts

xset fp rehash



Chapter 19: International Character Set Support 217

results can be somewhat random if you use it directly. You can specify a particular fontset
by starting Emacs with the ‘-fn’ option. For example,

emacs -fn fontset-standard

You can also specify a fontset with the ‘Font’ resource (see Appendix D [X Resources],
page 547).

If no fontset is specified for use, then Emacs uses an ASCII font, with ‘fontset-default’
as a fallback for characters the font does not cover. The standard fontset is only used if
explicitly requested, despite its name.

To show the information about a specific fontset, use the M-x describe-fontset com-
mand. It prompts for a fontset name, defaulting to the one used by the current frame, and
then displays all the subranges of characters and the fonts assigned to them in that fontset.
To see which fonts Emacs is using in a session started without a specific fontset (which is
what happens normally), type fontset-default RET at the prompt, or just RET to describe
the fontset used by the current frame.

A fontset does not necessarily specify a font for every character code. If a fontset specifies
no font for a certain character, or if it specifies a font that does not exist on your system,
then it cannot display that character properly. It will display that character as a hex code
or thin space or an empty box instead. (See Section 11.19 [glyphless characters], page 91,
for details.) Or a fontset might specify a font for some range of characters, but you may
not like their visual appearance. If this happens, you may wish to modify your fontset; see
Section 19.15 [Modifying Fontsets], page 219, for how to do that.

19.14 Defining Fontsets

When running on X, Emacs creates a standard fontset automatically according to the value
of standard-fontset-spec. This fontset’s name is

-*-fixed-medium-r-normal-*-16-*-*-*-*-*-fontset-standard

or just ‘fontset-standard’ for short.

On GNUstep and macOS, the standard fontset is created using the value of
ns-standard-fontset-spec, and on MS Windows it is created using the value of
w32-standard-fontset-spec.

Bold, italic, and bold-italic variants of the standard fontset are created automatically.
Their names have ‘bold’ instead of ‘medium’, or ‘i’ instead of ‘r’, or both.

Emacs generates a fontset automatically, based on any default ASCII font that you
specify with the ‘Font’ resource or the ‘-fn’ argument, or the default font that Emacs
found when it started. This is the startup fontset and its name is fontset-startup. Emacs
generates this fontset by replacing the charset registry field with ‘fontset’, and replacing
the charset encoding field with ‘startup’, then using the resulting string to specify a fontset.

For instance, if you start Emacs with a font of this form,

emacs -fn "*courier-medium-r-normal--14-140-*-iso8859-1"

Emacs generates the following fontset and uses it for the initial X window frame:

-*-courier-medium-r-normal-*-14-140-*-*-*-*-fontset-startup

The startup fontset will use the font that you specify, or a variant with a different
registry and encoding, for all the characters that are supported by that font, and fallback
on ‘fontset-default’ for other characters.



Chapter 19: International Character Set Support 218

With the X resource ‘Emacs.Font’, you can specify a fontset name just like an ac-
tual font name. But be careful not to specify a fontset name in a wildcard resource
like ‘Emacs*Font’—that wildcard specification matches various other resources, such as
for menus, and menus cannot handle fontsets. See Appendix D [X Resources], page 547.

You can specify additional fontsets using X resources named ‘Fontset-n’, where n is an
integer starting from 0. The resource value should have this form:

fontpattern, [charset:font]. . .

where fontpattern should have the form of a standard X font name (see the previous
fontset-startup example), except for the last two fields. They should have the form
‘fontset-alias’.

Each fontset has two names, one long and one short. The long name is fontpattern. The
short name is ‘fontset-alias’, the last 2 fields of the long name (e.g., ‘fontset-startup’
for the fontset automatically created at startup). You can refer to the fontset by either
name.

The construct ‘charset:font’ specifies which font to use (in this fontset) for one par-
ticular character set. Here, charset is the name of a character set, and font is the font to
use for that character set. You can use this construct any number of times in defining one
fontset.

For the other character sets, Emacs chooses a font based on fontpattern. It replaces
‘fontset-alias’ with values that describe the character set. For the ASCII character font,
‘fontset-alias’ is replaced with ‘ISO8859-1’.

In addition, when several consecutive fields are wildcards, Emacs collapses them into a
single wildcard. This is to prevent use of auto-scaled fonts. Fonts made by scaling larger
fonts are not usable for editing, and scaling a smaller font is also not useful, because it is
better to use the smaller font in its own size, which is what Emacs does.

Thus if fontpattern is this,

-*-fixed-medium-r-normal-*-24-*-*-*-*-*-fontset-24

the font specification for ASCII characters would be this:

-*-fixed-medium-r-normal-*-24-*-ISO8859-1

and the font specification for Chinese GB2312 characters would be this:

-*-fixed-medium-r-normal-*-24-*-gb2312*-*

You may not have any Chinese font matching the above font specification. Most X
distributions include only Chinese fonts that have ‘song ti’ or ‘fangsong ti’ in the family
field. In such a case, ‘Fontset-n’ can be specified as:

Emacs.Fontset-0: -*-fixed-medium-r-normal-*-24-*-*-*-*-*-fontset-24,\

chinese-gb2312:-*-*-medium-r-normal-*-24-*-gb2312*-*

Then, the font specifications for all but Chinese GB2312 characters have ‘fixed’ in the
family field, and the font specification for Chinese GB2312 characters has a wild card ‘*’
in the family field.

The function that processes the fontset resource value to create the fontset is called
create-fontset-from-fontset-spec. You can also call this function explicitly to create
a fontset.

See Section 18.8 [Fonts], page 187, for more information about font naming.



Chapter 19: International Character Set Support 219

19.15 Modifying Fontsets

Fontsets do not always have to be created from scratch. If only minor changes are required
it may be easier to modify an existing fontset, usually ‘fontset-default’. Modifying
‘fontset-default’ will also affect other fontsets that use it as a fallback, so can be an
effective way of fixing problems with the fonts that Emacs chooses for a particular script.

Fontsets can be modified using the function set-fontset-font, specifying a character,
a charset, a script, or a range of characters to modify the font for, and a font specification
for the font to be used. Some examples are:

;; Prefer a big5 font for han characters.

(set-fontset-font "fontset-default"

'han (font-spec :registry "big5")

nil 'prepend)

;; Use MyPrivateFont for the Unicode private use area.

(set-fontset-font "fontset-default" '(#xe000 . #xf8ff)

"MyPrivateFont")

;; Use Liberation Mono for latin-3 charset.

(set-fontset-font "fontset-default" 'iso-8859-3

"Liberation Mono")

;; Use DejaVu Sans Mono as a fallback in fontset-startup

;; before resorting to fontset-default.

(set-fontset-font "fontset-startup" nil "DejaVu Sans Mono"

nil 'append)

See Section “Fontsets” in GNU Emacs Lisp Reference Manual, for more details about using
the set-fontset-font function.

If you don’t know the character’s codepoint or the script to which it belongs, you can ask
Emacs. With point at the character, type C-u C-x = (what-cursor-position), and this
information, together with much more, will be displayed in the *Help* buffer that Emacs
pops up. See Section 4.9 [Position Info], page 22. For example, Japanese characters belong
to the ‘kana’ script, but Japanese text also mixes them with Chinese characters so the
following uses the ‘han’ script to set up Emacs to use the ‘Kochi Gothic’ font for Japanese
text:

(set-fontset-font "fontset-default" 'han "Kochi Gothic")

(For convenience, the ‘han’ script in Emacs is set up to support all of the Chinese, Japanese,
and Korean, a.k.a. CJK, characters, not just Chinese characters.)

For the list of known scripts, see the variable script-representative-chars.

Fontset settings like those above only affect characters that the default font doesn’t sup-
port, so if the ‘Kochi Gothic’ font covers Latin characters, it will not be used for displaying
Latin scripts, since the default font used by Emacs usually covers Basic Latin.

Some fonts installed on your system might be broken, or produce unpleasant results for
characters for which they are used, and you may wish to instruct Emacs to completely
ignore them while searching for a suitable font required to display a character. You can do



Chapter 19: International Character Set Support 220

that by adding the offending fonts to the value of the variable face-ignored-fonts, which
is a list. Here’s an example to put in your ~/.emacs:

(add-to-list 'face-ignored-fonts "Some Bad Font")

19.16 Undisplayable Characters

There may be some non-ASCII characters that your terminal cannot display. Most text
terminals support just a single character set (use the variable default-terminal-coding-

system to tell Emacs which one, Section 19.12 [Terminal Coding], page 215); characters
that can’t be encoded in that coding system are displayed as ‘?’ by default.

Graphical displays can display a broader range of characters, but you may not have fonts
installed for all of them; characters that have no font appear as a hollow box.

If you use Latin-1 characters but your terminal can’t display Latin-1, you can arrange
to display mnemonic ASCII sequences instead, e.g., ‘"o’ for o-umlaut. Load the library
iso-ascii to do this.

If your terminal can display Latin-1, you can display characters from other European
character sets using a mixture of equivalent Latin-1 characters and ASCII mnemonics. Cus-
tomize the variable latin1-display to enable this. The mnemonic ASCII sequences mostly
correspond to those of the prefix input methods.

19.17 Unibyte Editing Mode

The ISO 8859 Latin-n character sets define character codes in the range 0240 to 0377 octal
(160 to 255 decimal) to handle the accented letters and punctuation needed by various
European languages (and some non-European ones). Note that Emacs considers bytes with
codes in this range as raw bytes, not as characters, even in a unibyte buffer, i.e., if you
disable multibyte characters. However, Emacs can still handle these character codes as
if they belonged to one of the single-byte character sets at a time. To specify which of
these codes to use, invoke M-x set-language-environment and specify a suitable language
environment such as ‘Latin-n’. See Section “Disabling Multibyte Characters” in GNU
Emacs Lisp Reference Manual.

Emacs can also display bytes in the range 160 to 255 as readable characters, provided the
terminal or font in use supports them. This works automatically. On a graphical display,
Emacs can also display single-byte characters through fontsets, in effect by displaying the
equivalent multibyte characters according to the current language environment. To request
this, set the variable unibyte-display-via-language-environment to a non-nil value.
Note that setting this only affects how these bytes are displayed, but does not change the
fundamental fact that Emacs treats them as raw bytes, not as characters.

If your terminal does not support display of the Latin-1 character set, Emacs can dis-
play these characters as ASCII sequences which at least give you a clear idea of what the
characters are. To do this, load the library iso-ascii. Similar libraries for other Latin-n
character sets could be implemented, but have not been so far.

Normally non-ISO-8859 characters (decimal codes between 128 and 159 inclusive) are
displayed as octal escapes. You can change this for non-standard extended versions of
ISO-8859 character sets by using the function standard-display-8bit in the disp-table

library.



Chapter 19: International Character Set Support 221

There are two ways to input single-byte non-ASCII characters:

• You can use an input method for the selected language environment. See Section 19.3
[Input Methods], page 205. When you use an input method in a unibyte buffer, the
non-ASCII character you specify with it is converted to unibyte.

• If your keyboard can generate character codes 128 (decimal) and up, representing non-
ASCII characters, you can type those character codes directly.

On a graphical display, you should not need to do anything special to use these keys;
they should simply work. On a text terminal, you should use the command M-x

set-keyboard-coding-system or customize the variable keyboard-coding-system

to specify which coding system your keyboard uses (see Section 19.12 [Terminal Cod-
ing], page 215). Enabling this feature will probably require you to use ESC to type Meta
characters; however, on a console terminal or a terminal emulator such as xterm, you
can arrange for Meta to be converted to ESC and still be able to type 8-bit characters
present directly on the keyboard or using Compose or AltGr keys. See Section 2.1 [User
Input], page 11.

• You can use the key C-x 8 as a compose-character prefix for entry of non-ASCII Latin-1
and a few other printing characters. C-x 8 is good for insertion (in the minibuffer as
well as other buffers), for searching, and in any other context where a key sequence is
allowed.

C-x 8 works by loading the iso-transl library. Once that library is loaded, the Alt

modifier key, if the keyboard has one, serves the same purpose as C-x 8: use Alt

together with an accent character to modify the following letter. In addition, if the
keyboard has keys for the Latin-1 dead accent characters, they too are defined to
compose with the following character, once iso-transl is loaded.

Use C-x 8 C-h to list all the available C-x 8 translations.

19.18 Charsets

In Emacs, charset is short for “character set”. Emacs supports most popular charsets (such
as ascii, iso-8859-1, cp1250, big5, and unicode), in addition to some charsets of its own
(such as emacs, unicode-bmp, and eight-bit). All supported characters belong to one or
more charsets.

Emacs normally does the right thing with respect to charsets, so that you don’t have to
worry about them. However, it is sometimes helpful to know some of the underlying details
about charsets.

One example is font selection (see Section 18.8 [Fonts], page 187). Each language envi-
ronment (see Section 19.2 [Language Environments], page 203) defines a priority list for the
various charsets. When searching for a font, Emacs initially attempts to find one that can
display the highest-priority charsets. For instance, in the Japanese language environment,
the charset japanese-jisx0208 has the highest priority, so Emacs tries to use a font whose
registry property is ‘JISX0208.1983-0’.

There are two commands that can be used to obtain information about charsets. The
command M-x list-charset-chars prompts for a charset name, and displays all the char-
acters in that character set. The command M-x describe-character-set prompts for a
charset name, and displays information about that charset, including its internal represen-
tation within Emacs.



Chapter 19: International Character Set Support 222

M-x list-character-sets displays a list of all supported charsets. The list gives the
names of charsets and additional information to identity each charset; for more details, see
the ISO International Register of Coded Character Sets to be Used with Escape Sequences
(ISO-IR) (https://www.itscj.ipsj.or.jp/itscj_english/iso-ir/ISO-IR.pdf) main-
tained by the Information Processing Society of Japan/Information Technology Standards
Commission of Japan (IPSJ/ITSCJ) (https://www.itscj.ipsj.or.jp/itscj_english/
). In this list, charsets are divided into two categories: normal charsets are listed first,
followed by supplementary charsets. A supplementary charset is one that is used to define
another charset (as a parent or a subset), or to provide backward-compatibility for older
Emacs versions.

To find out which charset a character in the buffer belongs to, put point before it and
type C-u C-x = (see Section 19.1 [International Chars], page 201).

19.19 Bidirectional Editing

Emacs supports editing text written in scripts, such as Arabic, Farsi, and Hebrew, whose
natural ordering of horizontal text for display is from right to left. However, digits and Latin
text embedded in these scripts are still displayed left to right. It is also not uncommon to
have small portions of text in Arabic or Hebrew embedded in an otherwise Latin document;
e.g., as comments and strings in a program source file. For these reasons, text that uses
these scripts is actually bidirectional: a mixture of runs of left-to-right and right-to-left
characters.

This section describes the facilities and options provided by Emacs for editing bidirec-
tional text.

Emacs stores right-to-left and bidirectional text in the so-called logical (or reading)
order: the buffer or string position of the first character you read precedes that of the
next character. Reordering of bidirectional text into the visual order happens at display
time. As a result, character positions no longer increase monotonically with their positions
on display. Emacs implements the Unicode Bidirectional Algorithm (UBA) described in
the Unicode Standard Annex #9 (https://unicode.org/reports/tr9/), for reordering
of bidirectional text for display. It deviates from the UBA only in how continuation lines
are displayed when text direction is opposite to the base paragraph direction, e.g., when a
long line of English text appears in a right-to-left paragraph.

The buffer-local variable bidi-display-reordering controls whether text in the buffer
is reordered for display. If its value is non-nil, Emacs reorders characters that have right-
to-left directionality when they are displayed. The default value is t.

Each paragraph of bidirectional text can have its own base direction, either right-to-left
or left-to-right. Text in left-to-right paragraphs begins on the screen at the left margin of
the window and is truncated or continued when it reaches the right margin. By contrast,
text in right-to-left paragraphs is displayed starting at the right margin and is continued
or truncated at the left margin. By default, paragraph boundaries are empty lines, i.e.,
lines consisting entirely of whitespace characters. To change that, you can customize the
two variables bidi-paragraph-start-re and bidi-paragraph-separate-re, whose values
should be regular expressions (strings); e.g., to have a single newline start a new paragraph,
set both of these variables to "^". These two variables are buffer-local (see Section 33.2.3
[Locals], page 470).

https://www.itscj.ipsj.or.jp/itscj_english/iso-ir/ISO-IR.pdf
https://www.itscj.ipsj.or.jp/itscj_english/iso-ir/ISO-IR.pdf
https://www.itscj.ipsj.or.jp/itscj_english/
https://www.itscj.ipsj.or.jp/itscj_english/
https://www.itscj.ipsj.or.jp/itscj_english/
https://unicode.org/reports/tr9/


223

Emacs determines the base direction of each paragraph dynamically, based on the text at
the beginning of the paragraph. However, sometimes a buffer may need to force a certain
base direction for its paragraphs. The variable bidi-paragraph-direction, if non-nil,
disables the dynamic determination of the base direction, and instead forces all paragraphs
in the buffer to have the direction specified by its buffer-local value. The value can be either
right-to-left or left-to-right. Any other value is interpreted as nil.

Alternatively, you can control the base direction of a paragraph by inserting special
formatting characters in front of the paragraph. The special character RIGHT-TO-LEFT

MARK, or rlm, forces the right-to-left direction on the following paragraph, while LEFT-TO-

RIGHT MARK, or lrm forces the left-to-right direction. (You can use C-x 8 RET to insert
these characters.) In a GUI session, the lrm and rlm characters display as very thin blank
characters; on text terminals they display as blanks.

Because characters are reordered for display, Emacs commands that operate in the logical
order or on stretches of buffer positions may produce unusual effects. For example, the
commands C-f and C-b move point in the logical order, so the cursor will sometimes jump
when point traverses reordered bidirectional text. Similarly, a highlighted region covering a
contiguous range of character positions may look discontinuous if the region spans reordered
text. This is normal and similar to the behavior of other programs that support bidirectional
text.

Cursor motion commands bound to arrow keys, such as LEFT and C-RIGHT, are sensitive
to the base direction of the current paragraph. In a left-to-right paragraph, commands
bound to RIGHT with or without modifiers move forward through buffer text, but in a right-
to-left paragraph they move backward instead. This reflects the fact that in a right-to-left
paragraph buffer positions predominantly increase when moving to the left on display.

When you move out of a paragraph, the meaning of the arrow keys might change if the
base direction of the preceding or the following paragraph is different from the paragraph
out of which you moved. When that happens, you need to adjust the arrow key you press
to the new base direction.

By default, LEFT and RIGHT move in the logical order, but if visual-order-cursor-
movement is non-nil, these commands move to the character that is, correspondingly, to
the left or right of the current screen position, moving to the next or previous screen line
as appropriate. Note that this might potentially move point many buffer positions away,
depending on the surrounding bidirectional context.


	Preface
	Distribution
	Acknowledgments

	Introduction
	The Organization of the Screen
	Point
	The Echo Area
	The Mode Line
	The Menu Bar

	Characters, Keys and Commands
	Kinds of User Input
	Keys
	Keys and Commands

	Entering and Exiting Emacs
	Entering Emacs
	Exiting Emacs

	Basic Editing Commands
	Inserting Text
	Changing the Location of Point
	Erasing Text
	Undoing Changes
	Files
	Help
	Blank Lines
	Continuation Lines
	Cursor Position Information
	Numeric Arguments
	Repeating a Command

	The Minibuffer
	Using the Minibuffer
	Minibuffers for File Names
	Editing in the Minibuffer
	Completion
	Completion Example
	Completion Commands
	Completion Exit
	How Completion Alternatives Are Chosen
	Completion Options

	Minibuffer History
	Repeating Minibuffer Commands
	Entering passwords
	Yes or No Prompts

	Running Commands by Name
	Help
	Documentation for a Key
	Help by Command or Variable Name
	Apropos
	Help Mode Commands
	Keyword Search for Packages
	Help for International Language Support
	Other Help Commands
	Help Files
	Help on Active Text and Tooltips

	The Mark and the Region
	Setting the Mark
	Commands to Mark Textual Objects
	Operating on the Region
	The Mark Ring
	The Global Mark Ring
	Shift Selection
	Disabling Transient Mark Mode

	Killing and Moving Text
	Deletion and Killing
	Deletion
	Killing by Lines
	Other Kill Commands
	Options for Killing

	Yanking
	The Kill Ring
	Yanking Earlier Kills
	Appending Kills

	``Cut and Paste'' Operations on Graphical Displays
	Using the Clipboard
	Cut and Paste with Other Window Applications
	Secondary Selection

	Accumulating Text
	Rectangles
	CUA Bindings

	Registers
	Saving Positions in Registers
	Saving Text in Registers
	Saving Rectangles in Registers
	Saving Window Configurations in Registers
	Keeping Numbers in Registers
	Keeping File Names in Registers
	Keyboard Macro Registers
	Bookmarks

	Controlling the Display
	Scrolling
	Recentering
	Automatic Scrolling
	Horizontal Scrolling
	Narrowing
	View Mode
	Follow Mode
	Text Faces
	Colors for Faces
	Color Names
	RGB Triplets

	Standard Faces
	Text Scale
	Font Lock mode
	Interactive Highlighting
	Window Fringes
	Displaying Boundaries
	Useless Whitespace
	Selective Display
	Optional Mode Line Features
	How Text Is Displayed
	Displaying the Cursor
	Line Truncation
	Visual Line Mode
	Customization of Display

	Searching and Replacement
	Incremental Search
	Basics of Incremental Search
	Repeating Incremental Search
	Isearch Yanking
	Errors in Incremental Search
	Special Input for Incremental Search
	Not Exiting Incremental Search
	Searching the Minibuffer

	Nonincremental Search
	Word Search
	Symbol Search
	Regular Expression Search
	Syntax of Regular Expressions
	Backslash in Regular Expressions
	Regular Expression Example
	Lax Matching During Searching
	Replacement Commands
	Unconditional Replacement
	Regexp Replacement
	Replace Commands and Lax Matches
	Query Replace

	Other Search-and-Loop Commands
	Tailoring Search to Your Needs

	Commands for Fixing Typos
	Undo
	Transposing Text
	Case Conversion
	Checking and Correcting Spelling

	Keyboard Macros
	Basic Use
	The Keyboard Macro Ring
	The Keyboard Macro Counter
	Executing Macros with Variations
	Naming and Saving Keyboard Macros
	Editing a Keyboard Macro
	Stepwise Editing a Keyboard Macro

	File Handling
	File Names
	Visiting Files
	Saving Files
	Commands for Saving Files
	Backup Files
	Single or Numbered Backups
	Automatic Deletion of Backups
	Copying vs. Renaming

	Customizing Saving of Files
	Protection against Simultaneous Editing
	Shadowing Files
	Updating Time Stamps Automatically

	Reverting a Buffer
	Auto Revert: Keeping buffers automatically up-to-date
	Auto-Saving: Protection Against Disasters
	Auto-Save Files
	Controlling Auto-Saving
	Recovering Data from Auto-Saves

	File Name Aliases
	File Directories
	Comparing Files
	Diff Mode
	Copying, Naming and Renaming Files
	Miscellaneous File Operations
	Accessing Compressed Files
	File Archives
	Remote Files
	Quoted File Names
	File Name Cache
	Convenience Features for Finding Files
	Viewing Image Files
	Filesets

	Using Multiple Buffers
	Creating and Selecting Buffers
	Listing Existing Buffers
	Miscellaneous Buffer Operations
	Killing Buffers
	Operating on Several Buffers
	Indirect Buffers
	Convenience Features and Customization of Buffer Handling
	Making Buffer Names Unique
	Fast minibuffer selection
	Customizing Buffer Menus


	Multiple Windows
	Concepts of Emacs Windows
	Splitting Windows
	Using Other Windows
	Displaying in Another Window
	Deleting and Resizing Windows
	Displaying a Buffer in a Window
	How display-buffer works
	Displaying non-editable buffers.

	Convenience Features for Window Handling
	Window Tab Line

	Frames and Graphical Displays
	Mouse Commands for Editing
	Mouse Commands for Words and Lines
	Following References with the Mouse
	Mouse Clicks for Menus
	Mode Line Mouse Commands
	Creating Frames
	Frame Commands
	Fonts
	Speedbar Frames
	Multiple Displays
	Frame Parameters
	Scroll Bars
	Window Dividers
	Drag and Drop
	Menu Bars
	Tool Bars
	Tab Bars
	Using Dialog Boxes
	Tooltips
	Mouse Avoidance
	Non-Window Terminals
	Using a Mouse in Text Terminals

	International Character Set Support
	Introduction to International Character Sets
	Language Environments
	Input Methods
	Selecting an Input Method
	Coding Systems
	Recognizing Coding Systems
	Specifying a File's Coding System
	Choosing Coding Systems for Output
	Specifying a Coding System for File Text
	Coding Systems for Interprocess Communication
	Coding Systems for File Names
	Coding Systems for Terminal I/O
	Fontsets
	Defining Fontsets
	Modifying Fontsets
	Undisplayable Characters
	Unibyte Editing Mode
	Charsets
	Bidirectional Editing

	Major and Minor Modes
	Major Modes
	Minor Modes
	Choosing File Modes

	Indentation
	Indentation Commands
	Tab Stops
	Tabs vs. Spaces
	Convenience Features for Indentation

	Commands for Human Languages
	Words
	Sentences
	Paragraphs
	Pages
	Quotation Marks
	Filling Text
	Auto Fill Mode
	Explicit Fill Commands
	The Fill Prefix
	Adaptive Filling

	Case Conversion Commands
	Text Mode
	Outline Mode
	Format of Outlines
	Outline Motion Commands
	Outline Visibility Commands
	Viewing One Outline in Multiple Views
	Folding Editing

	Org Mode
	Org as an organizer
	Org as an authoring system

	TeX{} Mode
	TeX{} Editing Commands
	LaTeX{} Editing Commands
	TeX{} Printing Commands
	TeX{} Mode Miscellany

	SGML and HTML Modes
	Nroff Mode
	Enriched Text
	Enriched Mode
	Hard and Soft Newlines
	Editing Format Information
	Faces in Enriched Text
	Indentation in Enriched Text
	Justification in Enriched Text
	Setting Other Text Properties

	Editing Text-based Tables
	What is a Text-based Table?
	Creating a Table
	Table Recognition
	Commands for Table Cells
	Cell Justification
	Table Rows and Columns
	Converting Between Plain Text and Tables
	Table Miscellany

	Two-Column Editing

	Editing Programs
	Major Modes for Programming Languages
	Top-Level Definitions, or Defuns
	Left Margin Convention
	Moving by Defuns
	Imenu
	Which Function Mode

	Indentation for Programs
	Basic Program Indentation Commands
	Indenting Several Lines
	Customizing Lisp Indentation
	Commands for C Indentation
	Customizing C Indentation

	Commands for Editing with Parentheses
	Expressions with Balanced Parentheses
	Moving in the Parenthesis Structure
	Matching Parentheses

	Manipulating Comments
	Comment Commands
	Multiple Lines of Comments
	Options Controlling Comments

	Documentation Lookup
	Info Documentation Lookup
	Man Page Lookup
	Emacs Lisp Documentation Lookup

	Hideshow minor mode
	Completion for Symbol Names
	MixedCase Words
	Semantic
	Other Features Useful for Editing Programs
	C and Related Modes
	C Mode Motion Commands
	Electric C Characters
	Hungry Delete Feature in C
	Other Commands for C Mode

	Asm Mode

	Compiling and Testing Programs
	Running Compilations under Emacs
	Compilation Mode
	Subshells for Compilation
	Searching with Grep under Emacs
	Finding Syntax Errors On The Fly
	Running Debuggers Under Emacs
	Starting GUD
	Debugger Operation
	Commands of GUD
	GUD Customization
	GDB Graphical Interface
	GDB User Interface Layout
	Source Buffers
	Breakpoints Buffer
	Threads Buffer
	Stack Buffer
	Other GDB Buffers
	Watch Expressions
	Multithreaded Debugging


	Executing Lisp Expressions
	Libraries of Lisp Code for Emacs
	Evaluating Emacs Lisp Expressions
	Lisp Interaction Buffers
	Running an External Lisp

	Maintaining Large Programs
	Version Control
	Introduction to Version Control
	Understanding the Problems it Addresses
	Supported Version Control Systems
	Concepts of Version Control
	Merge-based vs Lock-based Version Control
	Changeset-based vs File-based Version Control
	Decentralized vs Centralized Repositories
	Types of Log File

	Version Control and the Mode Line
	Basic Editing under Version Control
	Basic Version Control with Merging
	Basic Version Control with Locking
	Advanced Control in C-x v v

	Features of the Log Entry Buffer
	Registering a File for Version Control
	Examining And Comparing Old Revisions
	VC Change Log
	Undoing Version Control Actions
	Ignore Version Control Files
	VC Directory Mode
	The VC Directory Buffer
	VC Directory Commands

	Version Control Branches
	Switching between Branches
	Pulling/Pushing Changes into/from a Branch
	Merging Branches
	Creating New Branches


	Working with Projects
	Change Logs
	Change Log Commands
	Format of ChangeLog

	Find Identifier References
	Find Identifiers
	Looking Up Identifiers
	Commands Available in the *xref* Buffer
	Searching and Replacing with Identifiers
	Identifier Inquiries

	Tags Tables
	Source File Tag Syntax
	Creating Tags Tables
	Etags Regexps

	Selecting a Tags Table

	Emacs Development Environment

	Abbrevs
	Abbrev Concepts
	Defining Abbrevs
	Controlling Abbrev Expansion
	Examining and Editing Abbrevs
	Saving Abbrevs
	Dynamic Abbrev Expansion
	Customizing Dynamic Abbreviation

	Dired, the Directory Editor
	Entering Dired
	Navigation in the Dired Buffer
	Deleting Files with Dired
	Flagging Many Files at Once
	Visiting Files in Dired
	Dired Marks vs. Flags
	Operating on Files
	Shell Commands in Dired
	Transforming File Names in Dired
	File Comparison with Dired
	Subdirectories in Dired
	Moving Over Subdirectories
	Hiding Subdirectories
	Updating the Dired Buffer
	Dired and find
	Editing the Dired Buffer
	Viewing Image Thumbnails in Dired
	Other Dired Features

	The Calendar and the Diary
	Movement in the Calendar
	Motion by Standard Lengths of Time
	Beginning or End of Week, Month or Year
	Specified Dates

	Scrolling in the Calendar
	Counting Days
	Miscellaneous Calendar Commands
	Writing Calendar Files
	Holidays
	Times of Sunrise and Sunset
	Phases of the Moon
	Conversion To and From Other Calendars
	Supported Calendar Systems
	Converting To Other Calendars
	Converting From Other Calendars

	The Diary
	The Diary File
	Displaying the Diary
	Date Formats
	Commands to Add to the Diary
	Special Diary Entries
	Appointments
	Importing and Exporting Diary Entries

	Daylight Saving Time
	Summing Time Intervals

	Sending Mail
	The Format of the Mail Buffer
	Mail Header Fields
	Mail Aliases
	Mail Commands
	Mail Sending
	Mail Header Editing
	Citing Mail
	Mail Miscellany

	Mail Signature
	Mail Amusements
	Mail-Composition Methods

	Reading Mail with Rmail
	Basic Concepts of Rmail
	Scrolling Within a Message
	Moving Among Messages
	Deleting Messages
	Rmail Files and Inboxes
	Multiple Rmail Files
	Copying Messages Out to Files
	Labels
	Rmail Attributes
	Sending Replies
	Summaries
	Making Summaries
	Editing in Summaries

	Sorting the Rmail File
	Display of Messages
	Rmail and Coding Systems
	Editing Within a Message
	Digest Messages
	Reading Rot13 Messages
	movemail program
	Retrieving Mail from Remote Mailboxes
	Retrieving Mail from Local Mailboxes in Various Formats

	Miscellaneous Commands
	Email and Usenet News with Gnus
	Gnus Buffers
	When Gnus Starts Up
	Using the Gnus Group Buffer
	Using the Gnus Summary Buffer

	Host Security
	Network Security
	Document Viewing
	DocView Navigation
	DocView Searching
	DocView Slicing
	DocView Conversion

	Running Shell Commands from Emacs
	Single Shell Commands
	Interactive Subshell
	Shell Mode
	Shell Prompts
	Shell Command History
	Shell History Ring
	Shell History Copying
	Shell History References

	Directory Tracking
	Shell Mode Options
	Emacs Terminal Emulator
	Term Mode
	Remote Host Shell
	Serial Terminal

	Using Emacs as a Server
	TCP Emacs server
	Invoking emacsclient
	emacsclient Options

	Printing Hard Copies
	PostScript Hardcopy
	Variables for PostScript Hardcopy
	Printing Package

	Sorting Text
	Editing Binary Files
	Saving Emacs Sessions
	Recursive Editing Levels
	Hyperlinking and Web Navigation Features
	Web Browsing with EWW
	Embedded WebKit Widgets
	Following URLs
	Activating URLs
	Finding Files and URLs at Point

	Games and Other Amusements

	Emacs Lisp Packages
	The Package Menu Buffer
	Package Statuses
	Package Installation
	Package Files and Directory Layout

	Customization
	Easy Customization Interface
	Customization Groups
	Browsing and Searching for Settings
	Changing a Variable
	Saving Customizations
	Customizing Faces
	Customizing Specific Items
	Custom Themes
	Creating Custom Themes

	Variables
	Examining and Setting Variables
	Hooks
	Local Variables
	Local Variables in Files
	Specifying File Variables
	Safety of File Variables

	Per-Directory Local Variables
	Per-Connection Local Variables

	Customizing Key Bindings
	Keymaps
	Prefix Keymaps
	Local Keymaps
	Minibuffer Keymaps
	Changing Key Bindings Interactively
	Rebinding Keys in Your Init File
	Modifier Keys
	Rebinding Function Keys
	Named ASCII Control Characters
	Rebinding Mouse Buttons
	Disabling Commands

	The Emacs Initialization File
	Init File Syntax
	Init File Examples
	Terminal-specific Initialization
	How Emacs Finds Your Init File
	Non-ASCII Characters in Init Files
	The Early Init File

	Keeping Persistent Authentication Information

	Dealing with Common Problems
	Quitting and Aborting
	Dealing with Emacs Trouble
	If DEL Fails to Delete
	Recursive Editing Levels
	Garbage on the Screen
	Garbage in the Text
	Running out of Memory
	When Emacs Crashes
	Recovery After a Crash
	Emergency Escape
	Long Lines

	Reporting Bugs
	Reading Existing Bug Reports and Known Problems
	When Is There a Bug
	Understanding Bug Reporting
	Checklist for Bug Reports
	Sending Patches for GNU Emacs

	Contributing to Emacs Development
	Coding Standards
	Copyright Assignment

	How To Get Help with GNU Emacs

	GNU GENERAL PUBLIC LICENSE
	GNU Free Documentation License
	Command Line Arguments for Emacs Invocation
	Action Arguments
	Initial Options
	Command Argument Example
	Environment Variables
	General Variables
	Miscellaneous Variables
	The MS-Windows System Registry

	Specifying the Display Name
	Font Specification Options
	Window Color Options
	Options for Window Size and Position
	Internal and Outer Borders
	Frame Titles
	Icons
	Other Display Options

	X Options and Resources
	X Resources
	Table of X Resources for Emacs
	GTK+ resources
	GTK+ Resource Basics
	GTK+ widget names
	GTK+ Widget Names in Emacs
	GTK+ styles


	Emacs 26 Antinews
	Emacs and macOS / GNUstep
	Basic Emacs usage under macOS and GNUstep
	Grabbing environment variables

	Mac / GNUstep Customization
	Modifier keys
	Frame Variables
	macOS Trackpad/Mousewheel Variables
	Font Panel

	Windowing System Events under macOS / GNUstep
	GNUstep Support

	Emacs and Microsoft Windows/MS-DOS
	How to Start Emacs on MS-Windows
	Text Files and Binary Files
	File Names on MS-Windows
	Emulation of ls on MS-Windows
	HOME and Startup Directories on MS-Windows
	Keyboard Usage on MS-Windows
	Mouse Usage on MS-Windows
	Subprocesses on Windows 9X/ME and Windows NT/2K/XP/Vista/7/8/10
	Printing and MS-Windows
	Specifying Fonts on MS-Windows
	Miscellaneous Windows-specific features

	The GNU Manifesto
	What's GNU Gnu's Not Unix!
	Why I Must Write GNU
	Why GNU Will Be Compatible with Unix
	How GNU Will Be Available
	Why Many Other Programmers Want to Help
	How You Can Contribute
	Why All Computer Users Will Benefit
	Some Easily Rebutted Objections to GNU's Goals

	Glossary
	Key (Character) Index
	Command and Function Index
	Variable Index
	Concept Index

