
GNU Emacs Lisp Reference Manual
For Emacs Version 27.2

by Bil Lewis, Dan LaLiberte, Richard Stallman,
the GNU Manual Group, et al.

872

33 Non-ASCII Characters

This chapter covers the special issues relating to characters and how they are stored in
strings and buffers.

33.1 Text Representations

Emacs buffers and strings support a large repertoire of characters from many different
scripts, allowing users to type and display text in almost any known written language.

To support this multitude of characters and scripts, Emacs closely follows the Unicode
Standard. The Unicode Standard assigns a unique number, called a codepoint, to each and
every character. The range of codepoints defined by Unicode, or the Unicode codespace,
is 0..#x10FFFF (in hexadecimal notation), inclusive. Emacs extends this range with code-
points in the range #x110000..#x3FFFFF, which it uses for representing characters that
are not unified with Unicode and raw 8-bit bytes that cannot be interpreted as characters.
Thus, a character codepoint in Emacs is a 22-bit integer.

To conserve memory, Emacs does not hold fixed-length 22-bit numbers that are code-
points of text characters within buffers and strings. Rather, Emacs uses a variable-length
internal representation of characters, that stores each character as a sequence of 1 to 5 8-bit
bytes, depending on the magnitude of its codepoint1. For example, any ASCII character
takes up only 1 byte, a Latin-1 character takes up 2 bytes, etc. We call this representation
of text multibyte.

Outside Emacs, characters can be represented in many different encodings, such as ISO-
8859-1, GB-2312, Big-5, etc. Emacs converts between these external encodings and its
internal representation, as appropriate, when it reads text into a buffer or a string, or when
it writes text to a disk file or passes it to some other process.

Occasionally, Emacs needs to hold and manipulate encoded text or binary non-text data
in its buffers or strings. For example, when Emacs visits a file, it first reads the file’s text
verbatim into a buffer, and only then converts it to the internal representation. Before the
conversion, the buffer holds encoded text.

Encoded text is not really text, as far as Emacs is concerned, but rather a sequence of raw
8-bit bytes. We call buffers and strings that hold encoded text unibyte buffers and strings,
because Emacs treats them as a sequence of individual bytes. Usually, Emacs displays
unibyte buffers and strings as octal codes such as \237. We recommend that you never use
unibyte buffers and strings except for manipulating encoded text or binary non-text data.

In a buffer, the buffer-local value of the variable enable-multibyte-characters speci-
fies the representation used. The representation for a string is determined and recorded in
the string when the string is constructed.

[Variable]enable-multibyte-characters
This variable specifies the current buffer’s text representation. If it is non-nil, the
buffer contains multibyte text; otherwise, it contains unibyte encoded text or binary
non-text data.

1 This internal representation is based on one of the encodings defined by the Unicode Standard, called
UTF-8, for representing any Unicode codepoint, but Emacs extends UTF-8 to represent the additional
codepoints it uses for raw 8-bit bytes and characters not unified with Unicode.

Chapter 33: Non-ASCII Characters 873

You cannot set this variable directly; instead, use the function set-buffer-

multibyte to change a buffer’s representation.

[Function]position-bytes position
Buffer positions are measured in character units. This function returns the byte-
position corresponding to buffer position position in the current buffer. This is 1 at
the start of the buffer, and counts upward in bytes. If position is out of range, the
value is nil.

[Function]byte-to-position byte-position
Return the buffer position, in character units, corresponding to given byte-position
in the current buffer. If byte-position is out of range, the value is nil. In a multibyte
buffer, an arbitrary value of byte-position can be not at character boundary, but
inside a multibyte sequence representing a single character; in this case, this function
returns the buffer position of the character whose multibyte sequence includes byte-
position. In other words, the value does not change for all byte positions that belong
to the same character.

The following two functions are useful when a Lisp program needs to map buffer positions
to byte offsets in a file visited by the buffer.

[Function]bufferpos-to-filepos position &optional quality coding-system
This function is similar to position-bytes, but instead of byte position in the cur-
rent buffer it returns the offset from the beginning of the current buffer’s file of the
byte that corresponds to the given character position in the buffer. The conversion
requires to know how the text is encoded in the buffer’s file; this is what the coding-
system argument is for, defaulting to the value of buffer-file-coding-system. The
optional argument quality specifies how accurate the result should be; it should be
one of the following:

exact The result must be accurate. The function may need to encode and
decode a large part of the buffer, which is expensive and can be slow.

approximate

The value can be an approximation. The function may avoid expensive
processing and return an inexact result.

nil If the exact result needs expensive processing, the function will return
nil rather than an approximation. This is the default if the argument is
omitted.

[Function]filepos-to-bufferpos byte &optional quality coding-system
This function returns the buffer position corresponding to a file position specified
by byte, a zero-base byte offset from the file’s beginning. The function performs
the conversion opposite to what bufferpos-to-filepos does. Optional arguments
quality and coding-system have the same meaning and values as for bufferpos-to-
filepos.

[Function]multibyte-string-p string
Return t if string is a multibyte string, nil otherwise. This function also returns nil
if string is some object other than a string.

Chapter 33: Non-ASCII Characters 874

[Function]string-bytes string
This function returns the number of bytes in string. If string is a multibyte string,
this can be greater than (length string).

[Function]unibyte-string &rest bytes
This function concatenates all its argument bytes and makes the result a unibyte
string.

33.2 Disabling Multibyte Characters

By default, Emacs starts in multibyte mode: it stores the contents of buffers and strings
using an internal encoding that represents non-ASCII characters using multi-byte sequences.
Multibyte mode allows you to use all the supported languages and scripts without limita-
tions.

Under very special circumstances, you may want to disable multibyte character support,
for a specific buffer. When multibyte characters are disabled in a buffer, we call that unibyte
mode. In unibyte mode, each character in the buffer has a character code ranging from 0
through 255 (0377 octal); 0 through 127 (0177 octal) represent ASCII characters, and 128
(0200 octal) through 255 (0377 octal) represent non-ASCII characters.

To edit a particular file in unibyte representation, visit it using find-file-literally.
See Section 25.1.1 [Visiting Functions], page 542. You can convert a multibyte buffer to
unibyte by saving it to a file, killing the buffer, and visiting the file again with find-file-

literally. Alternatively, you can use C-x RET c (universal-coding-system-argument)
and specify ‘raw-text’ as the coding system with which to visit or save a file. See Section
“Specifying a Coding System for File Text” in GNU Emacs Manual. Unlike find-file-

literally, finding a file as ‘raw-text’ doesn’t disable format conversion, uncompression,
or auto mode selection.

The buffer-local variable enable-multibyte-characters is non-nil in multibyte
buffers, and nil in unibyte ones. The mode line also indicates whether a buffer is
multibyte or not. With a graphical display, in a multibyte buffer, the portion of the mode
line that indicates the character set has a tooltip that (amongst other things) says that
the buffer is multibyte. In a unibyte buffer, the character set indicator is absent. Thus,
in a unibyte buffer (when using a graphical display) there is normally nothing before the
indication of the visited file’s end-of-line convention (colon, backslash, etc.), unless you are
using an input method.

You can turn off multibyte support in a specific buffer by invoking the command
toggle-enable-multibyte-characters in that buffer.

33.3 Converting Text Representations

Emacs can convert unibyte text to multibyte; it can also convert multibyte text to unibyte,
provided that the multibyte text contains only ASCII and 8-bit raw bytes. In general, these
conversions happen when inserting text into a buffer, or when putting text from several
strings together in one string. You can also explicitly convert a string’s contents to either
representation.

Emacs chooses the representation for a string based on the text from which it is con-
structed. The general rule is to convert unibyte text to multibyte text when combining it

Chapter 33: Non-ASCII Characters 875

with other multibyte text, because the multibyte representation is more general and can
hold whatever characters the unibyte text has.

When inserting text into a buffer, Emacs converts the text to the buffer’s representation,
as specified by enable-multibyte-characters in that buffer. In particular, when you
insert multibyte text into a unibyte buffer, Emacs converts the text to unibyte, even though
this conversion cannot in general preserve all the characters that might be in the multibyte
text. The other natural alternative, to convert the buffer contents to multibyte, is not
acceptable because the buffer’s representation is a choice made by the user that cannot be
overridden automatically.

Converting unibyte text to multibyte text leaves ASCII characters unchanged, and con-
verts bytes with codes 128 through 255 to the multibyte representation of raw eight-bit
bytes.

Converting multibyte text to unibyte converts all ASCII and eight-bit characters to their
single-byte form, but loses information for non-ASCII characters by discarding all but the
low 8 bits of each character’s codepoint. Converting unibyte text to multibyte and back to
unibyte reproduces the original unibyte text.

The next two functions either return the argument string, or a newly created string with
no text properties.

[Function]string-to-multibyte string
This function returns a multibyte string containing the same sequence of characters
as string. If string is a multibyte string, it is returned unchanged. The function
assumes that string includes only ASCII characters and raw 8-bit bytes; the latter are
converted to their multibyte representation corresponding to the codepoints #x3FFF80
through #x3FFFFF, inclusive (see Section 33.1 [Text Representations], page 872).

[Function]string-to-unibyte string
This function returns a unibyte string containing the same sequence of characters as
string. It signals an error if string contains a non-ASCII character. If string is a
unibyte string, it is returned unchanged. Use this function for string arguments that
contain only ASCII and eight-bit characters.

[Function]byte-to-string byte
This function returns a unibyte string containing a single byte of character data, byte.
It signals an error if byte is not an integer between 0 and 255.

[Function]multibyte-char-to-unibyte char
This converts the multibyte character char to a unibyte character, and returns that
character. If char is neither ASCII nor eight-bit, the function returns −1.

[Function]unibyte-char-to-multibyte char
This convert the unibyte character char to a multibyte character, assuming char is
either ASCII or raw 8-bit byte.

33.4 Selecting a Representation

Sometimes it is useful to examine an existing buffer or string as multibyte when it was
unibyte, or vice versa.

Chapter 33: Non-ASCII Characters 876

[Function]set-buffer-multibyte multibyte
Set the representation type of the current buffer. If multibyte is non-nil, the buffer
becomes multibyte. If multibyte is nil, the buffer becomes unibyte.

This function leaves the buffer contents unchanged when viewed as a sequence of bytes.
As a consequence, it can change the contents viewed as characters; for instance, a se-
quence of three bytes which is treated as one character in multibyte representation will
count as three characters in unibyte representation. Eight-bit characters representing
raw bytes are an exception. They are represented by one byte in a unibyte buffer,
but when the buffer is set to multibyte, they are converted to two-byte sequences,
and vice versa.

This function sets enable-multibyte-characters to record which representation is
in use. It also adjusts various data in the buffer (including overlays, text properties
and markers) so that they cover the same text as they did before.

This function signals an error if the buffer is narrowed, since the narrowing might
have occurred in the middle of multibyte character sequences.

This function also signals an error if the buffer is an indirect buffer. An indirect buffer
always inherits the representation of its base buffer.

[Function]string-as-unibyte string
If string is already a unibyte string, this function returns string itself. Otherwise,
it returns a new string with the same bytes as string, but treating each byte as a
separate character (so that the value may have more characters than string); as an
exception, each eight-bit character representing a raw byte is converted into a single
byte. The newly-created string contains no text properties.

[Function]string-as-multibyte string
If string is a multibyte string, this function returns string itself. Otherwise, it returns
a new string with the same bytes as string, but treating each multibyte sequence
as one character. This means that the value may have fewer characters than string
has. If a byte sequence in string is invalid as a multibyte representation of a single
character, each byte in the sequence is treated as a raw 8-bit byte. The newly-created
string contains no text properties.

33.5 Character Codes

The unibyte and multibyte text representations use different character codes. The valid
character codes for unibyte representation range from 0 to #xFF (255)—the values that can
fit in one byte. The valid character codes for multibyte representation range from 0 to
#x3FFFFF. In this code space, values 0 through #x7F (127) are for ASCII characters, and
values #x80 (128) through #x3FFF7F (4194175) are for non-ASCII characters.

Emacs character codes are a superset of the Unicode standard. Values 0 through
#x10FFFF (1114111) correspond to Unicode characters of the same codepoint; values
#x110000 (1114112) through #x3FFF7F (4194175) represent characters that are not unified
with Unicode; and values #x3FFF80 (4194176) through #x3FFFFF (4194303) represent
eight-bit raw bytes.

Chapter 33: Non-ASCII Characters 877

[Function]characterp charcode
This returns t if charcode is a valid character, and nil otherwise.

(characterp 65)

⇒ t

(characterp 4194303)

⇒ t

(characterp 4194304)

⇒ nil

[Function]max-char
This function returns the largest value that a valid character codepoint can have.

(characterp (max-char))

⇒ t

(characterp (1+ (max-char)))

⇒ nil

[Function]char-from-name string &optional ignore-case
This function returns the character whose Unicode name is string. If ignore-case is
non-nil, case is ignored in string. This function returns nil if string does not name
a character.

;; U+03A3

(= (char-from-name "GREEK CAPITAL LETTER SIGMA") #x03A3)

⇒ t

[Function]get-byte &optional pos string
This function returns the byte at character position pos in the current buffer. If
the current buffer is unibyte, this is literally the byte at that position. If the buffer
is multibyte, byte values of ASCII characters are the same as character codepoints,
whereas eight-bit raw bytes are converted to their 8-bit codes. The function signals
an error if the character at pos is non-ASCII.

The optional argument string means to get a byte value from that string instead of
the current buffer.

33.6 Character Properties

A character property is a named attribute of a character that specifies how the character
behaves and how it should be handled during text processing and display. Thus, character
properties are an important part of specifying the character’s semantics.

On the whole, Emacs follows the Unicode Standard in its implementation of charac-
ter properties. In particular, Emacs supports the Unicode Character Property Model
(https://www.unicode.org/reports/tr23/), and the Emacs character property database
is derived from the Unicode Character Database (UCD). See the Character Properties chap-
ter of the Unicode Standard (https://www.unicode.org/versions/Unicode12.1.0/
ch04.pdf), for a detailed description of Unicode character properties and their meaning.
This section assumes you are already familiar with that chapter of the Unicode Standard,
and want to apply that knowledge to Emacs Lisp programs.

https://www.unicode.org/reports/tr23/
https://www.unicode.org/reports/tr23/
https://www.unicode.org/versions/Unicode12.1.0/ch04.pdf
https://www.unicode.org/versions/Unicode12.1.0/ch04.pdf
https://www.unicode.org/versions/Unicode12.1.0/ch04.pdf

Chapter 33: Non-ASCII Characters 878

In Emacs, each property has a name, which is a symbol, and a set of possible val-
ues, whose types depend on the property; if a character does not have a certain prop-
erty, the value is nil. As a general rule, the names of character properties in Emacs are
produced from the corresponding Unicode properties by downcasing them and replacing
each ‘_’ character with a dash ‘-’. For example, Canonical_Combining_Class becomes
canonical-combining-class. However, sometimes we shorten the names to make their
use easier.

Some codepoints are left unassigned by the UCD—they don’t correspond to any char-
acter. The Unicode Standard defines default values of properties for such codepoints; they
are mentioned below for each property.

Here is the full list of value types for all the character properties that Emacs knows
about:

name Corresponds to the Name Unicode property. The value is a string consisting of
upper-case Latin letters A to Z, digits, spaces, and hyphen ‘-’ characters. For
unassigned codepoints, the value is nil.

general-category

Corresponds to the General_Category Unicode property. The value is a symbol
whose name is a 2-letter abbreviation of the character’s classification. For
unassigned codepoints, the value is Cn.

canonical-combining-class

Corresponds to the Canonical_Combining_Class Unicode property. The value
is an integer. For unassigned codepoints, the value is zero.

bidi-class

Corresponds to the Unicode Bidi_Class property. The value is a symbol whose
name is the Unicode directional type of the character. Emacs uses this property
when it reorders bidirectional text for display (see Section 39.26 [Bidirectional
Display], page 1115). For unassigned codepoints, the value depends on the
code blocks to which the codepoint belongs: most unassigned codepoints get
the value of L (strong L), but some get values of AL (Arabic letter) or R (strong
R).

decomposition

Corresponds to the Unicode properties Decomposition_Type and
Decomposition_Value. The value is a list, whose first element may be a
symbol representing a compatibility formatting tag, such as small2; the other
elements are characters that give the compatibility decomposition sequence
of this character. For characters that don’t have decomposition sequences,
and for unassigned codepoints, the value is a list with a single member, the
character itself.

decimal-digit-value

Corresponds to the Unicode Numeric_Value property for characters whose
Numeric_Type is ‘Decimal’. The value is an integer, or nil if the character

2 The Unicode specification writes these tag names inside ‘<..>’ brackets, but the tag names in Emacs do
not include the brackets; e.g., Unicode specifies ‘<small>’ where Emacs uses ‘small’.

Chapter 33: Non-ASCII Characters 879

has no decimal digit value. For unassigned codepoints, the value is nil, which
means NaN, or “not a number”.

digit-value

Corresponds to the Unicode Numeric_Value property for characters whose
Numeric_Type is ‘Digit’. The value is an integer. Examples of such characters
include compatibility subscript and superscript digits, for which the value is
the corresponding number. For characters that don’t have any numeric value,
and for unassigned codepoints, the value is nil, which means NaN.

numeric-value

Corresponds to the Unicode Numeric_Value property for characters whose
Numeric_Type is ‘Numeric’. The value of this property is a number. Examples
of characters that have this property include fractions, subscripts, superscripts,
Roman numerals, currency numerators, and encircled numbers. For example,
the value of this property for the character U+2155 vulgar fraction one
fifth is 0.2. For characters that don’t have any numeric value, and for unas-
signed codepoints, the value is nil, which means NaN.

mirrored Corresponds to the Unicode Bidi_Mirrored property. The value of this prop-
erty is a symbol, either Y or N. For unassigned codepoints, the value is N.

mirroring

Corresponds to the Unicode Bidi_Mirroring_Glyph property. The value of this
property is a character whose glyph represents the mirror image of the char-
acter’s glyph, or nil if there’s no defined mirroring glyph. All the characters
whose mirrored property is N have nil as their mirroring property; however,
some characters whose mirrored property is Y also have nil for mirroring,
because no appropriate characters exist with mirrored glyphs. Emacs uses
this property to display mirror images of characters when appropriate (see
Section 39.26 [Bidirectional Display], page 1115). For unassigned codepoints,
the value is nil.

paired-bracket

Corresponds to the Unicode Bidi_Paired_Bracket property. The value of this
property is the codepoint of a character’s paired bracket, or nil if the character
is not a bracket character. This establishes a mapping between characters that
are treated as bracket pairs by the Unicode Bidirectional Algorithm; Emacs uses
this property when it decides how to reorder for display parentheses, braces, and
other similar characters (see Section 39.26 [Bidirectional Display], page 1115).

bracket-type

Corresponds to the Unicode Bidi_Paired_Bracket_Type property. For charac-
ters whose paired-bracket property is non-nil, the value of this property is a
symbol, either o (for opening bracket characters) or c (for closing bracket char-
acters). For characters whose paired-bracket property is nil, the value is the
symbol n (None). Like paired-bracket, this property is used for bidirectional
display.

Chapter 33: Non-ASCII Characters 880

old-name Corresponds to the Unicode Unicode_1_Name property. The value is a string.
For unassigned codepoints, and characters that have no value for this property,
the value is nil.

iso-10646-comment

Corresponds to the Unicode ISO_Comment property. The value is either a string
or nil. For unassigned codepoints, the value is nil.

uppercase

Corresponds to the Unicode Simple_Uppercase_Mapping property. The value
of this property is a single character. For unassigned codepoints, the value is
nil, which means the character itself.

lowercase

Corresponds to the Unicode Simple_Lowercase_Mapping property. The value
of this property is a single character. For unassigned codepoints, the value is
nil, which means the character itself.

titlecase

Corresponds to the Unicode Simple_Titlecase_Mapping property. Title case
is a special form of a character used when the first character of a word needs to
be capitalized. The value of this property is a single character. For unassigned
codepoints, the value is nil, which means the character itself.

special-uppercase

Corresponds to Unicode language- and context-independent special
upper-casing rules. The value of this property is a string (which may be
empty). For example mapping for U+00DF latin small letter sharp s is
"SS". For characters with no special mapping, the value is nil which means
uppercase property needs to be consulted instead.

special-lowercase

Corresponds to Unicode language- and context-independent special lower-casing
rules. The value of this property is a string (which may be empty). For example
mapping for U+0130 latin capital letter i with dot above the value is
"i\u0307" (i.e. 2-character string consisting of latin small letter i followed
by U+0307 combining dot above). For characters with no special mapping,
the value is nil which means lowercase property needs to be consulted instead.

special-titlecase

Corresponds to Unicode unconditional special title-casing rules. The value of
this property is a string (which may be empty). For example mapping for
U+FB01 latin small ligature fi the value is "Fi". For characters with no
special mapping, the value is nil which means titlecase property needs to
be consulted instead.

[Function]get-char-code-property char propname
This function returns the value of char’s propname property.

(get-char-code-property ?\s 'general-category)

⇒ Zs

(get-char-code-property ?1 'general-category)

⇒ Nd

Chapter 33: Non-ASCII Characters 881

;; U+2084

(get-char-code-property ?\N{SUBSCRIPT FOUR}

'digit-value)

⇒ 4

;; U+2155

(get-char-code-property ?\N{VULGAR FRACTION ONE FIFTH}

'numeric-value)

⇒ 0.2

;; U+2163

(get-char-code-property ?\N{ROMAN NUMERAL FOUR}

'numeric-value)

⇒ 4

(get-char-code-property ?\('paired-bracket)

⇒ 41 ;; closing parenthesis

(get-char-code-property ?\) 'bracket-type)

⇒ c

[Function]char-code-property-description prop value
This function returns the description string of property prop’s value, or nil if value
has no description.

(char-code-property-description 'general-category 'Zs)

⇒ "Separator, Space"

(char-code-property-description 'general-category 'Nd)

⇒ "Number, Decimal Digit"

(char-code-property-description 'numeric-value '1/5)

⇒ nil

[Function]put-char-code-property char propname value
This function stores value as the value of the property propname for the character
char.

[Variable]unicode-category-table
The value of this variable is a char-table (see Section 6.6 [Char-Tables], page 114) that
specifies, for each character, its Unicode General_Category property as a symbol.

[Variable]char-script-table
The value of this variable is a char-table that specifies, for each character, a symbol
whose name is the script to which the character belongs, according to the Unicode
Standard classification of the Unicode code space into script-specific blocks. This
char-table has a single extra slot whose value is the list of all script symbols.

[Variable]char-width-table
The value of this variable is a char-table that specifies the width of each character in
columns that it will occupy on the screen.

[Variable]printable-chars
The value of this variable is a char-table that specifies, for each character, whether it
is printable or not. That is, if evaluating (aref printable-chars char) results in
t, the character is printable, and if it results in nil, it is not.

Chapter 33: Non-ASCII Characters 882

33.7 Character Sets

An Emacs character set, or charset, is a set of characters in which each character is as-
signed a numeric code point. (The Unicode Standard calls this a coded character set.)
Each Emacs charset has a name which is a symbol. A single character can belong to any
number of different character sets, but it will generally have a different code point in each
charset. Examples of character sets include ascii, iso-8859-1, greek-iso8859-7, and
windows-1255. The code point assigned to a character in a charset is usually different from
its code point used in Emacs buffers and strings.

Emacs defines several special character sets. The character set unicode includes all the
characters whose Emacs code points are in the range 0..#x10FFFF. The character set emacs
includes all ASCII and non-ASCII characters. Finally, the eight-bit charset includes the
8-bit raw bytes; Emacs uses it to represent raw bytes encountered in text.

[Function]charsetp object
Returns t if object is a symbol that names a character set, nil otherwise.

[Variable]charset-list
The value is a list of all defined character set names.

[Function]charset-priority-list &optional highestp
This function returns a list of all defined character sets ordered by their priority. If
highestp is non-nil, the function returns a single character set of the highest priority.

[Function]set-charset-priority &rest charsets
This function makes charsets the highest priority character sets.

[Function]char-charset character &optional restriction
This function returns the name of the character set of highest priority that character
belongs to. ASCII characters are an exception: for them, this function always returns
ascii.

If restriction is non-nil, it should be a list of charsets to search. Alternatively, it can
be a coding system, in which case the returned charset must be supported by that
coding system (see Section 33.10 [Coding Systems], page 885).

[Function]charset-plist charset
This function returns the property list of the character set charset. Although charset
is a symbol, this is not the same as the property list of that symbol. Charset properties
include important information about the charset, such as its documentation string,
short name, etc.

[Function]put-charset-property charset propname value
This function sets the propname property of charset to the given value.

[Function]get-charset-property charset propname
This function returns the value of charsets property propname.

[Command]list-charset-chars charset
This command displays a list of characters in the character set charset.

Chapter 33: Non-ASCII Characters 883

Emacs can convert between its internal representation of a character and the character’s
codepoint in a specific charset. The following two functions support these conversions.

[Function]decode-char charset code-point
This function decodes a character that is assigned a code-point in charset, to the
corresponding Emacs character, and returns it. If charset doesn’t contain a character
of that code point, the value is nil.

For backward compatibility, if code-point doesn’t fit in a Lisp fixnum (see Section 3.1
[Integer Basics], page 37), it can be specified as a cons cell (high . low), where
low are the lower 16 bits of the value and high are the high 16 bits. This usage is
obsolescent.

[Function]encode-char char charset
This function returns the code point assigned to the character char in charset. If
charset doesn’t have a codepoint for char, the value is nil.

The following function comes in handy for applying a certain function to all or part of
the characters in a charset:

[Function]map-charset-chars function charset &optional arg from-code
to-code

Call function for characters in charset. function is called with two arguments. The
first one is a cons cell (from . to), where from and to indicate a range of characters
contained in charset. The second argument passed to function is arg.

By default, the range of codepoints passed to function includes all the characters
in charset, but optional arguments from-code and to-code limit that to the range
of characters between these two codepoints of charset. If either of them is nil, it
defaults to the first or last codepoint of charset, respectively.

33.8 Scanning for Character Sets

Sometimes it is useful to find out which character set a particular character belongs to. One
use for this is in determining which coding systems (see Section 33.10 [Coding Systems],
page 885) are capable of representing all of the text in question; another is to determine
the font(s) for displaying that text.

[Function]charset-after &optional pos
This function returns the charset of highest priority containing the character at po-
sition pos in the current buffer. If pos is omitted or nil, it defaults to the current
value of point. If pos is out of range, the value is nil.

[Function]find-charset-region beg end &optional translation
This function returns a list of the character sets of highest priority that contain
characters in the current buffer between positions beg and end.

The optional argument translation specifies a translation table to use for scanning the
text (see Section 33.9 [Translation of Characters], page 884). If it is non-nil, then
each character in the region is translated through this table, and the value returned
describes the translated characters instead of the characters actually in the buffer.

Chapter 33: Non-ASCII Characters 884

[Function]find-charset-string string &optional translation
This function returns a list of character sets of highest priority that contain characters
in string. It is just like find-charset-region, except that it applies to the contents
of string instead of part of the current buffer.

33.9 Translation of Characters

A translation table is a char-table (see Section 6.6 [Char-Tables], page 114) that specifies a
mapping of characters into characters. These tables are used in encoding and decoding, and
for other purposes. Some coding systems specify their own particular translation tables;
there are also default translation tables which apply to all other coding systems.

A translation table has two extra slots. The first is either nil or a translation table
that performs the reverse translation; the second is the maximum number of characters to
look up for translating sequences of characters (see the description of make-translation-
table-from-alist below).

[Function]make-translation-table &rest translations
This function returns a translation table based on the argument translations. Each
element of translations should be a list of elements of the form (from . to); this says
to translate the character from into to.

The arguments and the forms in each argument are processed in order, and if a
previous form already translates to to some other character, say to-alt, from is also
translated to to-alt.

During decoding, the translation table’s translations are applied to the characters that
result from ordinary decoding. If a coding system has the property :decode-translation-

table, that specifies the translation table to use, or a list of translation tables to apply in
sequence. (This is a property of the coding system, as returned by coding-system-get,
not a property of the symbol that is the coding system’s name. See Section 33.10.1 [Basic
Concepts of Coding Systems], page 885.) Finally, if standard-translation-table-for-
decode is non-nil, the resulting characters are translated by that table.

During encoding, the translation table’s translations are applied to the characters in
the buffer, and the result of translation is actually encoded. If a coding system has prop-
erty :encode-translation-table, that specifies the translation table to use, or a list of
translation tables to apply in sequence. In addition, if the variable standard-translation-
table-for-encode is non-nil, it specifies the translation table to use for translating the
result.

[Variable]standard-translation-table-for-decode
This is the default translation table for decoding. If a coding systems specifies its own
translation tables, the table that is the value of this variable, if non-nil, is applied
after them.

[Variable]standard-translation-table-for-encode
This is the default translation table for encoding. If a coding systems specifies its own
translation tables, the table that is the value of this variable, if non-nil, is applied
after them.

Chapter 33: Non-ASCII Characters 885

[Variable]translation-table-for-input
Self-inserting characters are translated through this translation table before they are
inserted. Search commands also translate their input through this table, so they can
compare more reliably with what’s in the buffer.

This variable automatically becomes buffer-local when set.

[Function]make-translation-table-from-vector vec
This function returns a translation table made from vec that is an array of 256
elements to map bytes (values 0 through #xFF) to characters. Elements may be nil
for untranslated bytes. The returned table has a translation table for reverse mapping
in the first extra slot, and the value 1 in the second extra slot.

This function provides an easy way to make a private coding system that maps
each byte to a specific character. You can specify the returned table and the
reverse translation table using the properties :decode-translation-table

and :encode-translation-table respectively in the props argument to
define-coding-system.

[Function]make-translation-table-from-alist alist
This function is similar to make-translation-table but returns a complex trans-
lation table rather than a simple one-to-one mapping. Each element of alist is of
the form (from . to), where from and to are either characters or vectors specifying
a sequence of characters. If from is a character, that character is translated to to
(i.e., to a character or a character sequence). If from is a vector of characters, that
sequence is translated to to. The returned table has a translation table for reverse
mapping in the first extra slot, and the maximum length of all the from character
sequences in the second extra slot.

33.10 Coding Systems

When Emacs reads or writes a file, and when Emacs sends text to a subprocess or receives
text from a subprocess, it normally performs character code conversion and end-of-line
conversion as specified by a particular coding system.

How to define a coding system is an arcane matter, and is not documented here.

33.10.1 Basic Concepts of Coding Systems

Character code conversion involves conversion between the internal representation of charac-
ters used inside Emacs and some other encoding. Emacs supports many different encodings,
in that it can convert to and from them. For example, it can convert text to or from en-
codings such as Latin 1, Latin 2, Latin 3, Latin 4, Latin 5, and several variants of ISO
2022. In some cases, Emacs supports several alternative encodings for the same charac-
ters; for example, there are three coding systems for the Cyrillic (Russian) alphabet: ISO,
Alternativnyj, and KOI8.

Every coding system specifies a particular set of character code conversions, but the cod-
ing system undecided is special: it leaves the choice unspecified, to be chosen heuristically
for each file, based on the file’s data. The coding system prefer-utf-8 is like undecided,
but it prefers to choose utf-8 when possible.

Chapter 33: Non-ASCII Characters 886

In general, a coding system doesn’t guarantee roundtrip identity: decoding a byte se-
quence using a coding system, then encoding the resulting text in the same coding system,
can produce a different byte sequence. But some coding systems do guarantee that the byte
sequence will be the same as what you originally decoded. Here are a few examples:

iso-8859-1, utf-8, big5, shift jis, euc-jp

Encoding buffer text and then decoding the result can also fail to reproduce the original
text. For instance, if you encode a character with a coding system which does not support
that character, the result is unpredictable, and thus decoding it using the same coding
system may produce a different text. Currently, Emacs can’t report errors that result from
encoding unsupported characters.

End of line conversion handles three different conventions used on various systems for
representing end of line in files. The Unix convention, used on GNU and Unix systems, is to
use the linefeed character (also called newline). The DOS convention, used on MS-Windows
and MS-DOS systems, is to use a carriage return and a linefeed at the end of a line. The
Mac convention is to use just carriage return. (This was the convention used in Classic Mac
OS.)

Base coding systems such as latin-1 leave the end-of-line conversion unspecified, to be
chosen based on the data. Variant coding systems such as latin-1-unix, latin-1-dos and
latin-1-mac specify the end-of-line conversion explicitly as well. Most base coding systems
have three corresponding variants whose names are formed by adding ‘-unix’, ‘-dos’ and
‘-mac’.

The coding system raw-text is special in that it prevents character code conversion,
and causes the buffer visited with this coding system to be a unibyte buffer. For historical
reasons, you can save both unibyte and multibyte text with this coding system. When you
use raw-text to encode multibyte text, it does perform one character code conversion: it
converts eight-bit characters to their single-byte external representation. raw-text does
not specify the end-of-line conversion, allowing that to be determined as usual by the data,
and has the usual three variants which specify the end-of-line conversion.

no-conversion (and its alias binary) is equivalent to raw-text-unix: it specifies no
conversion of either character codes or end-of-line.

The coding system utf-8-emacs specifies that the data is represented in the internal
Emacs encoding (see Section 33.1 [Text Representations], page 872). This is like raw-text
in that no code conversion happens, but different in that the result is multibyte data.
The name emacs-internal is an alias for utf-8-emacs-unix (so it forces no conversion of
end-of-line, unlike utf-8-emacs, which can decode all 3 kinds of end-of-line conventions).

[Function]coding-system-get coding-system property
This function returns the specified property of the coding system coding-system.
Most coding system properties exist for internal purposes, but one that you might
find useful is :mime-charset. That property’s value is the name used in MIME for
the character coding which this coding system can read and write. Examples:

(coding-system-get 'iso-latin-1 :mime-charset)

⇒ iso-8859-1

(coding-system-get 'iso-2022-cn :mime-charset)

⇒ iso-2022-cn

Chapter 33: Non-ASCII Characters 887

(coding-system-get 'cyrillic-koi8 :mime-charset)

⇒ koi8-r

The value of the :mime-charset property is also defined as an alias for the coding
system.

[Function]coding-system-aliases coding-system
This function returns the list of aliases of coding-system.

33.10.2 Encoding and I/O

The principal purpose of coding systems is for use in reading and writing files. The function
insert-file-contents uses a coding system to decode the file data, and write-region

uses one to encode the buffer contents.

You can specify the coding system to use either explicitly (see Section 33.10.6 [Specifying
Coding Systems], page 895), or implicitly using a default mechanism (see Section 33.10.5
[Default Coding Systems], page 892). But these methods may not completely specify what
to do. For example, they may choose a coding system such as undecided which leaves the
character code conversion to be determined from the data. In these cases, the I/O operation
finishes the job of choosing a coding system. Very often you will want to find out afterwards
which coding system was chosen.

[Variable]buffer-file-coding-system
This buffer-local variable records the coding system used for saving the buffer and
for writing part of the buffer with write-region. If the text to be written cannot
be safely encoded using the coding system specified by this variable, these operations
select an alternative encoding by calling the function select-safe-coding-system

(see Section 33.10.4 [User-Chosen Coding Systems], page 890). If selecting a different
encoding requires to ask the user to specify a coding system, buffer-file-coding-
system is updated to the newly selected coding system.

buffer-file-coding-system does not affect sending text to a subprocess.

[Variable]save-buffer-coding-system
This variable specifies the coding system for saving the buffer (by overriding
buffer-file-coding-system). Note that it is not used for write-region.

When a command to save the buffer starts out to use buffer-file-coding-system

(or save-buffer-coding-system), and that coding system cannot handle the ac-
tual text in the buffer, the command asks the user to choose another coding system
(by calling select-safe-coding-system). After that happens, the command also
updates buffer-file-coding-system to represent the coding system that the user
specified.

[Variable]last-coding-system-used
I/O operations for files and subprocesses set this variable to the coding system name
that was used. The explicit encoding and decoding functions (see Section 33.10.7
[Explicit Encoding], page 896) set it too.

Warning: Since receiving subprocess output sets this variable, it can change whenever
Emacs waits; therefore, you should copy the value shortly after the function call that
stores the value you are interested in.

Chapter 33: Non-ASCII Characters 888

The variable selection-coding-system specifies how to encode selections for the win-
dow system. See Section 29.20 [Window System Selections], page 762.

[Variable]file-name-coding-system
The variable file-name-coding-system specifies the coding system to use for en-
coding file names. Emacs encodes file names using that coding system for all file
operations. If file-name-coding-system is nil, Emacs uses a default coding system
determined by the selected language environment. In the default language environ-
ment, any non-ASCII characters in file names are not encoded specially; they appear
in the file system using the internal Emacs representation.

Warning: if you change file-name-coding-system (or the language environment) in
the middle of an Emacs session, problems can result if you have already visited files whose
names were encoded using the earlier coding system and are handled differently under the
new coding system. If you try to save one of these buffers under the visited file name, saving
may use the wrong file name, or it may get an error. If such a problem happens, use C-x

C-w to specify a new file name for that buffer.

On Windows 2000 and later, Emacs by default uses Unicode APIs to pass file names to
the OS, so the value of file-name-coding-system is largely ignored. Lisp applications that
need to encode or decode file names on the Lisp level should use utf-8 coding-system when
system-type is windows-nt; the conversion of UTF-8 encoded file names to the encoding
appropriate for communicating with the OS is performed internally by Emacs.

33.10.3 Coding Systems in Lisp

Here are the Lisp facilities for working with coding systems:

[Function]coding-system-list &optional base-only
This function returns a list of all coding system names (symbols). If base-only is
non-nil, the value includes only the base coding systems. Otherwise, it includes alias
and variant coding systems as well.

[Function]coding-system-p object
This function returns t if object is a coding system name or nil.

[Function]check-coding-system coding-system
This function checks the validity of coding-system. If that is valid, it returns coding-
system. If coding-system is nil, the function return nil. For any other values, it
signals an error whose error-symbol is coding-system-error (see Section 11.7.3.1
[Signaling Errors], page 171).

[Function]coding-system-eol-type coding-system
This function returns the type of end-of-line (a.k.a. eol) conversion used by coding-
system. If coding-system specifies a certain eol conversion, the return value is an
integer 0, 1, or 2, standing for unix, dos, and mac, respectively. If coding-system
doesn’t specify eol conversion explicitly, the return value is a vector of coding systems,
each one with one of the possible eol conversion types, like this:

(coding-system-eol-type 'latin-1)

⇒ [latin-1-unix latin-1-dos latin-1-mac]

Chapter 33: Non-ASCII Characters 889

If this function returns a vector, Emacs will decide, as part of the text encoding or
decoding process, what eol conversion to use. For decoding, the end-of-line format
of the text is auto-detected, and the eol conversion is set to match it (e.g., DOS-
style CRLF format will imply dos eol conversion). For encoding, the eol conversion is
taken from the appropriate default coding system (e.g., default value of buffer-file-
coding-system for buffer-file-coding-system), or from the default eol conversion
appropriate for the underlying platform.

[Function]coding-system-change-eol-conversion coding-system eol-type
This function returns a coding system which is like coding-system except for its eol
conversion, which is specified by eol-type. eol-type should be unix, dos, mac, or
nil. If it is nil, the returned coding system determines the end-of-line conversion
from the data.

eol-type may also be 0, 1 or 2, standing for unix, dos and mac, respectively.

[Function]coding-system-change-text-conversion eol-coding text-coding
This function returns a coding system which uses the end-of-line conversion of eol-
coding, and the text conversion of text-coding. If text-coding is nil, it returns
undecided, or one of its variants according to eol-coding.

[Function]find-coding-systems-region from to
This function returns a list of coding systems that could be used to encode a text
between from and to. All coding systems in the list can safely encode any multibyte
characters in that portion of the text.

If the text contains no multibyte characters, the function returns the list (undecided).

[Function]find-coding-systems-string string
This function returns a list of coding systems that could be used to encode the text
of string. All coding systems in the list can safely encode any multibyte characters in
string. If the text contains no multibyte characters, this returns the list (undecided).

[Function]find-coding-systems-for-charsets charsets
This function returns a list of coding systems that could be used to encode all the
character sets in the list charsets.

[Function]check-coding-systems-region start end coding-system-list
This function checks whether coding systems in the list coding-system-list can
encode all the characters in the region between start and end. If all of the coding sys-
tems in the list can encode the specified text, the function returns nil. If some coding
systems cannot encode some of the characters, the value is an alist, each element of
which has the form (coding-system1 pos1 pos2 ...), meaning that coding-system1
cannot encode characters at buffer positions pos1, pos2,

start may be a string, in which case end is ignored and the returned value references
string indices instead of buffer positions.

[Function]detect-coding-region start end &optional highest
This function chooses a plausible coding system for decoding the text from start to
end. This text should be a byte sequence, i.e., unibyte text or multibyte text with only
ASCII and eight-bit characters (see Section 33.10.7 [Explicit Encoding], page 896).

Chapter 33: Non-ASCII Characters 890

Normally this function returns a list of coding systems that could handle decoding
the text that was scanned. They are listed in order of decreasing priority. But if
highest is non-nil, then the return value is just one coding system, the one that is
highest in priority.

If the region contains only ASCII characters except for such ISO-2022 control charac-
ters ISO-2022 as ESC, the value is undecided or (undecided), or a variant specifying
end-of-line conversion, if that can be deduced from the text.

If the region contains null bytes, the value is no-conversion, even if the region
contains text encoded in some coding system.

[Function]detect-coding-string string &optional highest
This function is like detect-coding-region except that it operates on the contents
of string instead of bytes in the buffer.

[Variable]inhibit-nul-byte-detection
If this variable has a non-nil value, null bytes are ignored when detecting the encoding
of a region or a string. This allows the encoding of text that contains null bytes to
be correctly detected, such as Info files with Index nodes.

[Variable]inhibit-iso-escape-detection
If this variable has a non-nil value, ISO-2022 escape sequences are ignored when
detecting the encoding of a region or a string. The result is that no text is ever
detected as encoded in some ISO-2022 encoding, and all escape sequences become
visible in a buffer. Warning: Use this variable with extreme caution, because many
files in the Emacs distribution use ISO-2022 encoding.

[Function]coding-system-charset-list coding-system
This function returns the list of character sets (see Section 33.7 [Character Sets],
page 882) supported by coding-system. Some coding systems that support too many
character sets to list them all yield special values:

• If coding-system supports all Emacs characters, the value is (emacs).

• If coding-system supports all Unicode characters, the value is (unicode).

• If coding-system supports all ISO-2022 charsets, the value is iso-2022.

• If coding-system supports all the characters in the internal coding system used
by Emacs version 21 (prior to the implementation of internal Unicode support),
the value is emacs-mule.

See [Process Information], page 974, in particular the description of the functions
process-coding-system and set-process-coding-system, for how to examine or set
the coding systems used for I/O to a subprocess.

33.10.4 User-Chosen Coding Systems

[Function]select-safe-coding-system from to &optional
default-coding-system accept-default-p file

This function selects a coding system for encoding specified text, asking the user
to choose if necessary. Normally the specified text is the text in the current buffer

Chapter 33: Non-ASCII Characters 891

between from and to. If from is a string, the string specifies the text to encode, and
to is ignored.

If the specified text includes raw bytes (see Section 33.1 [Text Representations],
page 872), select-safe-coding-system suggests raw-text for its encoding.

If default-coding-system is non-nil, that is the first coding system to try; if that
can handle the text, select-safe-coding-system returns that coding system. It
can also be a list of coding systems; then the function tries each of them one by
one. After trying all of them, it next tries the current buffer’s value of buffer-file-
coding-system (if it is not undecided), then the default value of buffer-file-

coding-system and finally the user’s most preferred coding system, which the user
can set using the command prefer-coding-system (see Section “Recognizing Coding
Systems” in The GNU Emacs Manual).

If one of those coding systems can safely encode all the specified text, select-safe-
coding-system chooses it and returns it. Otherwise, it asks the user to choose from
a list of coding systems which can encode all the text, and returns the user’s choice.

default-coding-system can also be a list whose first element is t and whose other
elements are coding systems. Then, if no coding system in the list can handle the
text, select-safe-coding-system queries the user immediately, without trying any
of the three alternatives described above. This is handy for checking only the coding
systems in the list.

The optional argument accept-default-p determines whether a coding system selected
without user interaction is acceptable. If it’s omitted or nil, such a silent selection
is always acceptable. If it is non-nil, it should be a function; select-safe-coding-
system calls this function with one argument, the base coding system of the selected
coding system. If the function returns nil, select-safe-coding-system rejects the
silently selected coding system, and asks the user to select a coding system from a
list of possible candidates.

If the variable select-safe-coding-system-accept-default-p is non-nil, it
should be a function taking a single argument. It is used in place of accept-default-p,
overriding any value supplied for this argument.

As a final step, before returning the chosen coding system, select-safe-coding-
system checks whether that coding system is consistent with what would be selected
if the contents of the region were read from a file. (If not, this could lead to data
corruption in a file subsequently re-visited and edited.) Normally, select-safe-

coding-system uses buffer-file-name as the file for this purpose, but if file is
non-nil, it uses that file instead (this can be relevant for write-region and similar
functions). If it detects an apparent inconsistency, select-safe-coding-system

queries the user before selecting the coding system.

[Variable]select-safe-coding-system-function
This variable names the function to be called to request the user to select a proper cod-
ing system for encoding text when the default coding system for an output operation
cannot safely encode that text. The default value of this variable is select-safe-

coding-system. Emacs primitives that write text to files, such as write-region, or
send text to other processes, such as process-send-region, normally call the value

Chapter 33: Non-ASCII Characters 892

of this variable, unless coding-system-for-write is bound to a non-nil value (see
Section 33.10.6 [Specifying Coding Systems], page 895).

Here are two functions you can use to let the user specify a coding system, with com-
pletion. See Section 20.6 [Completion], page 360.

[Function]read-coding-system prompt &optional default
This function reads a coding system using the minibuffer, prompting with string
prompt, and returns the coding system name as a symbol. If the user enters null
input, default specifies which coding system to return. It should be a symbol or a
string.

[Function]read-non-nil-coding-system prompt
This function reads a coding system using the minibuffer, prompting with string
prompt, and returns the coding system name as a symbol. If the user tries to enter
null input, it asks the user to try again. See Section 33.10 [Coding Systems], page 885.

33.10.5 Default Coding Systems

This section describes variables that specify the default coding system for certain files or
when running certain subprograms, and the function that I/O operations use to access
them.

The idea of these variables is that you set them once and for all to the defaults you want,
and then do not change them again. To specify a particular coding system for a particular
operation in a Lisp program, don’t change these variables; instead, override them using
coding-system-for-read and coding-system-for-write (see Section 33.10.6 [Specifying
Coding Systems], page 895).

[User Option]auto-coding-regexp-alist
This variable is an alist of text patterns and corresponding coding systems. Each
element has the form (regexp . coding-system); a file whose first few kilobytes
match regexp is decoded with coding-system when its contents are read into a buffer.
The settings in this alist take priority over coding: tags in the files and the contents
of file-coding-system-alist (see below). The default value is set so that Emacs
automatically recognizes mail files in Babyl format and reads them with no code
conversions.

[User Option]file-coding-system-alist
This variable is an alist that specifies the coding systems to use for reading and writing
particular files. Each element has the form (pattern . coding), where pattern is a
regular expression that matches certain file names. The element applies to file names
that match pattern.

The cdr of the element, coding, should be either a coding system, a cons cell con-
taining two coding systems, or a function name (a symbol with a function definition).
If coding is a coding system, that coding system is used for both reading the file and
writing it. If coding is a cons cell containing two coding systems, its car specifies
the coding system for decoding, and its cdr specifies the coding system for encoding.

If coding is a function name, the function should take one argument, a list of all ar-
guments passed to find-operation-coding-system. It must return a coding system

Chapter 33: Non-ASCII Characters 893

or a cons cell containing two coding systems. This value has the same meaning as
described above.

If coding (or what returned by the above function) is undecided, the normal code-
detection is performed.

[User Option]auto-coding-alist
This variable is an alist that specifies the coding systems to use for reading and writing
particular files. Its form is like that of file-coding-system-alist, but, unlike the
latter, this variable takes priority over any coding: tags in the file.

[Variable]process-coding-system-alist
This variable is an alist specifying which coding systems to use for a subprocess,
depending on which program is running in the subprocess. It works like file-coding-
system-alist, except that pattern is matched against the program name used to
start the subprocess. The coding system or systems specified in this alist are used
to initialize the coding systems used for I/O to the subprocess, but you can specify
other coding systems later using set-process-coding-system.

Warning: Coding systems such as undecided, which determine the coding system from
the data, do not work entirely reliably with asynchronous subprocess output. This is because
Emacs handles asynchronous subprocess output in batches, as it arrives. If the coding
system leaves the character code conversion unspecified, or leaves the end-of-line conversion
unspecified, Emacs must try to detect the proper conversion from one batch at a time, and
this does not always work.

Therefore, with an asynchronous subprocess, if at all possible, use a coding system which
determines both the character code conversion and the end of line conversion—that is, one
like latin-1-unix, rather than undecided or latin-1.

[Variable]network-coding-system-alist
This variable is an alist that specifies the coding system to use for network streams.
It works much like file-coding-system-alist, with the difference that the pattern
in an element may be either a port number or a regular expression. If it is a regular
expression, it is matched against the network service name used to open the network
stream.

[Variable]default-process-coding-system
This variable specifies the coding systems to use for subprocess (and network stream)
input and output, when nothing else specifies what to do.

The value should be a cons cell of the form (input-coding . output-coding). Here
input-coding applies to input from the subprocess, and output-coding applies to
output to it.

[User Option]auto-coding-functions
This variable holds a list of functions that try to determine a coding system for a file
based on its undecoded contents.

Each function in this list should be written to look at text in the current buffer, but
should not modify it in any way. The buffer will contain the text of parts of the file.
Each function should take one argument, size, which tells it how many characters to

Chapter 33: Non-ASCII Characters 894

look at, starting from point. If the function succeeds in determining a coding system
for the file, it should return that coding system. Otherwise, it should return nil.

The functions in this list could be called either when the file is visited and Emacs
wants to decode its contents, and/or when the file’s buffer is about to be saved and
Emacs wants to determine how to encode its contents.

If a file has a ‘coding:’ tag, that takes precedence, so these functions won’t be called.

[Function]find-auto-coding filename size
This function tries to determine a suitable coding system for filename. It examines
the buffer visiting the named file, using the variables documented above in sequence,
until it finds a match for one of the rules specified by these variables. It then returns
a cons cell of the form (coding . source), where coding is the coding system to use
and source is a symbol, one of auto-coding-alist, auto-coding-regexp-alist,
:coding, or auto-coding-functions, indicating which one supplied the matching
rule. The value :coding means the coding system was specified by the coding: tag
in the file (see Section “coding tag” in The GNU Emacs Manual). The order of looking
for a matching rule is auto-coding-alist first, then auto-coding-regexp-alist,
then the coding: tag, and lastly auto-coding-functions. If no matching rule was
found, the function returns nil.

The second argument size is the size of text, in characters, following point. The
function examines text only within size characters after point. Normally, the buffer
should be positioned at the beginning when this function is called, because one of the
places for the coding: tag is the first one or two lines of the file; in that case, size
should be the size of the buffer.

[Function]set-auto-coding filename size
This function returns a suitable coding system for file filename. It uses find-auto-
coding to find the coding system. If no coding system could be determined, the
function returns nil. The meaning of the argument size is like in find-auto-coding.

[Function]find-operation-coding-system operation &rest arguments
This function returns the coding system to use (by default) for performing operation
with arguments. The value has this form:

(decoding-system . encoding-system)

The first element, decoding-system, is the coding system to use for decoding (in case
operation does decoding), and encoding-system is the coding system for encoding (in
case operation does encoding).

The argument operation is a symbol; it should be one of write-region,
start-process, call-process, call-process-region, insert-file-contents, or
open-network-stream. These are the names of the Emacs I/O primitives that can
do character code and eol conversion.

The remaining arguments should be the same arguments that might be given to the
corresponding I/O primitive. Depending on the primitive, one of those arguments is
selected as the target. For example, if operation does file I/O, whichever argument
specifies the file name is the target. For subprocess primitives, the process name is
the target. For open-network-stream, the target is the service name or port number.

Chapter 33: Non-ASCII Characters 895

Depending on operation, this function looks up the target in file-coding-system-

alist, process-coding-system-alist, or network-coding-system-alist. If the
target is found in the alist, find-operation-coding-system returns its association
in the alist; otherwise it returns nil.

If operation is insert-file-contents, the argument corresponding to the target may
be a cons cell of the form (filename . buffer). In that case, filename is a file name
to look up in file-coding-system-alist, and buffer is a buffer that contains the
file’s contents (not yet decoded). If file-coding-system-alist specifies a function
to call for this file, and that function needs to examine the file’s contents (as it usually
does), it should examine the contents of buffer instead of reading the file.

33.10.6 Specifying a Coding System for One Operation

You can specify the coding system for a specific operation by binding the variables
coding-system-for-read and/or coding-system-for-write.

[Variable]coding-system-for-read
If this variable is non-nil, it specifies the coding system to use for reading a file, or
for input from a synchronous subprocess.

It also applies to any asynchronous subprocess or network stream, but in a different
way: the value of coding-system-for-read when you start the subprocess or open
the network stream specifies the input decoding method for that subprocess or net-
work stream. It remains in use for that subprocess or network stream unless and until
overridden.

The right way to use this variable is to bind it with let for a specific I/O operation.
Its global value is normally nil, and you should not globally set it to any other value.
Here is an example of the right way to use the variable:

;; Read the file with no character code conversion.
(let ((coding-system-for-read 'no-conversion))

(insert-file-contents filename))

When its value is non-nil, this variable takes precedence over all other methods of
specifying a coding system to use for input, including file-coding-system-alist,
process-coding-system-alist and network-coding-system-alist.

[Variable]coding-system-for-write
This works much like coding-system-for-read, except that it applies to output
rather than input. It affects writing to files, as well as sending output to subprocesses
and net connections. It also applies to encoding command-line arguments with which
Emacs invokes subprocesses.

When a single operation does both input and output, as do call-process-region

and start-process, both coding-system-for-read and coding-system-for-

write affect it.

[Variable]coding-system-require-warning
Binding coding-system-for-write to a non-nil value prevents output primitives
from calling the function specified by select-safe-coding-system-function (see
Section 33.10.4 [User-Chosen Coding Systems], page 890). This is because C-x

Chapter 33: Non-ASCII Characters 896

RET c (universal-coding-system-argument) works by binding coding-system-

for-write, and Emacs should obey user selection. If a Lisp program binds
coding-system-for-write to a value that might not be safe for encoding the text
to be written, it can also bind coding-system-require-warning to a non-nil value,
which will force the output primitives to check the encoding by calling the value of
select-safe-coding-system-function even though coding-system-for-write

is non-nil. Alternatively, call select-safe-coding-system explicitly before using
the specified encoding.

[User Option]inhibit-eol-conversion
When this variable is non-nil, no end-of-line conversion is done, no matter which cod-
ing system is specified. This applies to all the Emacs I/O and subprocess primitives,
and to the explicit encoding and decoding functions (see Section 33.10.7 [Explicit
Encoding], page 896).

Sometimes, you need to prefer several coding systems for some operation, rather than fix
a single one. Emacs lets you specify a priority order for using coding systems. This ordering
affects the sorting of lists of coding systems returned by functions such as find-coding-
systems-region (see Section 33.10.3 [Lisp and Coding Systems], page 888).

[Function]coding-system-priority-list &optional highestp
This function returns the list of coding systems in the order of their current priorities.
Optional argument highestp, if non-nil, means return only the highest priority coding
system.

[Function]set-coding-system-priority &rest coding-systems
This function puts coding-systems at the beginning of the priority list for coding
systems, thus making their priority higher than all the rest.

[Macro]with-coding-priority coding-systems &rest body
This macro executes body, like progn does (see Section 11.1 [Sequencing], page 150),
with coding-systems at the front of the priority list for coding systems. coding-systems
should be a list of coding systems to prefer during execution of body.

33.10.7 Explicit Encoding and Decoding

All the operations that transfer text in and out of Emacs have the ability to use a coding
system to encode or decode the text. You can also explicitly encode and decode text using
the functions in this section.

The result of encoding, and the input to decoding, are not ordinary text. They logically
consist of a series of byte values; that is, a series of ASCII and eight-bit characters. In unibyte
buffers and strings, these characters have codes in the range 0 through #xFF (255). In a
multibyte buffer or string, eight-bit characters have character codes higher than #xFF (see
Section 33.1 [Text Representations], page 872), but Emacs transparently converts them to
their single-byte values when you encode or decode such text.

The usual way to read a file into a buffer as a sequence of bytes, so you can decode the
contents explicitly, is with insert-file-contents-literally (see Section 25.3 [Reading
from Files], page 548); alternatively, specify a non-nil rawfile argument when visiting a file
with find-file-noselect. These methods result in a unibyte buffer.

Chapter 33: Non-ASCII Characters 897

The usual way to use the byte sequence that results from explicitly encoding text is to
copy it to a file or process—for example, to write it with write-region (see Section 25.4
[Writing to Files], page 549), and suppress encoding by binding coding-system-for-write
to no-conversion.

Here are the functions to perform explicit encoding or decoding. The encoding functions
produce sequences of bytes; the decoding functions are meant to operate on sequences of
bytes. All of these functions discard text properties. They also set last-coding-system-
used to the precise coding system they used.

[Command]encode-coding-region start end coding-system &optional
destination

This command encodes the text from start to end according to coding system coding-
system. Normally, the encoded text replaces the original text in the buffer, but the
optional argument destination can change that. If destination is a buffer, the encoded
text is inserted in that buffer after point (point does not move); if it is t, the command
returns the encoded text as a unibyte string without inserting it.

If encoded text is inserted in some buffer, this command returns the length of the
encoded text.

The result of encoding is logically a sequence of bytes, but the buffer remains multi-
byte if it was multibyte before, and any 8-bit bytes are converted to their multibyte
representation (see Section 33.1 [Text Representations], page 872).

Do not use undecided for coding-system when encoding text, since that may lead to
unexpected results. Instead, use select-safe-coding-system (see Section 33.10.4
[User-Chosen Coding Systems], page 890) to suggest a suitable encoding, if there’s no
obvious pertinent value for coding-system.

[Function]encode-coding-string string coding-system &optional nocopy
buffer

This function encodes the text in string according to coding system coding-system.
It returns a new string containing the encoded text, except when nocopy is non-nil,
in which case the function may return string itself if the encoding operation is trivial.
The result of encoding is a unibyte string.

[Command]decode-coding-region start end coding-system &optional
destination

This command decodes the text from start to end according to coding system coding-
system. To make explicit decoding useful, the text before decoding ought to be a
sequence of byte values, but both multibyte and unibyte buffers are acceptable (in
the multibyte case, the raw byte values should be represented as eight-bit characters).
Normally, the decoded text replaces the original text in the buffer, but the optional
argument destination can change that. If destination is a buffer, the decoded text
is inserted in that buffer after point (point does not move); if it is t, the command
returns the decoded text as a multibyte string without inserting it.

If decoded text is inserted in some buffer, this command returns the length of the
decoded text. If that buffer is a unibyte buffer (see Section 33.4 [Selecting a Repre-
sentation], page 875), the internal representation of the decoded text (see Section 33.1
[Text Representations], page 872) is inserted into the buffer as individual bytes.

Chapter 33: Non-ASCII Characters 898

This command puts a charset text property on the decoded text. The value of the
property states the character set used to decode the original text.

[Function]decode-coding-string string coding-system &optional nocopy
buffer

This function decodes the text in string according to coding-system. It returns a new
string containing the decoded text, except when nocopy is non-nil, in which case the
function may return string itself if the decoding operation is trivial. To make explicit
decoding useful, the contents of string ought to be a unibyte string with a sequence
of byte values, but a multibyte string is also acceptable (assuming it contains 8-bit
bytes in their multibyte form).

If optional argument buffer specifies a buffer, the decoded text is inserted in that
buffer after point (point does not move). In this case, the return value is the length
of the decoded text. If that buffer is a unibyte buffer, the internal representation of
the decoded text is inserted into it as individual bytes.

This function puts a charset text property on the decoded text. The value of the
property states the character set used to decode the original text:

(decode-coding-string "Gr\374ss Gott" 'latin-1)

⇒ #("Grüss Gott" 0 9 (charset iso-8859-1))

[Function]decode-coding-inserted-region from to filename &optional visit
beg end replace

This function decodes the text from from to to as if it were being read from file
filename using insert-file-contents using the rest of the arguments provided.

The normal way to use this function is after reading text from a file without decoding,
if you decide you would rather have decoded it. Instead of deleting the text and
reading it again, this time with decoding, you can call this function.

33.10.8 Terminal I/O Encoding

Emacs can use coding systems to decode keyboard input and encode terminal output.
This is useful for terminals that transmit or display text using a particular encoding, such
as Latin-1. Emacs does not set last-coding-system-used when encoding or decoding
terminal I/O.

[Function]keyboard-coding-system &optional terminal
This function returns the coding system used for decoding keyboard input from
terminal. A value of no-conversion means no decoding is done. If terminal is
omitted or nil, it means the selected frame’s terminal. See Section 29.2 [Multiple
Terminals], page 712.

[Command]set-keyboard-coding-system coding-system &optional terminal
This command specifies coding-system as the coding system to use for decoding key-
board input from terminal. If coding-system is nil, that means not to decode key-
board input. If terminal is a frame, it means that frame’s terminal; if it is nil, that
means the currently selected frame’s terminal. See Section 29.2 [Multiple Terminals],
page 712.

Chapter 33: Non-ASCII Characters 899

[Function]terminal-coding-system &optional terminal
This function returns the coding system that is in use for encoding terminal output
from terminal. A value of no-conversion means no encoding is done. If terminal is
a frame, it means that frame’s terminal; if it is nil, that means the currently selected
frame’s terminal.

[Command]set-terminal-coding-system coding-system &optional terminal
This command specifies coding-system as the coding system to use for encoding termi-
nal output from terminal. If coding-system is nil, that means not to encode terminal
output. If terminal is a frame, it means that frame’s terminal; if it is nil, that means
the currently selected frame’s terminal.

33.11 Input Methods

Input methods provide convenient ways of entering non-ASCII characters from the keyboard.
Unlike coding systems, which translate non-ASCII characters to and from encodings meant
to be read by programs, input methods provide human-friendly commands. (See Section
“Input Methods” in The GNU Emacs Manual, for information on how users use input
methods to enter text.) How to define input methods is not yet documented in this manual,
but here we describe how to use them.

Each input method has a name, which is currently a string; in the future, symbols may
also be usable as input method names.

[Variable]current-input-method
This variable holds the name of the input method now active in the current buffer.
(It automatically becomes local in each buffer when set in any fashion.) It is nil if
no input method is active in the buffer now.

[User Option]default-input-method
This variable holds the default input method for commands that choose an input
method. Unlike current-input-method, this variable is normally global.

[Command]set-input-method input-method
This command activates input method input-method for the current buffer. It also
sets default-input-method to input-method. If input-method is nil, this command
deactivates any input method for the current buffer.

[Function]read-input-method-name prompt &optional default inhibit-null
This function reads an input method name with the minibuffer, prompting with
prompt. If default is non-nil, that is returned by default, if the user enters empty
input. However, if inhibit-null is non-nil, empty input signals an error.

The returned value is a string.

[Variable]input-method-alist
This variable defines all the supported input methods. Each element defines one input
method, and should have the form:

(input-method language-env activate-func

title description args...)

Chapter 33: Non-ASCII Characters 900

Here input-method is the input method name, a string; language-env is another string,
the name of the language environment this input method is recommended for. (That
serves only for documentation purposes.)

activate-func is a function to call to activate this method. The args, if any, are
passed as arguments to activate-func. All told, the arguments to activate-func are
input-method and the args.

title is a string to display in the mode line while this method is active. description is
a string describing this method and what it is good for.

The fundamental interface to input methods is through the variable input-method-

function. See Section 21.8.2 [Reading One Event], page 417, and Section 21.8.4 [Invoking
the Input Method], page 421.

33.12 Locales

In POSIX, locales control which language to use in language-related features. These Emacs
variables control how Emacs interacts with these features.

[Variable]locale-coding-system
This variable specifies the coding system to use for decoding system error mes-
sages and—on X Window system only—keyboard input, for sending batch output
to the standard output and error streams, for encoding the format argument to
format-time-string, and for decoding the return value of format-time-string.

[Variable]system-messages-locale
This variable specifies the locale to use for generating system error messages. Chang-
ing the locale can cause messages to come out in a different language or in a different
orthography. If the variable is nil, the locale is specified by environment variables in
the usual POSIX fashion.

[Variable]system-time-locale
This variable specifies the locale to use for formatting time values. Changing the locale
can cause messages to appear according to the conventions of a different language.
If the variable is nil, the locale is specified by environment variables in the usual
POSIX fashion.

[Function]locale-info item
This function returns locale data item for the current POSIX locale, if available. item
should be one of these symbols:

codeset Return the character set as a string (locale item CODESET).

days Return a 7-element vector of day names (locale items DAY_1 through
DAY_7);

months Return a 12-element vector of month names (locale items MON_1 through
MON_12).

paper Return a list (width height) of 2 integers, for the default paper size
measured in millimeters (locale items _NL_PAPER_WIDTH and _NL_PAPER_

HEIGHT).

Chapter 33: Non-ASCII Characters 901

If the system can’t provide the requested information, or if item is not one of
those symbols, the value is nil. All strings in the return value are decoded using
locale-coding-system. See Section “Locales” in The GNU Libc Manual, for more
information about locales and locale items.

	Introduction
	Caveats
	Lisp History
	Conventions
	Some Terms
	nil and t
	Evaluation Notation
	Printing Notation
	Error Messages
	Buffer Text Notation
	Format of Descriptions
	A Sample Function Description
	A Sample Variable Description

	Version Information
	Acknowledgments

	Lisp Data Types
	Printed Representation and Read Syntax
	Special Read Syntax
	Comments
	Programming Types
	Integer Type
	Floating-Point Type
	Character Type
	Basic Char Syntax
	General Escape Syntax
	Control-Character Syntax
	Meta-Character Syntax
	Other Character Modifier Bits

	Symbol Type
	Sequence Types
	Cons Cell and List Types
	Drawing Lists as Box Diagrams
	Dotted Pair Notation
	Association List Type

	Array Type
	String Type
	Syntax for Strings
	Non-ASCII Characters in Strings
	Nonprinting Characters in Strings
	Text Properties in Strings

	Vector Type
	Char-Table Type
	Bool-Vector Type
	Hash Table Type
	Function Type
	Macro Type
	Primitive Function Type
	Byte-Code Function Type
	Record Type
	Type Descriptors
	Autoload Type
	Finalizer Type

	Editing Types
	Buffer Type
	Marker Type
	Window Type
	Frame Type
	Terminal Type
	Window Configuration Type
	Frame Configuration Type
	Process Type
	Thread Type
	Mutex Type
	Condition Variable Type
	Stream Type
	Keymap Type
	Overlay Type
	Font Type

	Read Syntax for Circular Objects
	Type Predicates
	Equality Predicates
	Mutability

	Numbers
	Integer Basics
	Floating-Point Basics
	Type Predicates for Numbers
	Comparison of Numbers
	Numeric Conversions
	Arithmetic Operations
	Rounding Operations
	Bitwise Operations on Integers
	Standard Mathematical Functions
	Random Numbers

	Strings and Characters
	String and Character Basics
	Predicates for Strings
	Creating Strings
	Modifying Strings
	Comparison of Characters and Strings
	Conversion of Characters and Strings
	Formatting Strings
	Custom Format Strings
	Case Conversion in Lisp
	The Case Table

	Lists
	Lists and Cons Cells
	Predicates on Lists
	Accessing Elements of Lists
	Building Cons Cells and Lists
	Modifying List Variables
	Modifying Existing List Structure
	Altering List Elements with setcar
	Altering the CDR of a List
	Functions that Rearrange Lists

	Using Lists as Sets
	Association Lists
	Property Lists
	Property Lists and Association Lists
	Property Lists Outside Symbols

	Sequences, Arrays, and Vectors
	Sequences
	Arrays
	Functions that Operate on Arrays
	Vectors
	Functions for Vectors
	Char-Tables
	Bool-vectors
	Managing a Fixed-Size Ring of Objects

	Records
	Record Functions
	Backward Compatibility

	Hash Tables
	Creating Hash Tables
	Hash Table Access
	Defining Hash Comparisons
	Other Hash Table Functions

	Symbols
	Symbol Components
	Defining Symbols
	Creating and Interning Symbols
	Symbol Properties
	Accessing Symbol Properties
	Standard Symbol Properties

	Evaluation
	Kinds of Forms
	Self-Evaluating Forms
	Symbol Forms
	Classification of List Forms
	Symbol Function Indirection
	Evaluation of Function Forms
	Lisp Macro Evaluation
	Special Forms
	Autoloading

	Quoting
	Backquote
	Eval
	Deferred and Lazy Evaluation

	Control Structures
	Sequencing
	Conditionals
	Constructs for Combining Conditions
	Pattern-Matching Conditional
	The pcase macro
	Extending pcase
	Backquote-Style Patterns
	Destructuring with pcase Patterns

	Iteration
	Generators
	Nonlocal Exits
	Explicit Nonlocal Exits: catch and throw
	Examples of catch and throw
	Errors
	How to Signal an Error
	How Emacs Processes Errors
	Writing Code to Handle Errors
	Error Symbols and Condition Names

	Cleaning Up from Nonlocal Exits

	Variables
	Global Variables
	Variables that Never Change
	Local Variables
	When a Variable is Void
	Defining Global Variables
	Tips for Defining Variables Robustly
	Accessing Variable Values
	Setting Variable Values
	Running a function when a variable is changed.
	Limitations

	Scoping Rules for Variable Bindings
	Dynamic Binding
	Proper Use of Dynamic Binding
	Lexical Binding
	Using Lexical Binding

	Buffer-Local Variables
	Introduction to Buffer-Local Variables
	Creating and Deleting Buffer-Local Bindings
	The Default Value of a Buffer-Local Variable

	File Local Variables
	Directory Local Variables
	Connection Local Variables
	Variable Aliases
	Variables with Restricted Values
	Generalized Variables
	The setf Macro
	Defining new setf forms

	Functions
	What Is a Function?
	Lambda Expressions
	Components of a Lambda Expression
	A Simple Lambda Expression Example
	Features of Argument Lists
	Documentation Strings of Functions

	Naming a Function
	Defining Functions
	Calling Functions
	Mapping Functions
	Anonymous Functions
	Generic Functions
	Accessing Function Cell Contents
	Closures
	Advising Emacs Lisp Functions
	Primitives to manipulate advices
	Advising Named Functions
	Ways to compose advice
	Adapting code using the old defadvice

	Declaring Functions Obsolete
	Inline Functions
	The declare Form
	Telling the Compiler that a Function is Defined
	Determining whether a Function is Safe to Call
	Other Topics Related to Functions

	Macros
	A Simple Example of a Macro
	Expansion of a Macro Call
	Macros and Byte Compilation
	Defining Macros
	Common Problems Using Macros
	Wrong Time
	Evaluating Macro Arguments Repeatedly
	Local Variables in Macro Expansions
	Evaluating Macro Arguments in Expansion
	How Many Times is the Macro Expanded?

	Indenting Macros

	Customization Settings
	Common Item Keywords
	Defining Customization Groups
	Defining Customization Variables
	Customization Types
	Simple Types
	Composite Types
	Splicing into Lists
	Type Keywords
	Defining New Types

	Applying Customizations
	Custom Themes

	Loading
	How Programs Do Loading
	Load Suffixes
	Library Search
	Loading Non-ASCII Characters
	Autoload
	Autoload by Prefix
	When to Use Autoload

	Repeated Loading
	Features
	Which File Defined a Certain Symbol
	Unloading
	Hooks for Loading
	Emacs Dynamic Modules

	Byte Compilation
	Performance of Byte-Compiled Code
	Byte-Compilation Functions
	Documentation Strings and Compilation
	Dynamic Loading of Individual Functions
	Evaluation During Compilation
	Compiler Errors
	Byte-Code Function Objects
	Disassembled Byte-Code

	Debugging Lisp Programs
	The Lisp Debugger
	Entering the Debugger on an Error
	Debugging Infinite Loops
	Entering the Debugger on a Function Call
	Entering the debugger when a variable is modified
	Explicit Entry to the Debugger
	Using the Debugger
	Backtraces
	Debugger Commands
	Invoking the Debugger
	Internals of the Debugger

	Edebug
	Using Edebug
	Instrumenting for Edebug
	Edebug Execution Modes
	Jumping
	Miscellaneous Edebug Commands
	Breaks
	Edebug Breakpoints
	Global Break Condition
	Source Breakpoints

	Trapping Errors
	Edebug Views
	Evaluation
	Evaluation List Buffer
	Printing in Edebug
	Trace Buffer
	Coverage Testing
	The Outside Context
	Checking Whether to Stop
	Edebug Display Update
	Edebug Recursive Edit

	Edebug and Macros
	Instrumenting Macro Calls
	Specification List
	Backtracking in Specifications
	Specification Examples

	Edebug Options

	Debugging Invalid Lisp Syntax
	Excess Open Parentheses
	Excess Close Parentheses

	Test Coverage
	Profiling

	Reading and Printing Lisp Objects
	Introduction to Reading and Printing
	Input Streams
	Input Functions
	Output Streams
	Output Functions
	Variables Affecting Output

	Minibuffers
	Introduction to Minibuffers
	Reading Text Strings with the Minibuffer
	Reading Lisp Objects with the Minibuffer
	Minibuffer History
	Initial Input
	Completion
	Basic Completion Functions
	Completion and the Minibuffer
	Minibuffer Commands that Do Completion
	High-Level Completion Functions
	Reading File Names
	Completion Variables
	Programmed Completion
	Completion in Ordinary Buffers

	Yes-or-No Queries
	Asking Multiple-Choice Questions
	Reading a Password
	Minibuffer Commands
	Minibuffer Windows
	Minibuffer Contents
	Recursive Minibuffers
	Minibuffer Miscellany

	Command Loop
	Command Loop Overview
	Defining Commands
	Using interactive
	Code Characters for interactive
	Examples of Using interactive
	Select among Command Alternatives

	Interactive Call
	Distinguish Interactive Calls
	Information from the Command Loop
	Adjusting Point After Commands
	Input Events
	Keyboard Events
	Function Keys
	Mouse Events
	Click Events
	Drag Events
	Button-Down Events
	Repeat Events
	Motion Events
	Focus Events
	Miscellaneous System Events
	Event Examples
	Classifying Events
	Accessing Mouse Events
	Accessing Scroll Bar Events
	Putting Keyboard Events in Strings

	Reading Input
	Key Sequence Input
	Reading One Event
	Modifying and Translating Input Events
	Invoking the Input Method
	Quoted Character Input
	Miscellaneous Event Input Features

	Special Events
	Waiting for Elapsed Time or Input
	Quitting
	Prefix Command Arguments
	Recursive Editing
	Disabling Commands
	Command History
	Keyboard Macros

	Keymaps
	Key Sequences
	Keymap Basics
	Format of Keymaps
	Creating Keymaps
	Inheritance and Keymaps
	Prefix Keys
	Active Keymaps
	Searching the Active Keymaps
	Controlling the Active Keymaps
	Key Lookup
	Functions for Key Lookup
	Changing Key Bindings
	Remapping Commands
	Keymaps for Translating Sequences of Events
	Interaction with normal keymaps

	Commands for Binding Keys
	Scanning Keymaps
	Menu Keymaps
	Defining Menus
	Simple Menu Items
	Extended Menu Items
	Menu Separators
	Alias Menu Items

	Menus and the Mouse
	Menus and the Keyboard
	Menu Example
	The Menu Bar
	Tool bars
	Modifying Menus
	Easy Menu

	Major and Minor Modes
	Hooks
	Running Hooks
	Setting Hooks

	Major Modes
	Major Mode Conventions
	How Emacs Chooses a Major Mode
	Getting Help about a Major Mode
	Defining Derived Modes
	Basic Major Modes
	Mode Hooks
	Tabulated List mode
	Generic Modes
	Major Mode Examples

	Minor Modes
	Conventions for Writing Minor Modes
	Keymaps and Minor Modes
	Defining Minor Modes

	Mode Line Format
	Mode Line Basics
	The Data Structure of the Mode Line
	The Top Level of Mode Line Control
	Variables Used in the Mode Line
	%-Constructs in the Mode Line
	Properties in the Mode Line
	Window Header Lines
	Emulating Mode Line Formatting

	Imenu
	Font Lock Mode
	Font Lock Basics
	Search-based Fontification
	Customizing Search-Based Fontification
	Other Font Lock Variables
	Levels of Font Lock
	Precalculated Fontification
	Faces for Font Lock
	Syntactic Font Lock
	Multiline Font Lock Constructs
	Font Lock Multiline
	Region to Fontify after a Buffer Change

	Automatic Indentation of code
	Simple Minded Indentation Engine
	SMIE Setup and Features
	Operator Precedence Grammars
	Defining the Grammar of a Language
	Defining Tokens
	Living With a Weak Parser
	Specifying Indentation Rules
	Helper Functions for Indentation Rules
	Sample Indentation Rules
	Customizing Indentation

	Desktop Save Mode

	Documentation
	Documentation Basics
	Access to Documentation Strings
	Substituting Key Bindings in Documentation
	Text Quoting Style
	Describing Characters for Help Messages
	Help Functions

	Files
	Visiting Files
	Functions for Visiting Files
	Subroutines of Visiting

	Saving Buffers
	Reading from Files
	Writing to Files
	File Locks
	Information about Files
	Testing Accessibility
	Distinguishing Kinds of Files
	Truenames
	File Attributes
	Extended File Attributes
	Locating Files in Standard Places

	Changing File Names and Attributes
	Files and Secondary Storage
	File Names
	File Name Components
	Absolute and Relative File Names
	Directory Names
	Functions that Expand Filenames
	Generating Unique File Names
	File Name Completion
	Standard File Names

	Contents of Directories
	Creating, Copying and Deleting Directories
	Making Certain File Names ``Magic''
	File Format Conversion
	Overview
	Round-Trip Specification
	Piecemeal Specification

	Backups and Auto-Saving
	Backup Files
	Making Backup Files
	Backup by Renaming or by Copying?
	Making and Deleting Numbered Backup Files
	Naming Backup Files

	Auto-Saving
	Reverting

	Buffers
	Buffer Basics
	The Current Buffer
	Buffer Names
	Buffer File Name
	Buffer Modification
	Buffer Modification Time
	Read-Only Buffers
	The Buffer List
	Creating Buffers
	Killing Buffers
	Indirect Buffers
	Swapping Text Between Two Buffers
	The Buffer Gap

	Windows
	Basic Concepts of Emacs Windows
	Windows and Frames
	Window Sizes
	Resizing Windows
	Preserving Window Sizes
	Splitting Windows
	Deleting Windows
	Recombining Windows
	Selecting Windows
	Cyclic Ordering of Windows
	Buffers and Windows
	Switching to a Buffer in a Window
	Displaying a Buffer in a Suitable Window
	Choosing a Window for Displaying a Buffer
	Action Functions for Buffer Display
	Action Alists for Buffer Display
	Additional Options for Displaying Buffers
	Precedence of Action Functions
	The Zen of Buffer Display

	Window History
	Dedicated Windows
	Quitting Windows
	Side Windows
	Displaying Buffers in Side Windows
	Side Window Options and Functions
	Frame Layouts with Side Windows

	Atomic Windows
	Windows and Point
	The Window Start and End Positions
	Textual Scrolling
	Vertical Fractional Scrolling
	Horizontal Scrolling
	Coordinates and Windows
	Mouse Window Auto-selection
	Window Configurations
	Window Parameters
	Hooks for Window Scrolling and Changes

	Frames
	Creating Frames
	Multiple Terminals
	Frame Geometry
	Frame Layout
	Frame Font
	Frame Position
	Frame Size
	Implied Frame Resizing

	Frame Parameters
	Access to Frame Parameters
	Initial Frame Parameters
	Window Frame Parameters
	Basic Parameters
	Position Parameters
	Size Parameters
	Layout Parameters
	Buffer Parameters
	Frame Interaction Parameters
	Mouse Dragging Parameters
	Window Management Parameters
	Cursor Parameters
	Font and Color Parameters

	Geometry

	Terminal Parameters
	Frame Titles
	Deleting Frames
	Finding All Frames
	Minibuffers and Frames
	Input Focus
	Visibility of Frames
	Raising, Lowering and Restacking Frames
	Frame Configurations
	Child Frames
	Mouse Tracking
	Mouse Position
	Pop-Up Menus
	Dialog Boxes
	Pointer Shape
	Window System Selections
	Drag and Drop
	Color Names
	Text Terminal Colors
	X Resources
	Display Feature Testing

	Positions
	Point
	Motion
	Motion by Characters
	Motion by Words
	Motion to an End of the Buffer
	Motion by Text Lines
	Motion by Screen Lines
	Moving over Balanced Expressions
	Skipping Characters

	Excursions
	Narrowing

	Markers
	Overview of Markers
	Predicates on Markers
	Functions that Create Markers
	Information from Markers
	Marker Insertion Types
	Moving Marker Positions
	The Mark
	The Region

	Text
	Examining Text Near Point
	Examining Buffer Contents
	Comparing Text
	Inserting Text
	User-Level Insertion Commands
	Deleting Text
	User-Level Deletion Commands
	The Kill Ring
	Kill Ring Concepts
	Functions for Killing
	Yanking
	Functions for Yanking
	Low-Level Kill Ring
	Internals of the Kill Ring

	Undo
	Maintaining Undo Lists
	Filling
	Margins for Filling
	Adaptive Fill Mode
	Auto Filling
	Sorting Text
	Counting Columns
	Indentation
	Indentation Primitives
	Indentation Controlled by Major Mode
	Indenting an Entire Region
	Indentation Relative to Previous Lines
	Adjustable Tab Stops
	Indentation-Based Motion Commands

	Case Changes
	Text Properties
	Examining Text Properties
	Changing Text Properties
	Text Property Search Functions
	Properties with Special Meanings
	Formatted Text Properties
	Stickiness of Text Properties
	Lazy Computation of Text Properties
	Defining Clickable Text
	Defining and Using Fields
	Why Text Properties are not Intervals

	Substituting for a Character Code
	Registers
	Transposition of Text
	Replacing Buffer Text
	Dealing With Compressed Data
	Base 64 Encoding
	Checksum/Hash
	GnuTLS Cryptography
	Format of GnuTLS Cryptography Inputs
	GnuTLS Cryptographic Functions

	Parsing HTML and XML
	Document Object Model

	Parsing and generating JSON values
	JSONRPC communication
	Overview
	Process-based JSONRPC connections
	JSONRPC JSON object format
	Deferred JSONRPC requests

	Atomic Change Groups
	Change Hooks

	Non-ASCII Characters
	Text Representations
	Disabling Multibyte Characters
	Converting Text Representations
	Selecting a Representation
	Character Codes
	Character Properties
	Character Sets
	Scanning for Character Sets
	Translation of Characters
	Coding Systems
	Basic Concepts of Coding Systems
	Encoding and I/O
	Coding Systems in Lisp
	User-Chosen Coding Systems
	Default Coding Systems
	Specifying a Coding System for One Operation
	Explicit Encoding and Decoding
	Terminal I/O Encoding

	Input Methods
	Locales

	Searching and Matching
	Searching for Strings
	Searching and Case
	Regular Expressions
	Syntax of Regular Expressions
	Special Characters in Regular Expressions
	Character Classes
	Backslash Constructs in Regular Expressions

	Complex Regexp Example
	Regular Expression Functions

	Regular Expression Searching
	POSIX Regular Expression Searching
	The Match Data
	Replacing the Text that Matched
	Simple Match Data Access
	Accessing the Entire Match Data
	Saving and Restoring the Match Data

	Search and Replace
	Standard Regular Expressions Used in Editing

	Syntax Tables
	Syntax Table Concepts
	Syntax Descriptors
	Table of Syntax Classes
	Syntax Flags

	Syntax Table Functions
	Syntax Properties
	Motion and Syntax
	Parsing Expressions
	Motion Commands Based on Parsing
	Finding the Parse State for a Position
	Parser State
	Low-Level Parsing
	Parameters to Control Parsing

	Syntax Table Internals
	Categories

	Abbrevs and Abbrev Expansion
	Abbrev Tables
	Defining Abbrevs
	Saving Abbrevs in Files
	Looking Up and Expanding Abbreviations
	Standard Abbrev Tables
	Abbrev Properties
	Abbrev Table Properties

	Threads
	Basic Thread Functions
	Mutexes
	Condition Variables
	The Thread List

	Processes
	Functions that Create Subprocesses
	Shell Arguments
	Creating a Synchronous Process
	Creating an Asynchronous Process
	Deleting Processes
	Process Information
	Sending Input to Processes
	Sending Signals to Processes
	Receiving Output from Processes
	Process Buffers
	Process Filter Functions
	Decoding Process Output
	Accepting Output from Processes
	Processes and Threads

	Sentinels: Detecting Process Status Changes
	Querying Before Exit
	Accessing Other Processes
	Transaction Queues
	Network Connections
	Network Servers
	Datagrams
	Low-Level Network Access
	make-network-process
	Network Options
	Testing Availability of Network Features

	Misc Network Facilities
	Communicating with Serial Ports
	Packing and Unpacking Byte Arrays
	Describing Data Layout
	Functions to Unpack and Pack Bytes

	Emacs Display
	Refreshing the Screen
	Forcing Redisplay
	Truncation
	The Echo Area
	Displaying Messages in the Echo Area
	Reporting Operation Progress
	Logging Messages in *Messages*
	Echo Area Customization

	Reporting Warnings
	Warning Basics
	Warning Variables
	Warning Options
	Delayed Warnings

	Invisible Text
	Selective Display
	Temporary Displays
	Overlays
	Managing Overlays
	Overlay Properties
	Searching for Overlays

	Size of Displayed Text
	Line Height
	Faces
	Face Attributes
	Defining Faces
	Face Attribute Functions
	Displaying Faces
	Face Remapping
	Functions for Working with Faces
	Automatic Face Assignment
	Basic Faces
	Font Selection
	Looking Up Fonts
	Fontsets
	Low-Level Font Representation

	Fringes
	Fringe Size and Position
	Fringe Indicators
	Fringe Cursors
	Fringe Bitmaps
	Customizing Fringe Bitmaps
	The Overlay Arrow

	Scroll Bars
	Window Dividers
	The display Property
	Display Specs That Replace The Text
	Specified Spaces
	Pixel Specification for Spaces
	Other Display Specifications
	Displaying in the Margins

	Images
	Image Formats
	Image Descriptors
	XBM Images
	XPM Images
	ImageMagick Images
	SVG Images
	Other Image Types
	Defining Images
	Showing Images
	Multi-Frame Images
	Image Cache

	Embedded Native Widgets
	Buttons
	Button Properties
	Button Types
	Making Buttons
	Manipulating Buttons
	Button Buffer Commands

	Abstract Display
	Abstract Display Functions
	Abstract Display Example

	Blinking Parentheses
	Character Display
	Usual Display Conventions
	Display Tables
	Active Display Table
	Glyphs
	Glyphless Character Display

	Beeping
	Window Systems
	Tooltips
	Bidirectional Display

	Operating System Interface
	Starting Up Emacs
	Summary: Sequence of Actions at Startup
	The Init File
	Terminal-Specific Initialization
	Command-Line Arguments

	Getting Out of Emacs
	Killing Emacs
	Suspending Emacs

	Operating System Environment
	User Identification
	Time of Day
	Time Zone Rules
	Time Conversion
	Parsing and Formatting Times
	Processor Run time
	Time Calculations
	Timers for Delayed Execution
	Idle Timers
	Terminal Input
	Input Modes
	Recording Input

	Terminal Output
	Sound Output
	Operating on X11 Keysyms
	Batch Mode
	Session Management
	Desktop Notifications
	Notifications on File Changes
	Dynamically Loaded Libraries
	Security Considerations

	Preparing Lisp code for distribution
	Packaging Basics
	Simple Packages
	Multi-file Packages
	Creating and Maintaining Package Archives
	Interfacing to an archive web server

	Emacs 26 Antinews
	GNU Free Documentation License
	GNU General Public License
	Tips and Conventions
	Emacs Lisp Coding Conventions
	Key Binding Conventions
	Emacs Programming Tips
	Tips for Making Compiled Code Fast
	Tips for Avoiding Compiler Warnings
	Tips for Documentation Strings
	Tips on Writing Comments
	Conventional Headers for Emacs Libraries

	GNU Emacs Internals
	Building Emacs
	Pure Storage
	Garbage Collection
	Stack-allocated Objects
	Memory Usage
	C Dialect
	Writing Emacs Primitives
	Writing Dynamically-Loaded Modules
	Module Initialization Code
	Writing Module Functions
	Conversion Between Lisp and Module Values
	Miscellaneous Convenience Functions for Modules
	Nonlocal Exits in Modules

	Object Internals
	Buffer Internals
	Window Internals
	Process Internals

	C Integer Types

	Standard Errors
	Standard Keymaps
	Standard Hooks
	Index

